Multivariable survival analysis

S9

Michael Hauptmann Netherlands Cancer Institute Amsterdam, The Netherlands m.hauptmann@nki.nl

The Netherlands Cancer Institute Antoni van Leeuwenhoek Hospital

Confounding

A potential confounder is

- Correlated with variable of interest (e.g., treatment or exposure)
- Correlated with outcome
- Not in causal pathway between variable of interest and outcome

Confounding: Causal diagrams

- 1. C has independent effect on D (C not a confounder)
- Effect of C on D is completely contained in E (C not a confounder)
- Apparent association between E and D is completely explained by C (C a confounder)
- 4. Association between E and D partly due to C (C a confounder)
- 5. C is in the causal pathway between E and D (C not a confounder)

How to prevent/control confounding

- Prevention by design
 - Restriction to one stratum (study among smokers only if important variables are correlated with ever/never smoking and outcome, limits generalizability)
 - Matching
- Control by analysis
 - Collect data on potential confounders
 - Stratified analysis
 - Multivariable analysis

Identification of confounders

- Based on mechanistic understanding
- Based on statistical significance of association with disease
 - Confounder has to be correlated with outcome, but correlation coefficient or test may not be significant
 - Risk of residual confounding due to limited power
 - Magnitude of confounder-outcome association more important
- Comparison between crude and adjusted effect estimates

Important message

Confounding is about bias (the point estimate), not variance (the CI)

- As more variables are added to a regression model, confounding bias, if any, will decrease
- But uncertainty around estimates will increase

Need for covariate adjustment

Age at DX, T stage (size and/or extent of primary tumor), N stage, tumor site & treatment may be confounders

				Univariate a	inalysis	Multivariate a	analysis
	Variable		No. of events	HR (95% CI)	p value	HR (95% CI)	<i>p</i> value
Local control*	Tumor volume, cm ³	≤20	24	1.0 (ref)	<.001	1.0 (ref)	<.001
		21-40	34	1.4 (0.9-2.4)		1.2 (0.7-2.1)	
		41–60	18	1.7 (0.9-3.2)		1.4 (0.7-2.6)	
		>60	28	3.0 (1.7-5.2)		2.8 (1.5-5.2)	
	T status	T2	3	0.6 (0.2-1.9)	.0268	0.7 (0.2-2.3)	.292
		TЗ	23	0.6 (0.4–0.9)		0.8 (0.5–1.3)	
		Τ4	78	1.0 (ref)		1.0 (ref)	
	N status	NO	20	0.9 (0.6–1.5)	.481	_	_
		N1	13	0.9 (0.5-1.7)			
		N2	61	1.0 (ref)			
		NЗ	10	1.3 (0.6–2.5)			
Overall survival [†]	Tumor volume, cm ³	≤ 20	44	1.0 (ref)	<.001	1.0 (ref)	<.001
		21–40	59	1.3 (0.9–1.9)		1.2 (0.8–1.8)	
		41–60	36	1.8 (1.1–2.7)		1.5 (0.9–2.4)	
		>60	47	3.0 (2.0-4.5)		2.8 (1.8-4.3)	
	T status	T2	6	0.8 (0.4-1.9)	.0352	1.1 (0.5-2.4)	>.5
		TЗ	43	0.7 (0.5–0.9)		0.9 (0.6–1.3)	
		Τ4	139	1.0 (ref)		1.0 (ref)	
	N status	NO	28	0.7 (0.4–1.0)	.0017	0.7 (0.5–1.1)	.0133
		N1	28	1.2 (0.8–1.8)		1.3 (0.8–1.9)	
		N2	106	1.0 (ref)		1.0 (ref)	
		N3	25	2.2 (1.4-3.4)		2.5 (1.6-3.9)	

Abbreviations: HR, hazard ratio; CI, confidence interval; ref, reference.

*Multivariate model included tumor volume, T status, age at diagnosis, tumor site, and treatment.

[†]Multivariate model included tumor volume, T status, N status, age at diagnosis, and tumor site.

Cox (semi-parametric) proportional hazards model

$$h(t) = h_0(t) * \exp [\beta_1 * x_1 + \beta_2 * x_2 + ... + \beta_p * x_p]$$

where

- Hazard function h(t) depends on p covariates x_1, \ldots, x_p whose impact is measured by regression coefficients β_1, \ldots, β_p
- h_0 is baseline hazard, i.e., hazard if all x_i are equal to zero ($e^0 = 1$), estimated nonparametrically \rightarrow no distributional assumption about survival times necessary
- Hazards may vary over time t

Interpretation of Cox model

 $h(t) = h_0(t) * \exp \left[\beta_1 * x_1 + \beta_2 * x_2 + \dots + \beta_p * x_p\right]$

- Covariates act multiplicatively on hazard at any point in time
- Hazard of event in any group is constant multiple of hazard in any other \rightarrow hazards for groups are proportional & do not cross
- $\exp(\beta_i)$ is hazard ratio (HR) for covariate x_i
- $\beta_i > 0 \rightarrow HR > 1 \rightarrow$ as value of x_i increases, hazard increases
- HR = risk change per unit change in covariate x_i , i.e., difference in risk between 2 subjects with identical covariate values except for covariate x_i which differs by 1 unit (constant across range of continuous x_i)

Getting ready for some analyses

 Create 4-category age at DX variable: ageg4=1 if age≤50, 2 if 50<age≤60, 3 if 60<age≤65, 4 if age>65

COMPUTE ageg4=1+(age>50)+(age>60)+(age>65). [click Transform - Compute Variable] EXECUTE.

- Patientnr=9803282 excluded because of 393.83 ml tumor volume
- Patientnr=20000926 excluded due to negative values (-1.05) for variables Time_meta_first & Time_any_meta [started treatment 11/04/2000, suspicious lung lesions seen on pretreatment chest CT-scan of 10/03/2000 (confirmed after treatment); nevertheless, pt was treated in RADPLAT protocol; suspicion: metastases already present at start of treatment; pt was later (19/03/2003) diagnosed with liver metastases]
- Patientnr=323452 excluded because of missing survival_status [pt was in hospice on the last date of follow-up, date of death unknown, partial response after treatment (persistent disease), never without disease, no (known) distant metastases]

Exclusions in $SPSS^1$

- Click: Data Select Cases If
- Enter:

(Patientnr~=9803282 AND Patientnr~=20000926 AND Patientnr~=323452)

SPSS code for multivariable Cox regression

Click: Analysis – Survival – Cox Regression

📰 Cox Regression		×	
 Patientnr Trial Institute Database_Guido Age Gender 	Time: Time_LR_first Status: First_LR(1) Define Event	<u>Categorical</u> Plots <u>Save</u> Options	
 VVHO ASA Hb_value Vveight_loss Tumor_volume MRI_CT Tumor_site T_stage N stage 	Previous Next Covariates: Volumeg4(Cat) Volumeg4(Cat) Image (Cat) >a*b> Tumor_site(Cat) Method: Enter	Covariates:	Categorical Covariates Categorical Covariates: volumeg4(Indicator(first)) Treatment(Indicator(first)) Tumor_ste(Indicator) ageg4(Indicator(first)) T_stage(Indicator)
Treatment	Strata:		Change Contrast Contrast: Indicator ▼ Change Reference Category: ○ Last ⊙ First
		Corr	tinue Cancel Help

Determine reference category

(applies to any regression model)

- Don't use category with small number of events
- For each of the k categories, except for the reference category, SPSS creates a dummy variable with value 1 for subjects in that category and 0 otherwise
- All k-1 dummy variables are included in the regression model
- The parameter estimated for a particular dummy variable is the effect of that category compared with the reference category

Example: T stage

Number of events per category²

Report

Sum						
T stade	First_LR					
2	3					
3	23					
4	77					
Total	103					

Categorical Variable Codings {{}^{b,c,d,e,f}}

		Frequency	(1)	(2)	(3)
Tumor_site ^a	1	80	1	0	
	2	225	0	1	
	3	55	0	0	
T_stage ^a	2	14	1	0	
	3	111	0	1	
	4	235	0	0	
Treatmentª	1	172	0	0	0
	2	88	1	0	0
	3	44	0	1	0
	4	56	0	0	1
volumeg4ª	1.00	116	0	0	0
	2.00	125	1	0	0
	3.00	59	0	1	0
	4.00	60	0	0	1
ageg4ª	1.00	91	0	0	0
	2.00	148	1	0	0
	3.00	55	0	1	0
	4.00	66	0	0	1

HRs and 95% CI from multivariable Cox regression³

Variables in the Equation

							95.0% CI 1	for Exp(B)
	В	SE	Wald	df	Siq.	Exp(B)	Lower	Upper
volumeg4			12.609	3	.006			
volumeg4(1)	.174	.284	.377	1	.539	1.190	.682	2.077
volumeg4(2)	.269	.333	.655	1	.418	1.309	.682	2.514
volumeg4(3)	.980	.312	9.847	1	.002	2.665	1.445	4.915
T_stage			1.252	2	.535			
T_stage(1)	386	.611	.399	1	.528	.680	.205	2.252
T_stage(2)	266	.261	1.041	1	.307	.766	.459	1.278
Tumor_site			5.957	2	.051			
Tumor_site(1)	.645	.333	3.749	1	.053	1.905	.992	3.659
Tumor_site(2)	.152	.317	.229	1	.633	1.164	.625	2.166
Treatment			13.891	3	.003			
Treatment(1)	.078	.261	.088	1	.766	1.081	.648	1.803
Treatment(2)	.104	.353	.087	1	.768	1.110	.556	2.215
Treatment(3)	.997	.280	12.704	1	.000	2.709	1.566	4.686
ageg4			9.297	3	.026			
ageg4(1)	389	.275	2.008	1	.157	.678	.396	1.161
ageg4(2)	.361	.299	1.456	1	.228	1.434	.798	2.577
ageg4(3)	.301	.295	1.039	1	.308	1.351	.757	2.411

Beyond the HR

Survival proportion for a given risk group, i.e., with certain values for x_1,\ldots,x_p

$$S(t) = S_0(t)^{\exp(\gamma)}$$

where $S_0(t)$ is baseline survival (survival proportion when all covariates are equal to zero) and

$$\gamma = \beta_1 * x_1 + \beta_2 * x_2 + \ldots + \beta_p * x_p$$

Predicted recurrence-free survival by time since DX and tumor volume

In Analyze - Survival - Cox Regression, click on Plots

The Netherlands Cancer Institute

Antoni van Leeuwenhoek Hospital

Use of continuous covariate as categorical or continuous?

- Advantage continuous
 - Uses all available data
 - Requires only 1 DF (high power)
 - Can be extended by more flexible semi- and nonparametric methods (e.g., polynomials)
- Disadvantage continuous
 - Assumes linear relationship with outcome, e.g., log HR in Cox regression

Categorical vs. continuous

- Advantage categorical
 - Avoids strong assumptions about shape of exposure-response relationship (estimate for one part of the exposure range should not affect that at another)
- Disadvantage categorical
 - Does not use all available data
 - Assumes homogeneity of effect within categories
 - Requires choice of #categories and cutpoints
 - Requires several DF (overall tests have low power)

Categorical vs. continuous

- Distinguish confounders from risk factors: adequate control of confounding bias in most cases by 4–5 categories, but power important for main risk factor
- How to categorize
 - Predetermined cutpoints (quartiles, quintiles), preferably meaningful
 - Don't choose cutpoints which minimize p-values (bias)
 - ->2 categories to reduce loss of information & illustrate trend
 - Sufficient # subjects & events/category (percentiles among cases)
- Trend test: use continuous variable alongside with categorical version to provide best linear approximation

Continuous tumor volume

Variables in the Equation

	В	SE	Wald	df	Sig.	Exp(B)
ageg4			8.915	3	.030	
ageg4(1)	403	.274	2.160	1	.142	.668
ageg4(2)	.311	.299	1.082	1	.298	1.365
ageg4(3)	.298	.294	1.024	1	.312	1.347
Treatment			13.460	3	.004	
Treatment(1)	.010	.262	.001	1	.970	1.010
Treatment(2)	.120	.353	.117	1	.733	1.128
Treatment(3)	.963	.279	11.892	1	.001	2.620
Tumor_site			6.826	2	.033	
Tumor_site(1)	.632	.330	3.683	1	.055	1.882
Tumor_site(2)	.084	.319	.070	1	.791	1.088
T_stage			.731	2	.694	
T_stage(1)	314	.606	.268	1	.604	.731
T_stage(2)	195	.258	.570	1	.450	.823
Tumor_volume	.013	.003	18.740	1	.000	1.013

Cardiac function in 5-year survivors of childhood cancer

Van der Pal et al. Arch Intern Med 2010

Assessing adequacy of model

- Residuals: essentially, difference between observed & model-predicted survival
- Analysis of residuals not trivial: interpretation complicated by censoring, skewed so smoothing needed, many different residuals suggested based on theoretic grounds
- Inclusion/exclusion of covariates: contribution to goodness of fit (magnitude of HRs & likelihood ratio test)
- Functional form of covariate: continuous vs. categorical, quadratic term to model non-linearity
- PH assumption: hazards are proportional at all points in time

Graphical evaluation of PH assumption

- Plotting hazards is of limited use: empirical hazards poorly estimated & difficult to assess visually
- Instead, plot cum. hazard vs. survival time (lines should not cross)
- Better
- $-\log \text{ cumulative hazard} = -\log[-\log(\text{survival})]$

plotted against log(time) should be parallel (continuous variables need to be categorized into groups)

• Non-parallel lines due to non-PH or omission of important covariate

Alternatives

- Schoenfeld residuals
- Time-dependent covariate test

If PH not fulfilled

- Stratification
 - Stratify Cox regression on variable with non-PH
 - Assumption is relaxed to piecewise (stratum-wise) PH
 - No effect size estimated for stratification variable
- Include interaction between non-PH variable and log(time+1)

Example: T stage

- Only few pts with T=2 \rightarrow combine with T=3 T2=1 if T_stage=4, zero otherwise⁴
- Plot cumulative hazard by T stage 5

Hazard Function

Negative log cumulative hazard vs. log survival time⁶

No evidence of non-PH – Stratification for T2 not needed

Interaction

• Hazard ratios

• Interaction

$$HR(M,E) = e^{\beta_1(M=1) + \beta_2(E=1) + \beta_3(M=E=1)}$$

= $e^{\beta_1(M=1)} * e^{\beta_2(E=1)} * e^{\beta_3(M=E=1)}$
= $HR(M) * HR(E) * IHR$

• Hazard ratios

$$\begin{array}{c|c} & \mathsf{M} \\ \hline \mathsf{E} & \mathsf{0} & 1 \\ \hline \mathsf{0} & \mathsf{1.0 (ref)} & e^{\beta_1} \\ \mathsf{1} & e^{\beta_2} & e^{\beta_1 + \beta_2 + \beta_3} \end{array}$$

Notation: (M = 1) = 1 if M = 1, 0 otherwise, dito for E

Example

- Focus on pts with intra-arterial (IA) or intravenous (IV) chemoradiation
- IV: 3*100 mg/m2 cisplatin plus 70 Gy in 36 fractions
- IA: 4*150 mg/m2 cisplatin in tumor-feeding artery immediately followed by systemic rescue, RT dito
- IA preferably single sided but switched to double sided with equal distribution of cisplatin if tumor invasion was >1 cm across anatomical midline
- Interaction between IV/IA and infusion side?

Analysis

- Only keep pts w/ treatment=1 (IA) or treatment=2 (IV) (Data Select Cases If)
- Fit Cox model as before and add infusion_side (1=single, 2=double)
- Also add interaction between infusion_side & treatment (select both variables and click on ">a*b>")

Result

Variables in the Equation

							95.0% CI 1	for Exp(B)
	В	SE	Wald	df	Siq.	Exp(B)	Lower	Upper
ageg4			8.369	3	.039			
ageg4(1)	287	.333	.744	1	.388	.750	.391	1.441
ageg4(2)	.686	.359	3.659	1	.056	1.986	.983	4.013
ageg4(3)	.304	.355	.731	1	.393	1.355	.676	2.716
Tumor_site			6.454	2	.040			
Tumor_site(1)	.838	.426	3.876	1	.049	2.312	1.004	5.325
Tumor_site(2)	.180	.395	.207	1	.649	1.197	.552	2.596
volumeg2	.703	.274	6.572	1	.010	2.019	1.180	3.456
t2	.195	.334	.340	1	.560	1.215	.631	2.339
Infusion_side	.354	.316	1.258	1	.262	1.425	.767	2.648
Treatment	.624	.412	2.297	1	.130	1.867	.833	4.183
Infusion_side*Treatment	978	.533	3.372	1	.066	.376	.132	1.068

HR table

Infusion		Treatment
side	IA	IV
Single	1.0 (ref)	1.867
Double	1.425	1.867*1.425*.376=1.000

- # expected without interaction: 1.867*1.425=2.660
- HR(IV vs. IA) among single-sided = 1.867
- HR(IV vs. IA) among double-sided = 1.000/1.425=.702
- Test of heterogeneity of IV vs. IA effect, p=.066
- Full story: Rasch et al., Cancer 2010

SPSS code (syntax and clicking)

1. Exclusions in SPSS

Click Data - Select Cases - If and fill in (Patientnr~=9803282 AND Patientnr~=20000926 AND Patientnr~=323452)

```
USE ALL.
COMPUTE filter_$=(Patientnr~=9803282 AND Patientnr~=20000926 AND Patientnr~=323452).
VARIABLE LABEL filter_$ 'Patientnr ~=9803282 AND Patientnr~=20000926 AND Patientnr~=323452 (FILTER)'.
VALUE LABELS filter_$ 0 'Not Selected' 1 'Selected'.
FORMAT filter_$ (f1.0).
FILTER BY filter_$.
EXECUTE.
```

2. Number of events per T stage category

Click Analyze – Compare Means – Means and select variables First_LR and T_stage. Under Options, select Sum.

MEANS TABLES=First_LR BY T_stage /CELLS SUM.

3. HRs and 95% CI from multivariable Cox regression

Click Analyze – Survival – Cox Regression, select the Time variable and the Status variable, provide the value indicating an event, and select covariates. Click Categorical, select each covariate to be treated as a categorical variable, and select the reference category (Last or First). Do not forget to click Change after selection of the reference category.

```
COXREG Time_LR_first
/STATUS=First_LR(1)
/CONTRAST (Treatment)=Indicator(1)
/CONTRAST (volumeg4)=Indicator(1)
/CONTRAST (T_stage)=Indicator
/CONTRAST (Tumor_site)=Indicator
/CONTRAST (ageg4)=Indicator(1)
/METHOD=ENTER volumeg4 T_stage Tumor_site Treatment ageg4
/PRINT=CI(95)
/CRITERIA=PIN(.05) POUT(.10) ITERATE(20).
```


- 4. Combine pts with T=2 and T=3 in one category, i.e., create new binary variable T2=1 if T_stage=4, zero otherwise Transform Compute Target variable: T2 Numeric expression: T_stage=4
- 5. Plot cumulative hazard: Analyze Survival Kaplan-Meier

Time: Time_LR_first Status: First_LR Click "Define event" and write 1 for single value. Factor: T2 Click Options – Plots – Hazard

6. Calculate negative log cumulative hazard and plot vs. log survival time

- Save hazard In Analyze – Survival – Kaplan-Meier as above, click Save – Hazard Creates new variable HAZ_1
- Calculate –log(hazard) Transform – Compute Target variable: minloghaz Numeric expression: –LN(HAZ_1)
- Calculate log(survival time) Transform - Compute Target variable: logtime Numeric expression: LN(Time_LR_first+.5 ---)
- Plot of minloghaz against logtime Graphs – Scatter – Simple Y-axis: minloghaz X-axis: logtime Put T2 in the "Set Markers By" box

