A chromatin modifier genetic screen identifies SIRT2 as a modulator of response to targeted therapies through the regulation of MEK kinase activity.


Resistance to targeted therapies is a major problem in cancer treatment. The epidermal growth factor receptor (EGFR) antibody drugs are effective in a subset of colorectal cancers, but the molecular mechanisms of resistance are understood poorly. Genes involved in epigenetic regulation are frequently deregulated in cancer, raising the possibility that such genes also contribute to drug resistance. Using a focused RNA interference library for genes involved in epigenetic regulation, we identify sirtuin2 (SIRT2), an NAD(+)-dependent deacetylase, as a modulator of the response to EGFR inhibitors in colon and lung cancer. SIRT2 loss also conferred resistance to BRAF and MEK inhibitors in BRAF mutant melanoma and KRAS mutant colon cancers, respectively. These results warrant further investigation into the potential role of SIRT2 in resistance to drugs that act in the receptor tyrosine kinase-RAS-RAF-MEK-ERK signaling pathway.

More about this publication

  • Volume 34
  • Issue nr. 4
  • Pages 531-6
  • Publication date 22-01-2015

This site uses cookies

This website uses cookies to ensure you get the best experience on our website.