Support us

Prostate MRI Using Deep Learning Reconstruction in Response to Cancer Screening Demands-A Systematic Review and Meta-Analysis.

Abstract

Background/Objectives: There is a growing need for efficient prostate MRI protocols due to their increasing use in managing prostate cancer (PCa) and potential inclusion in screening. Deep learning reconstruction (DLR) may enhance MR acquisitions and improve image quality compared to conventional acceleration techniques. This systematic review examines DLR approaches to prostate MRI. Methods: A search of PubMed, Web of Science, and Google Scholar identified eligible studies comparing DLR to conventional reconstruction for prostate imaging. A narrative synthesis was performed to summarize the impact of DLR on acquisition time, image quality, and diagnostic performance. Results: Thirty-three studies showed that DLR can reduce acquisition times for T2w and DWI imaging while maintaining or improving image quality. It did not significantly affect clinical tasks, such as biopsy decisions, and performed comparably to human readers in PI-RADS scoring and the detection of extraprostatic extension. However, AI models trained on conventional data might be less accurate with DLR images. The heterogeneity in image quality metrics among the studies prevented quantitative synthesis. Discussion: DLR has the potential to achieve substantial time savings in prostate MRI while maintaining image quality, which is especially relevant because of increased MRI demands. Future research should address the effect of DLR on clinically relevant downstream tasks, including AI algorithms' performances and biopsy decisions, and explore task-specific accelerated protocols for screening, image-guided biopsy, and treatment.

More about this publication

Journal of personalized medicine
  • Volume 15
  • Issue nr. 7
  • Publication date 02-07-2025

This site uses cookies

This website uses cookies to ensure you get the best experience on our website.