Imaging Photoplethysmography for Noninvasive Anastomotic Perfusion Assessment in Intestinal Surgery.

Abstract

INTRODUCTION

Anastomotic leakage after gastrointestinal surgery has a high impact on patient's quality of life and its origin is associated with inadequate perfusion. Imaging photoplethysmography (iPPG) is a noninvasive imaging technique that measures blood-volume changes in the microvascular tissue bed and detects changes in tissue perfusion.

MATERIALS AND METHODS

Intraoperative iPPG imaging was performed in 29 patients undergoing an open segment resection of the small intestine or colon. During each surgery, imaging was performed on fully perfused (true positives) and ischemic intestines (true negatives) and the anastomosis (unknowns). Imaging consisted of a 30-s video from which perfusion maps were extracted, providing detailed information about blood flow within the intestine microvasculature. To detect the predictive capabilities of iPPG, true positive and true negative perfusion conditions were used to develop two different perfusion classification methods.

CONCLUSIONS

This study shows that noninvasive intraoperative iPPG is suitable for the objective assessment of small intestine and colon anastomotic perfusion. In addition, two perfusion classification methods were developed, providing the first step in an intestinal perfusion prediction model.

RESULTS

iPPG-derived perfusion parameters were highly correlated with perfusion-perfused or ischemic-in intestinal tissues. A perfusion confidence map distinguished perfused and ischemic intestinal tissues with 96% sensitivity and 86% specificity. Anastomosis images were scored as adequately perfused in 86% of cases and 14% inconclusive. The cubic-Support Vector Machine achieved 90.9% accuracy and an area under the curve of 96%. No anastomosis-related postoperative complications were encountered in this study.

More about this publication

The Journal of surgical research
  • Volume 283
  • Pages 705-712
  • Publication date 01-03-2023

This site uses cookies

This website uses cookies to ensure you get the best experience on our website.