Support us

Machine learning-based treatment outcome prediction in head and neck cancer using integrated noninvasive diagnostics.

Abstract

METHODS

This proof-of-principle retrospective study included 558 surgically treated HNSCC patients. Baseline clinical data, routine blood markers, and MRI-based radiomic features were collected before treatment. Additional postsurgical treatments within one year were also recorded. Random forest classifiers were trained to predict one-year survival and feeding tube dependence. Model explainability was assessed using Shapley Additive exPlanation (SHAP) values.

CONCLUSION

Clinical data appeared to be the strongest predictor of one-year survival in surgically treated HNSCC, although overall predictive performance was moderate. Postsurgical treatment information played a key role in predicting tube feeding dependence. While multimodal integration did not enhance overall model performance, it showed modest gains for weaker individual modalities, suggesting potential complementarity that warrants further investigation.

RESULTS

Using tenfold stratified cross-validation, clinical data showed the highest predictive performance for survival (AUC = 0.75 ± 0.10; p < 0.001). Blood (AUC = 0.67 ± 0.17; p = 0.001) and imaging (AUC = 0.68 ± 0.16; p = 0.26) showed moderate performance, and multimodal integration did not improve predictions (AUC = 0.68 ± 0.16; p = 0.38). For feeding tube dependence, all modalities had low predictive power (AUC ≤ 0.66; p > 0.05). However, postsurgical treatment information outperformed all other modalities (AUC = 0.67 ± 0.07; p = 0.002), but had the lowest predictive value for survival (AUC = 0.57 ± 0.11; p = 0.08).

PURPOSE

Accurate prediction of treatment outcomes is crucial for personalized treatment in head and neck squamous cell carcinoma (HNSCC). Beyond one-year survival, assessing long-term enteral nutrition dependence is essential for optimizing patient counseling and resource allocation. This preliminary study aimed to predict one-year survival and feeding tube dependence in surgically treated HNSCC patients using classical machine learning.

More about this publication

International journal of computer assisted radiology and surgery
  • Publication date 08-12-2025

This site uses cookies

This website uses cookies to ensure you get the best experience on our website.