In vivo dosimetry during conformal radiotherapy: requirements for and findings of a routine procedure.

Abstract

CONCLUSIONS

Accurate in vivo dosimetry, using a diode measurement system, is a powerful tool to trace dosimetric errors during conformal radiotherapy in the range of 2.5-10%, provided that the system is carefully calibrated. The implementation of an intensive in vivo dosimetry programme requires additional staff for measurements and evaluation. The patient measurements add only a few minutes to the total treatment time per patient and guarantee an accurate dose delivery, which is a prerequisite for conformal radiotherapy.

PURPOSE

Conformal radiotherapy requires accurate knowledge of the actual dose delivered to a patient. The impact of routine in vivo dosimetry, including its special requirements, clinical findings and resources, has been analysed for three conformal treatment techniques to evaluate its usefulness in daily clinical practice.

MATERIALS AND METHODS

Based on pilot studies, routine in vivo dosimetry quality control (QC) protocols were implemented in the clinic. Entrance and exit diode dose measurements have been performed during two treatment sessions for 378 patients having prostate, bladder and parotid gland tumours. Dose calculations were performed with a CT-based three-dimensional treatment planning system. In our QC-protocol we applied action levels of 2.5% for the prostate and bladder tumour group and 4.0% for the parotid gland patients. When the difference between the measured dose at the dose specification point and the prescribed dose exceeded the action level the deviation was investigated and the number of monitor units (MUs) adjusted. Since an accurate dose measurement was necessary, some properties of the on-line high-precision diode measurement system and the long-term change in sensitivity of the diodes were investigated in detail.

RESULTS

The sensitivity of all diodes decreased by approximately 7% after receiving an integrated dose of 10 kGy, for 4 and 8 MV beams. For 34 (9%) patients the difference between the measured and calculated dose was larger than the action level. Systematic errors in the use of a new software release of the monitor unit calculation program, limitations of the dose calculation algorithms, errors in the planning procedure and instability in the performance of the accelerator have been detected.

More about this publication

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
  • Volume 52
  • Issue nr. 1
  • Pages 51-9
  • Publication date 01-07-1999

This site uses cookies

This website uses cookies to ensure you get the best experience on our website.