Platelet function is disturbed by the angiogenesis inhibitors sunitinib and sorafenib, but unaffected by bevacizumab.

Abstract

RESULTS

In vitro, sunitinib and sorafenib significantly inhibited platelet aggregation (20 μM sunitinib: 71.3%, p < 0.001; 25 μM sorafenib: 55.8%, p = 0.042). Sorafenib and sunitinib significantly inhibited P-selectin expression on platelets. Exposure to both TKIs resulted in a reduced tyrosine phosphorylation of c-Src. Ex vivo, within 24 h sunitinib impaired platelet aggregation (83.0%, p = 0.001, N = 8). Plasma concentrations of sunitinib, VEGF, and platelet/EC activation markers were not correlated with disturbed aggregation. In contrast, bevacizumab only significantly impaired platelet aggregation in vitro at high concentrations, but not ex vivo.

MATERIALS AND METHODS

In vitro, the influence of sunitinib, sorafenib, and bevacizumab on platelet aggregation, P-selectin expression and fibrinogen binding, platelet-EC interaction, and tyrosine phosphorylation of c-Src was studied by optical aggregation, flow cytometry, real-time perfusion, and western blotting. Ex vivo, platelet aggregation was analyzed in 25 patients upon sunitinib or bevacizumab treatment. Concentrations of sunitinib, VEGF, and platelet and EC activation markers were measured by LC-MS/MS and ELISA.

CONCLUSION

Sunitinib significantly inhibits platelet aggregation in patients already after 24 h of first administration, whereas bevacizumab had no effect on aggregation. These findings may explain the clinically observed bleedings during treatment with antiangiogenic TKIs.

INTRODUCTION

At the clinical introduction of antiangiogenic agents as anticancer agents, no major toxicities were expected as merely just endothelial cells (ECs) in tumors would be affected. However, several (serious) toxicities became apparent, of which underlying mechanisms are largely unknown. We investigated to what extent sunitinib (multitargeted antiangiogenic tyrosine kinase inhibitor (TKI)), sorafenib (TKI) and bevacizumab [specific antibody against vascular endothelial growth factor (VEGF)] may impair platelet function, which might explain treatment-related bleedings.

More about this publication

Angiogenesis
  • Volume 21
  • Issue nr. 2
  • Pages 325-334
  • Publication date 01-05-2018

This site uses cookies

This website uses cookies to ensure you get the best experience on our website.