Phase I feasibility study of Olaparib in combination with loco-regional radiotherapy in head and neck squamous cell carcinoma.

Abstract

PURPOSE

PARP-inhibitors have potent radiosensitizing properties in pre-clinical models. To identify the maximum tolerated dose (MTD) of the PARP-inhibitor Olaparib in combination with radiotherapy in patients with head and neck cancer, a single institutional phase-I dose escalation trial was initiated.

RESULTS

One week Olaparib-only treatment (25 mg QD) was administered to all patients prior to the start of radiotherapy. In dose-level I, Olaparib (25 mg BID) was combined with accelerated radiotherapy (70 Gy in 6 weeks). Because of DLT's in 3 of the 4 treated patients (acute tracheotomy 5 and 7 months and osteoradionecrosis 7 months after treatment), the Olaparib dose was de-escalated to 25 mg QD, and combined with conventional radiotherapy (70 Gy in 7 weeks) (dose-level II). There were no DLT's observed in 5 patients treated within dose-level II. After a median follow-up of 60 months, the 4-year LRC and OS rates were 77.8 % and 88.9 %, respectively.

PATIENTS AND METHODS

The starting dose of Olaparib was 25 mg BID, combined with radiotherapy (70 Gy in 35 fractions). The MTD was defined as the highest dose-level at which not more than 20 % of patients experience dose-limiting toxicities (DLT) or as the highest reached dose in the absence of DLT's.

CONCLUSION

Olaparib 25 mg QD combined with conventionally fractionated radiotherapy was well tolerated and identified as the MTD while severe DLT's were observed when Olaparib 25 mg BID was combined with accelerated radiation. This combination might be further explored in future Olaparib dose escalation studies in patients with locally-advanced HNSCC unfit for cisplatin-based chemoradiotherapy.

More about this publication

Clinical and translational radiation oncology
  • Volume 44
  • Pages 100698
  • Publication date 01-01-2024

This site uses cookies

This website uses cookies to ensure you get the best experience on our website.