A Multipollutant Approach to Estimating Causal Effects of Air Pollution Mixtures on Overall Mortality in a Large, Prospective Cohort.

Abstract

BACKGROUND

Several studies have confirmed associations between air pollution and overall mortality, but it is unclear to what extent these associations reflect causal relationships. Moreover, few studies to our knowledge have accounted for complex mixtures of air pollution. In this study, we evaluate the causal effects of a mixture of air pollutants on overall mortality in a large, prospective cohort of Dutch individuals.

CONCLUSION

Using novel methods for causal inference and mixture modeling in a large prospective cohort, this study strengthened the causal interpretation of air pollution effects on overall mortality, emphasizing the primary role of PM2.5 within the pollutant mixture.

RESULTS

Regression model results were influenced by multicollinearity. Weighted quantile sum and boosted regression tree models indicated that all components contributed to a positive linear association with the outcome, with PM2.5 being the most relevant contributor. In the multivariate propensity score model, PM2.5 (OR=1.18, 95% CI: 1.08-1.29) and PM10 (OR=1.02, 95% CI: 0.91-1.14) were associated with increased odds of mortality per interquartile range increase.

METHODS

We evaluated 86,882 individuals from the LIFEWORK study, assessing overall mortality between 2013 and 2017 through national registry linkage. We predicted outdoor concentration of five air pollutants (PM2.5, PM10, NO2, PM2.5 absorbance, and oxidative potential) with land-use regression. We used logistic regression and mixture modeling (weighted quantile sum and boosted regression tree models) to identify potential confounders, assess pollutants' relevance in the mixture-outcome association, and investigate interactions and nonlinearities. Based on these results, we built a multivariate generalized propensity score model to estimate the causal effects of pollutant mixtures.

More about this publication

Epidemiology (Cambridge, Mass.)
  • Volume 33
  • Issue nr. 4
  • Pages 514-522
  • Publication date 01-07-2022

This site uses cookies

This website uses cookies to ensure you get the best experience on our website.