Autotaxin impedes anti-tumor immunity by suppressing chemotaxis and tumor infiltration of CD8<sup>+</sup> T cells.

Abstract

Autotaxin (ATX; ENPP2) produces lysophosphatidic acid (LPA) that regulates multiple biological functions via cognate G protein-coupled receptors LPAR1-6. ATX/LPA promotes tumor cell migration and metastasis via LPAR1 and T cell motility via LPAR2, yet its actions in the tumor immune microenvironment remain unclear. Here, we show that ATX secreted by melanoma cells is chemorepulsive for tumor-infiltrating lymphocytes (TILs) and circulating CD8+ T cells ex vivo, with ATX functioning as an LPA-producing chaperone. Mechanistically, T cell repulsion predominantly involves Gα12/13-coupled LPAR6. Upon anti-cancer vaccination of tumor-bearing mice, ATX does not affect the induction of systemic T cell responses but, importantly, suppresses tumor infiltration of cytotoxic CD8+ T cells and thereby impairs tumor regression. Moreover, single-cell data from melanoma tumors are consistent with intratumoral ATX acting as a T cell repellent. These findings highlight an unexpected role for the pro-metastatic ATX-LPAR axis in suppressing CD8+ T cell infiltration to impede anti-tumor immunity, suggesting new therapeutic opportunities.

More about this publication

Cell reports
  • Volume 37
  • Issue nr. 7
  • Pages 110013
  • Publication date 16-11-2021

This site uses cookies

This website uses cookies to ensure you get the best experience on our website.