The TP model had a good performance in predicting voxel-wise presence of recurrent tumor. Model-derived tumor risk levels achieved sensitivity and specificity similar to manual delineations in localizing recurrent tumor. Voxel-wise TP derived from mp-MRI can in this way be incorporated for target definition in focal salvage of radio-recurrent PCa.
In the test cohort, the model obtained a median (range) area under the curve of 0.77 (0.41-0.99) for the whole prostate. The GTV delineation resulted in a median sensitivity of 0.31 (0-0.87) and specificity of 0.97 (0.84-1.0) with no significant differences between model and manual delineations. The 3-level clustering GTV and high-risk CTV delineations had median sensitivities of 0.17 (0-0.59) and 0.49 (0-0.97) and specificities of 0.98 (0.84-1.00) and 0.94 (0.84-0.99), respectively.
Two cohorts of patients with radio-recurrent PCa were used in this study. All patients underwent mp-MRI (T2 weighted, diffusion-weighted imaging, and dynamic contrast enhanced). A logistic regression model was trained using imaging features from 21 patients with biopsy-proven recurrence who qualified for salvage treatment. The test cohort consisted of 17 patients treated with salvage prostatectomy. The model was tested against histopathology-derived tumor delineations. The voxel-wise TP maps were clustered using k-means to generate a gross tumor volume (GTV) contour for voxel-level comparisons with manual tumor delineations performed by 2 radiologists and with histopathology-validated contours. Later, k-means was used with 3 clusters to define a clinical target volume (CTV), high-risk CTV, and GTV, with increasing tumor risk.
Focal salvage treatments of recurrent prostate cancer (PCa) after radiation therapy require accurate delineation of the target volume. Magnetic resonance imaging (MRI) is used for this purpose; however, radiation therapy-induced changes complicate image interpretation, and guidelines are lacking on the assessment and delineation of recurrent PCa. A tumor probability (TP) model was trained and independently tested using multiparametric magnetic resonance imaging (mp-MRI) of patients with radio-recurrent PCa. The resulting probability maps were used to derive target regions for radiation therapy treatment planning.
This website uses cookies to ensure you get the best experience on our website.