Full blockade of intestinal P-glycoprotein and extensive inhibition of blood-brain barrier P-glycoprotein by oral treatment of mice with PSC833.


Mice lacking mdr1-type P-glycoproteins (mdr1a/1b [-/-] mice) display large changes in the pharmacokinetics of digoxin and other drugs. Using the kinetics of digoxin in mdr1a/1b (-/-) mice as a model representing a complete block of P-glycoprotein activity, we investigated the activity and specificity of the reversal agent SDZ PSC833 in inhibiting mdr1-type P-glycoproteins in vivo. Oral PSC833 was coadministered with intravenous [3H]digoxin to wild-type and mdr1a/1b (-/-) mice. The direct excretion of [3H]digoxin mediated by P-glycoprotein in the intestinal mucosa of wild-type mice was abolished by administration of PSC833. Hepatobiliary excretion of [3H]digoxin was markedly decreased in both wild-type and mdr1a/1b (-/-) mice by PSC833, the latter effect indicating that in vivo, PSC833 inhibits not only mdr1-type P-glycoproteins, but also other drug transporters. Upon coadministration of PSC833, brain levels of [3H]digoxin in wild-type mice showed a large increase, approaching (but not equaling) the levels found in brains of PSC833-treated mdr1a/1b (-/-) mice. Thus, orally administered PSC833 can inhibit blood-brain barrier P-glycoprotein extensively, and intestinal P-glycoprotein completely. These profound pharmacokinetic effects of PSC833 treatment imply potential risks, but also promising pharmacological applications of the use of effective reversal agents.

More about this publication

The Journal of clinical investigation
  • Volume 100
  • Issue nr. 10
  • Pages 2430-6
  • Publication date 15-11-1997

This site uses cookies

This website uses cookies to ensure you get the best experience on our website.