Extrachromosomal DNAs (ecDNAs), which replicate and segregate in a non-Mendelian manner, serve as vectors for accelerated tumor evolution. By integrating chromatin accessibility, whole-genome sequencing, and Hi-C-based genome topology data from a cohort of metastatic Castration-Resistant Prostate Cancer (mCRPC) cases, we show that epigenetically activated repeat DNA, amplified in ecDNAs, drive oncogene overexpression. Specifically, we identify a subgroup of mCRPCs (20%) characterized by clusters of accessible LINE1 repeat DNA elements flanking the androgen receptor (AR) gene. These LINE1 elements are co-amplified with AR and provide binding sites for prostate-lineage transcription factors, including AR, FOXA1 and HOXB13. Accessible LINE1 elements establish novel 3D chromatin interactions with the AR gene, forging a new regulatory plexus driving AR overexpression and confers resistance to androgen signaling inhibitors. Our findings indicate how tumor evolution is driven by the convergence of genetic and epigenetic alterations on repeat DNA, activating and amplifying them to allow oncogene overexpression.
This website uses cookies to ensure you get the best experience on our website.