Optimal <sup>68</sup>Ga-PSMA and <sup>18</sup>F-PSMA PET window levelling for gross tumour volume delineation in primary prostate cancer.

Abstract

RESULTS

ROC curve analysis for 68Ga-PSMA-11 PET revealed a median threshold of 25 SUV% (range, 22-27 SUV%) and 41 SUV% (40-43 SUV%) for GTVSOST-H and GTVSOST-MA, respectively. For 18F-PSMA-1007 PET, a median threshold of 42 SUV% (39-45 SUV%) for GTVSOST-H and 44 SUV% (42-45 SUV%) for GTVSOST-MA was found. A significant pairwise difference was observed when comparing the accuracy of the GTVSOST-H contours with the median accuracy of the GTVmanual contours (median, - 2.5%; IQR, - 26.5-0.2%; p = 0.020), whereas no significant pairwise difference was found for the GTVSOST-MA contours (median, - 0.3%; IQR, - 4.4-0.6%; p = 0.199).

PURPOSE

This study proposes optimal tracer-specific threshold-based window levels for PSMA PET-based intraprostatic gross tumour volume (GTV) contouring to reduce interobserver delineation variability.

CONCLUSIONS

Threshold-based contouring using GTVmajority-trained SOSTs achieves an accuracy comparable with manual contours in delineating GTVhisto. The median SOSTs of 41 SUV% for 68Ga-PSMA-11 PET and 44 SUV% for 18F-PSMA-1007 PET form a base for tracer-specific window levelling.

TRIAL REGISTRATION

Clinicaltrials.gov ; NCT03327675; 31-10-2017.

METHODS

Nine 68Ga-PSMA-11 and nine 18F-PSMA-1007 PET scans including GTV delineations of four expert teams (GTVmanual) and a majority-voted GTV (GTVmajority) were assessed with respect to a registered histopathological GTV (GTVhisto) as the gold standard reference. The standard uptake values (SUVs) per voxel were converted to a percentage (SUV%) relative to the SUVmax. The statistically optimised SUV% threshold (SOST) was defined as those that maximises accuracy for threshold-based contouring. A leave-one-out cross-validation receiver operating characteristic (ROC) curve analysis was performed to determine the SOST for each tracer. The SOST analysis was performed twice, first using the GTVhisto contour as training structure (GTVSOST-H) and second using the GTVmajority contour as training structure (GTVSOST-MA) to correct for any limited misregistration. The accuracy of both GTVSOST-H and GTVSOST-MA was calculated relative to GTVhisto in the 'leave-one-out' patient of each fold and compared with the accuracy of GTVmanual.

More about this publication

European journal of nuclear medicine and molecular imaging
  • Volume 48
  • Issue nr. 4
  • Pages 1211-1218
  • Publication date 01-04-2021

This site uses cookies

This website uses cookies to ensure you get the best experience on our website.