Eighty-two patients with 127 CRLM were included. Radiomics features (with different filters) were extracted from the AZ and a 10 mm periablational rim (PAR)on portal-venous-phase CT up to 8 weeks after ablation. Multivariable stepwise Cox regression analyses were used to predict LTP based on clinical and radiomics features. Performance (concordance [c]-statistics) of the different models was compared and performance in an 'independent' dataset was approximated with bootstrapped leave-one-out-cross-validation (LOOCV).
Thirty-three lesions (26 %) developed LTP. Median follow-up was 21 months (range 6-115). The combined model, a combination of clinical and radiomics features, included chemotherapy (HR 0.50, p = 0.024), cT-stage (HR 10.13, p = 0.016), lesion size (HR 1.11, p = <0.001), AZ_Skewness (HR 1.58, p = 0.016), AZ_Uniformity (HR 0.45, p = 0.002), PAR_Mean (HR 0.52, p = 0.008), PAR_Skewness (HR 1.67, p = 0.019) and PAR_Uniformity (HR 3.35, p < 0.001) as relevant predictors for LTP. The predictive performance of the combined model (after LOOCV) yielded a c-statistic of 0.78 (95 %CI 0.65-0.87), compared to the clinical or radiomics models only (c-statistic 0.74 (95 %CI 0.58-0.84) and 0.65 (95 %CI 0.52-0.83), respectively).
Combining radiomics features with clinical features yielded a better performing prediction of LTP than radiomics only. CT-based radiomics of the AZ and PAR may have potential to aid in the prediction of LTP during follow-up in patients with CRLM.
To assess whether CT-based radiomics of the ablation zone (AZ) can predict local tumour progression (LTP) after thermal ablation for colorectal liver metastases (CRLM).
This website uses cookies to ensure you get the best experience on our website.