Measuring Transcription Dynamics of Individual Genes Inside Living Cells.


Transcription is a highly dynamic process, which, for many genes, occurs in stochastic bursts. Studying what regulates these stochastic bursts requires visualization and quantification of transcription dynamics in single living cells. Such measurements of bursting can be accomplished by labeling nascent transcripts of single genes fluorescently with the MS2 and PP7 RNA labeling techniques. Live-cell single-molecule microscopy of transcription in real time allows for the extraction of transcriptional bursting kinetics inside single cells. This chapter describes how to set up the MS2 or PP7 RNA labeling system of endogenous genes in both budding yeast (Saccharomyces cerevisiae) and mammalian cells (mouse embryonic stem cells). We include how to genetically engineer the cells with the MS2 and PP7 system, describe how to perform the live-microscopy experiments and discuss how to extract transcriptional bursting parameters of the genes of interest.

More about this publication

Methods in molecular biology (Clifton, N.J.)
  • Volume 2694
  • Pages 235-265
  • Publication date 12-10-2023

This site uses cookies

This website uses cookies to ensure you get the best experience on our website.