Live cell transcription-coupled nucleotide excision repair dynamics revisited.

Abstract

Transcription-blocking lesions are specifically targeted by transcription-coupled nucleotide excision repair (TC-NER), which prevents DNA damage-induced cellular toxicity and maintains proper transcriptional processes. TC-NER is initiated by the stalling of RNA polymerase II (RNAPII), which triggers the assembly of TC-NER-specific proteins, namely CSB, CSA and UVSSA, which collectively control and drive TC-NER progression. Previous research has revealed molecular functions for these proteins, however, exact mechanisms governing the initiation and regulation of TC-NER, particularly at low UV doses have remained elusive, partly due to technical constraints. In this study, we employ knock-in cell lines designed to target the endogenous CSB gene locus with mClover, a GFP variant. Through live cell imaging, we uncover the intricate molecular dynamics of CSB in response to physiologically relevant UV doses. We showed that the DNA damage-induced association of CSB with chromatin is tightly regulated by the CSA-containing ubiquitin-ligase CRL complex (CRL4CSA). Combining the CSB-mClover knock-in cell line with SILAC-based GFP-mediated complex isolation and mass-spectrometry-based proteomics, revealed novel putative CSB interactors as well as discernible variations in complex composition during distinct stages of TC-NER progression. Our work not only provides molecular insight into TC-NER, but also illustrates the versatility of endogenously tagging fluorescent and affinity tags.

More about this publication

DNA repair
  • Volume 130
  • Pages 103566
  • Publication date 01-10-2023

This site uses cookies

This website uses cookies to ensure you get the best experience on our website.