Contents

Introduction
Director of Research

Group leaders
18 Neil Aaronson
19 Reuven Agami
20 Leila Akkari
21 Regina Beets-Tan
22 Roderick Beijersbergen
23 Jos Beijnen
24 André Bergman
25 René Bernards
26 Christian Blank
27 Eveline Bleiker
28 Gerben Borst
29 Thijn Brummelkamp
30 Karin de Visser
31 Elzo de Wit
32 William Faller
33 John Haanen
34 Hugo Horlings
35 Heinz Jacobs
36 Jacqueline Jacobs
37 Kees Jalink
38 Jos Jonkers
39 Marleen Kok
40 Pia Kvistborg
41 Tineke Lenstra
42 Sabine Linn
43 René Medema
44 Gerrit Meijer and
 Remond Fijneman
45 Daniel Peiper
47 Anastassiai Perrakis
48 Benjamin Rowland
49 Sanne Schagen
50 Alfred Schinkel
51 Marjanka Schmidt
52 Ton Schumacher
53 Titia Sixma
54 Jan-Jakob Sonke
55 Arnoud Sonnenberg
56 Hein te Riele
57 Lonneke van de Poll
58 Winette van der Graaf and
 Olga Husson
59 Uulke van der Heide
61 Michiel van der Heijden
62 Wim van Harten
63 Flora van Leeuwen and
 Matt Rookus
65 Fred van Leeuwen
66 Maarten van Lohuizen
67 Jacco van Rheenen
68 Bas van Steensel
69 Olaf van Tellingen
70 Emile Voest
71 Jelle Wesseling
72 Lodewyk Wessels
73 Lotje Zuur
74 Wilbert Zwart

Division of Diagnostic Oncology
Division of Medical Oncology
Division of Surgical Oncology

Division of Radiation Oncology
Division of Pharmacology and Biometrics
Technology Transfer Office

Research Facilities
Education in Oncology
Clinical trials

Invited speakers
Research projects
Personnel index
Introduction

It is my pleasure to present the 2019 Scientific Annual Report of the Netherlands Cancer Institute. In it, we hope to convey how we have contributed to improving the prospects of cancer patients by integrating state-of-the-art fundamental research, translational research, and clinical research.

When I sat down to write these introductory words, I found it as difficult as each year to select just a few research highlights out of the many, with the aim of giving an idea of what we have learned and accomplished in 2019. We have all worked so hard, published beautiful papers or started or finished innovative clinical trials. But then I pictured the last or penultimate slide of all our PowerPoint presentations: the one in which we acknowledge all the people who have contributed to our project. And once again I realized the importance of collaboration in cancer research. Here are some examples of our collaborative efforts in 2019.

Collaboration between the lab and the clinic is part and parcel of daily life in our Comprehensive Cancer Centre, in which some 45 nationalities are represented. In 2019, this collaboration between individual researchers and oncologists has again resulted in new insights into the mechanisms of cancer and into new patient impact.

Since the summer of 2019, all oncologists within our hospital have been participating in a new clinical study in which we investigate, as the first hospital in the world and in collaboration with the Hartwig Medical Foundation, whether whole genome sequencing of tumour DNA can be implemented in standard cancer diagnostics.

Our lab and clinic also closely collaborate with our pharmacy. In 2019, we have been building a brand new pharmaceutical centre equipped with innovative facilities that include clean rooms for developing advanced cellular therapies. When this becomes operative, it will lead to an even more fruitful integration of our research labs, our clinical research and our pharmacy.

In 2019, the NKI and the Dutch Cancer Society designed a new cooperation agreement, covering the next five years. It devotes an annual €16.8 million for research at the Netherlands Cancer Institute. The link between the Dutch Cancer Society and the Netherlands Cancer Institute is a strong one and goes back to 1951. The fact that the Dutch Cancer Society is supporting us for another five years with this level of funding attests to their strong confidence in our work. In the years to come we will be working towards three common goals: making the results of scientific research accessible to patients more quickly, making both new and existing drugs more readily available, and improving the quality of life of everyone facing cancer or dealing with its aftermath.

We also highly cherish our collaboration with all Dutch universities, including their medical centres, where the vast majority of our group leaders have a chair. In 2019, in their inaugurals, our recently appointed professors presented exciting plans for multidisciplinary collaboration with their university colleagues, aimed at generating new knowledge not only about cancer but also about other diseases, new methodologies and technologies, or about the human immune system.

Many of our group leaders are also affiliated with the Oncode Institute, which unites top cancer research groups within the Netherlands and enables new collaboration in various domains. In November 2019, for instance, our institute hosted the launch of the Patient Perspective Program, which connects patients and cancer survivors to Oncode labs or individual Oncode researchers. This should decrease the distance between Oncode
researchers and patients so they can explore, investigate and understand each other’s worlds.

Clinical research has always been impossible without collaboration with many professional partners, including pharmaceutical companies, health insurance companies, health care authorities, policy makers and thousands of patients. Collaboration has always been key in large randomized studies, but it is also becoming increasingly important in generating critical mass in innovative studies aimed at personalized medicine. These are studies with small cohorts of patients who often have rare molecular tumour profiles. At the European level, Cancer Core Europe, in which seven leading cancer centers, including the NKI, have joined forces, is a case in point.

Within the EU, preparations for Horizon Europe, the next Research and Innovation Framework Programme, are in full swing. We are proud and happy that Regina Beets-Tan, head of our Radiology department, has been selected by the European Commission to be a member of Horizon Europe’s Mission Board for Cancer. Also, by working together in EU-LIFE with 13 other leading life science institutes, we can raise a powerful voice to convince the European Commission of the importance of fundamental research for the future health and well-being of Europe and its citizens.

Close collaboration is also required at a global level and our research groups collaborate with other groups all over the world. In 2019, the NKI signed a declaration of intent for collaboration in clinical research with the Sun Yat-sen University Cancer Centre, which is one of best comprehensive cancer centres in China. The year before, the Netherlands Cancer Institute already signed a collaboration agreement with the Renji Hospital in Shanghai for the training of postdocs.

In the Netherlands, average five-year survival rates for cancer have been rising by 1% over the past years, and the percentage of patients alive five years after diagnosis is now 65%, according to the Netherlands Cancer Registry. This is good news.

Journalists often ask us whether, at a certain point in time, we will have ‘conquered’ cancer or have made it into a chronic disease. Our oncologists, who know from day-to-day experience that there are still many patients they cannot help, tend to be very modest. We also know that cancer will always be part of life, in an ageing society.

FIGURE 1

* EXCLUDED ARE THE REIMBURSEMENTS FOR INTEREST AND DEPRECIATION OF BUILDINGS
And unfortunately, survival rates for certain cancers, such as ovarian and pancreas cancer are still depressingly low.

And yet, in the Netherlands Cancer Institute, we believe that cancer need not be a terminal disease. We believe that within decades, cancer will have become a chronic disease that can be controlled, with good quality of life for the patients. We dare express this vision because we, as a global research community, are making steady progress in understanding the biology of cancer and in exploiting its Achilles heels. I am convinced that there are many more fundamental and practice-changing breakthroughs to come that will sooner or later benefit individual patients all over the world.

However, whether we will be able to realize our vision partly depends on public investment in basic, curiosity-driven research. As I already mentioned, in 2019, the European Commission established the Mission Board for Cancer, as one of five mission boards established to help us solve our generation’s biggest challenges.

This was a wise decision, in our opinion. But real health impact is not sustainable without strong and continued support for research aimed at understanding the fundamental mechanisms behind health and disease. Together with our partner institutes in EU-LIFE, we work hard to get this message along in Brussels.

I end by thanking all our employees and everyone who supported us and collaborated with us in 2019. Since the foundation of the Netherlands Cancer Institute in 1913, we have received enormous support and commitment from our employees, volunteers and sponsors. I thank Tom de Swaan, who retired as chair of our supervisory board in 2019 and I welcome his successor Lodewijk Hijmans van den Bergh. I also want to thank the Dutch Cancer Society for their renewed institutional support and the Ministry of Health, Welfare and Sport for their substantial core funding. And above all, I would like to extend my sincere gratitude to all our patients willing to take part in our clinical studies. Your confidence in our capacity to make progress has again been invaluable.

René Medema
Director of Research
RESEARCH HIGHLIGHTS

In all five of our research themes, much progress has been made in understanding cancer and bringing our knowledge to the clinic, to the patient, and to society. Often, these were small but crucial steps, but we also discovered important new mechanisms, new methodologies or new ways of diagnosing or treating patients. Here, I present just some of our highlights from the year 2019.

MOLECULAR ONCOLOGY

Which DNA variants really make a difference?
No two humans have the same DNA. But which of those millions of variants really affect the functioning of our cells? To find those needles in a haystack, the Bas van Steensel group developed a new powerful technique (named SuRE) that reveals which changes in the genetic code affect the activity of genes. They labelled billions of small pieces of DNA with a unique barcode, put them into another cell and then measured how active the built-in pieces of DNA were. This allowed them to identify more than 30,000 of these SNPs that alter the activity of enhancers or promoters. Since these are often mutated in cancer cells, this is valuable new knowledge for cancer researchers. (Joris van Arensbergen et al. Nature Genetics, June 2019).

Compacting DNA from spaghetti to macaroni
Chromosome condensation is essential for accurate cell division. In 2019, the chromosome biology group of Benjamin Rowland, in a collaboration with nanobiologists at TU Delft, set some important steps in unraveling the mystery of how the condensin protein complex turns chromosomes from ‘spaghetti’ into ‘macaroni’. They showed that condensin’s ATPase has a dual, balancing, role that allows condensin to correctly structure chromosomes in chromosome condensation. Mutation of one ATPase site impairs condensation, while mutating the second site makes condensing hyperactive. This likely reflects a universal mechanism in all domains of life. (Ahmed Elbatsh et al., Molecular Cell, October 2019).

Solving a 3D molecular scissors structure
Microtubules are continuously modified to serve different purposes within the cell. For this, their tyrosine tails are cut and put back by different enzymes. After researchers from the Netherlands Cancer Institute and Oncode Institute, in 2017, found the identity of the scissors, a team, led by Thijn Brummelkamp and Tassos Perrakis now determined the 3D solved crystal structure and mechanism of these peculiar molecular end-tail scissors. Detyrosynation of tubulin has been implicated in correct segregation of chromosomes during mitosis. The cancer drug paclitaxel affects detyrosynation of microtubules. (Athanasios Adamopoulos et al., Nature Structural & Molecular Biology, July 2019).

Which genes drive BRCA1-mutated breast cancer?
BRCA1-mutated breast cancer is primarily driven by DNA copy-number alterations (CNAs) containing large numbers of candidate driver genes. But which genes are true drivers? To study this, novel approaches are needed for high-throughput in vivo manipulation of gene function. The Jos Jonkers group developed genetically engineered mouse models of BRCA1-deficient breast cancer that permit rapid introduction of putative drivers. Using this technique, they found two collaborating drivers (MYC and MCL1). Moreover, inhibition of the latter potentiates the efficacy of PARP inhibition in mice, underscoring the therapeutic potential of this combination. (Stefano Annunziato et. al, Nature Communications, January 2019).

New national infrastructure for genomic screening
The use of large-scale screening methods and implementation of new genome editing technologies requires extensive expertise, a lot of collaboration, and a dedicated infrastructure. Roderick Beijersbergen, together with researchers from Leiden University and the UMCG, received 2 million euros from the Dutch Cancer Society to build such an infrastructure. This will lead to the discovery of new therapeutic strategies for cancer.
European consortium for structural biology
The EU, through its Horizon 2020 program, has invested €10 million in the iNEXT-Discovery consortium, led by Anastassiss Perrakis, for enabling European scientists to perform high-end structural biology research with state-of-the-art equipment that is often unavailable in their home countries.

PRECISION MEDICINE

A ‘one-two-punch’ strategy for precision medicine
Powerful drug combinations are becoming increasingly important for treating cancer and tackling drug resistance. However, many promising combinations will be too toxic for patients. In 2019, the Rene Bernards group with other NKI researchers showed that first inducing senescence in tumor cells and subsequently killing off the vulnerable senescent cells may be a promising way out of this problem. In mice, this so-called ‘one-two-punch’ strategy proved to be effective in treating liver cancer. Bernards is now looking for common vulnerabilities induced by senescence in other cancer types. (Cun Wang et al., Nature, September 2019).

World’s largest data base of metastasized tumours
Dutch researchers, including Emile Voest, Neeltje Steeghs and Egbert Smit, have been the first to map the landscape of DNA errors in thousands of metastasized tumours. In 62% of the patients, actionable events were found that may lead to new treatment options targeting specific characteristics of individual tumors. The study was conducted by the Centre for Personal Cancer Treatment (CPCT), co-founded by the NKI, to which 46 Dutch hospitals are currently affiliated, in collaboration with Hartwig Medical Foundation. The publication highlights a decade-long Dutch effort in building the world’s largest data base of metastasized tumours, aimed at putting an end to the ‘one size fits all’ approach in systemic treatment, based on tumour type. (Peter Priestly et al., Nature, October 2019).

The DRUP: from clinical to societal impact
The Drug Rediscovery Protocol (DRUP study) was launched in 2016 as part of the above-described Dutch pioneering effort. In this innovative pan-cancer clinical basket trial, patients with metastatic cancer without any further treatment options, are given an off-label medicine targeted at their molecular tumour profile. In 2019, the research team, co-led by Emile Voest, published the first results. From the first 215 patients, 34% benefited from the treatment. One specific cohort (nivolumab for MSI-tumours) even showed a response rate of 67%. To grant new patients access to this promising treatment, oncologists, the National Health Care Institute, health insurers and the drug producer together devised a new personalized reimbursement model, that already received a lot of interest from politicians and policy makers and the international research community. (Giana van der Velden et al., Nature, September 2019).

New research into sarcomas
Sarcomas are rare and under-researched tumours that come in many subtypes. Unfortunately, sarcomas are usually insensitive to existing therapies. Daniel Peeper and PhD student Julia Boshuizen received a grant from the Dutch Cancer Society to find out why this is the case and to hopefully lay the foundation for more effective treatments. A commonality of all sarcomas is that they produce a lot of the AXL protein, more than any other type of cancer. The researchers will investigate which role AXL plays in the growth and therapy resistance of sarcomas, and whether patients may benefit from AXL inhibitors that are already being developed.
IMMUNOTHERAPY

How one infamous oncogene hijacks the immune system
In 2015, Karin de Visser demonstrated that some breast tumours mobilise neutrophils in the patient’s body via a chain reaction of signal molecules. These neutrophils promote metastasis, by counteracting T cells. But where does this chain reaction start? And why do some breast tumours abuse neutrophils for their own ends, while others do not? In 2019, her group with the Jos Jonkers group showed that the genetic make-up of a primary tumour itself determines if it can hijack the entire immune system. They saw that P53-defective tumour cells, via Wnt-signaling, trigger an inflammatory response in the blood, which in turn leads to metastasis. In p53-deficient mice, inhibiting these signals prevents the hijacking of neutrophils and also inhibits the metastasis process. (Max Wellenstein et. al. Nature, July 2019).

Neoadjuvant immunotherapy is conquering the clinic
Immunotherapy prior to surgery is thought to have several advantages. It will hopefully prevent metastasis, surgery will be easier, response to immunotherapy can be studied at molecular level in the resected material, and last but not least: the immune response induced by the immunotherapy is expected to be broader and better when the tumour is still present in the body. In the OpACIN-neo study, the Christian Blank group showed that neoadjuvant immunotherapy was effective in 77% of 89 patients, with acceptable side effects. Moreover, after 8 months, none of the responders had relapsed. The study earned researcher Lisette Rozeman the Antoni van Leeuwenhoek Award, and ASCO ranked it one of the highlights of the year (for surgery!). The NKI is also investigating this treatment strategy in a whole range of other cancer types. (Lisette Rozeman et. al, Lancet Oncology, May 2019).

Grant for personalized cellular therapy
Medical oncologist John Haanen, researcher Wouter Scheper and pharmacist Joost van den Berg received a €1,5 million ZonMW grant to set up a new T cell therapy in which genetically engineered T cells are multiplied and given back to the patient. In this exploratory clinical study, 5 patients with metastatic melanoma each receive a customized set of T cells each engineered to express a T cell receptor that specifically recognize their tumour. The researchers will each research in the Schumacher group, who set up a method to identify neo-antigens and find the associated T-cell receptors.

TABLE 1
SHORT TERM CITATIONS AND IMPACT OF SCIENTIFIC ARTICLES PUBLISHED BY THE NETHERLANDS CANCER INSTITUTE RESEARCH STAFF 2005-2019

<table>
<thead>
<tr>
<th>YEAR</th>
<th>PUBLICATIONS</th>
<th>CITATIONS</th>
<th>CITATIONS/PUBLICATIONS</th>
<th>IMPACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>405</td>
<td>6350</td>
<td>15.7</td>
<td>2461</td>
</tr>
<tr>
<td>2006</td>
<td>435</td>
<td>6336</td>
<td>14.6</td>
<td>2608</td>
</tr>
<tr>
<td>2007</td>
<td>430</td>
<td>5605</td>
<td>13.0</td>
<td>2969</td>
</tr>
<tr>
<td>2008</td>
<td>442</td>
<td>5657</td>
<td>12.8</td>
<td>2590</td>
</tr>
<tr>
<td>2009</td>
<td>511</td>
<td>7904</td>
<td>15.5</td>
<td>3074</td>
</tr>
<tr>
<td>2010</td>
<td>481</td>
<td>8788</td>
<td>18.3</td>
<td>2841</td>
</tr>
<tr>
<td>2011</td>
<td>459</td>
<td>8651</td>
<td>18.8</td>
<td>3110</td>
</tr>
<tr>
<td>2012</td>
<td>573</td>
<td>9268</td>
<td>16.2</td>
<td>3333</td>
</tr>
<tr>
<td>2013</td>
<td>512</td>
<td>8989</td>
<td>17.6</td>
<td>3228</td>
</tr>
<tr>
<td>2014</td>
<td>596</td>
<td>9599</td>
<td>16.1</td>
<td>3935</td>
</tr>
<tr>
<td>2015</td>
<td>659</td>
<td>19618</td>
<td>29.8</td>
<td>5234</td>
</tr>
<tr>
<td>2016</td>
<td>793</td>
<td>15087</td>
<td>19.0</td>
<td>5344</td>
</tr>
<tr>
<td>2017</td>
<td>727</td>
<td>18371</td>
<td>25.3</td>
<td>5891</td>
</tr>
<tr>
<td>2018</td>
<td>771</td>
<td></td>
<td></td>
<td>6024</td>
</tr>
<tr>
<td>2019</td>
<td>896</td>
<td></td>
<td>7129</td>
<td></td>
</tr>
</tbody>
</table>

* SINCE 2014 A NEW STANDARD WAS USED TO PERFORM THE CITATION AND IMPACT FACTOR ANALYSES. CONSEQUENTLY THE NUMBERS CAN DIFFER FROM THE PREVIOUS YEARS.
** ANALYSIS WAS PERFORMED IN MARCH 2020. DATA CAN BE SUBJECT TO CHANGE.
Chemotherapy may help immunotherapy succeed
Preclinical research within and outside the NKI has shown that a low dose of chemotherapy or radiotherapy can stimulate the immune system and help immunotherapy succeed. In the phase 2 TONIC study, led by medical oncologist Marleen Kok, this has now been investigated in patients with metastases from triple-negative breast cancer. The results of part 1 of the study show that in particular, pretreatment with cisplatin and doxorubicin appears to increase the effect of immunotherapy. In the lab, researchers did indeed see T cells entering the tumour after pre-treatment with chemotherapy. (Leonie Voorwerk et al., Nature Medicine, May 2019)

IMAGE-GUIDED INTERVENTIONS

4D image helps radiotherapists target moving tumours
In a clinical trial, the NKI has become the first hospital in Europe to administer radiation therapy to a cancer patient using a 4D image generated by the MRI Linac. This allows radiotherapists to take into account the movements of a tumour during delivery of the radiation, due to the patient’s breathing for example. The 4D technology was developed by PhD student Tessa van de Lindt, who, in 2019, defended her thesis, supervised by Jan Jakob Sonke and Uulke van der Heiden. A clinical trial led by Marlies Nowee will show whether it is technically feasible to treat all patients with limited liver metastases using this new method.

Cerenkov light reveals remaining cancer cells
Cerenkov radiation is a by-product of PET-scans. In 2016, nuclear medicine expert Marcel Stokkel came up with the idea of putting Cerenkov light imaging to use in the operating theatre. In May 2019, after some years of research, a clinical study was started with support of the Dutch Cancer Society, in which ⁶⁸Gallium-PSMA Cerenkov Imaging is used to better visualize cancer cells in the resection margins of an excised prostate. The surgeon can then continue surgery and remove any residual tumour tissue, thus sparing many patients another operation or additional radiotherapy. The technical study underlying this trial was published in 2019 by Judith olde Heuvel et al. (EJNMMI Phys.)

Augmented reality enters the operating theatre
In order to improve precision when excising malignancies, oncological surgeon Theo Ruers received a grant of €500.000 from the Dutch Cancer Society for developing an augmented reality system that adds previously recorded images of the tumour to live images on the operation monitor. If the development stage runs smoothly, he will use augmented reality in the final year of his research on colon cancer patients with liver metastases.

Image-guided immunotherapy
Only a subset of patients responds to immunotherapy, urging the quest for predictive biomarkers. Researchers led by Hugo Aerts and Regina Beets analyzed 1055 primary and metastatic lesions from 203 patients with advanced melanoma and non-small-cell lung cancer undergoing anti-PD1 therapy. Their results indicate that radiographic characteristics of lesions on standard-of-care imaging may function as noninvasive biomarkers for response, and be used for improved patient stratification. (Stefano Trebeschi et al. Annals of Oncology, March 2019).

New collaboration for advancing nuclear medicine
In 2019, internationally-operating nuclear service provider NRG-Petten, four university medical centres, the NKI and other partners, including the German Cancer Research Centre, initiated the so-called ‘FIELD-LAB’ for nuclear medicine. The ‘Advancing Nuclear Medicine Consortium’ was launched to speed up development and translation of new generation radiotracers.
SURVIVORSHIP AND EPIDEMIOLOGY

Does breast cancer treatment increase heart failure risk?
Now that a substantial group of cancer patients survive cancer, it is important to evaluate how late complications of treatment affect their long-term survival. In 2019, the Floor van Leeuwen epidemiology group published the first study to assess relationships between radiation dose to the heart, anthracycline dose and the risk of subsequent heart failure in women treated for early breast cancer. Breast cancer radiotherapy in itself was not associated with increased HF risk, but strongly elevated heart failure risks were observed after treatment with anthracyclines and also after treatment with trastuzumab. This emphasizes the need for ongoing efforts to evaluate preventative strategies. (Naomi Boekel et al., Eur. Journal of Heart Failure, 2019).

Young adults with cancer deserve more research
Every year, 3800 18-to-39-year-olds living in the Netherlands are diagnosed with cancer. For young adult cancer patients, referred to as AYAs, more research is sorely needed. In 2019, researcher Olga Husson received an NWO Vidi grant to examine which young adult cancer patients are at risk for poor health outcomes and why. This came on top of the Dutch Cancer Society Grant of €2,8 million that Husson and group leader Winette van der Graaff had already been awarded in December 2018 to set up a unique national research platform for collecting data from 4000 young adults.

Comparing cognitive function
Research suggests that non-central nervous system tumours may negatively impact the brain, apart from effects of cancer treatment. To study this, the Sanne Schagen group compared the course of cognitive functioning of participants who were diagnosed with cancer with the cognitive functioning of participants without cancer. However, unlike previous studies, they investigated cognitive functioning just prior to diagnosis, in order to minimise the effects of psychological factors surrounding a cancer diagnosis. These data were available through the Rotterdam Study, a prospective, population-based cohort study. Unlike studies that examined patients shortly after their diagnosis, they found no difference in cognitive functioning between participants with and without cancer. (Kimberley van der Willik et al., Journal of the National Cancer Institute, September 2019).

Keep moving!
In October 2019, an international team of exercise oncology experts issued new research-based standards for health care workers and fitness professionals, to help them design and deliver exercise programs that aim to lower the risk of developing certain cancers and best meet the needs, preferences and abilities of people with cancer. Martijn Stuiver, physical therapist and clinical epidemiologist in the NKI, was one of two experts from the Netherlands who participated in developing the new guidelines. (Kathryn Schmitz et al., CA: A Cancer Journal for Clinician, 16 October 2019).

HONOURS AND APPOINTMENTS

- Biologist Jacco van Rheenen was awarded the bi-annual Ammodo Science Award, a prize for fundamental science.
- Epidemiologist Floor van Leeuwen received the 17th Rosalind E. Franklin Award for Women in Science.
- Senior postdoc Daniela Thommen has been awarded the Pfizer Forschungspreis.
- Professor emeritus Piet Borst was awarded an honorary doctorate from the University of Bern.
- Radiologist Regina Beets-Tan has been selected by the European Commission to be a member of Horizon Europe’s Mission Board for Cancer.
- Director of Research René Medema has been appointed chair of EU-LIFE, an alliance of thirteen leading life science institutes in Europe.
- Cancer researcher Rene Bernards has been elected to the American Academy of Arts and Science.
- Group leaders Emile Voest, Jannie Borst and Tassos Perrakis were selected to join Oncode Institute
- Immunologist and tumour biologist Karin de Visser has been awarded a VICI grant from the Netherlands Organisation for Scientific Research (NWO)
- The European Research Council (ERC) has assigned an advanced grant to Reuven Agami for gene regulation research.
- Researcher Elzo de Wit has been awarded a €2 million Consolidator Grant by the European Research Council for research on DNA folding.
- Researchers Diga Husson, Leila Akkari and Martin Fast each received an €800,000 Vidi grant from NWO to develop their own innovative line of research.
- Karin de Visser, Marjanka Schmidt, and Paul Baas were appointed professor at Leiden University. Fred van Leeuwen was appointed professor at the University of Amsterdam.

CLINICAL TRIALS: CROSS-FERTILIZATION BETWEEN LAB AND CLINIC

Within the Netherlands Cancer Institute, almost 25% of our patients are involved in a clinical trial. Moreover, a substantial number of our clinical trials are either based on our own fundamental or translational research, or run in close collaboration with our basic or translational groups (see table 2). This cross-fertilization has frequently led to new diagnostic tools or therapies.

An example: from bench to BEACON

To give just one example: In September 2019, the New England Journal of Medicine published the results of the BEACON study. This was a large international study for patients with metastatic BRAF-mutated colorectal cancer who did not respond well to standard systemic treatment. The BEACON study, in which the NKI participated, compared standard treatment of chemotherapy plus an EGFR inhibitor with an experimental combination of BRAF and EGFR inhibitors, without chemotherapy. Part of the patients also received a MEK inhibitor. We are proud that this new rational combination treatment, which gives these patients some extra months of life, not only originated in the laboratory of Rene Bernards in the Netherlands Cancer Institute (results published in Nature in 2012) but was also tested in several clinical trials in our own hospital. In April 2020, the FDA has approved this treatment for patients with advanced BRAF-mutated colorectal cancer.

TABLE 2

TABLE 2 PRESENTS A SELECTION OF OUR CLINICAL TRIALS THAT ARE BASED ON THERAPEUTIC CONCEPTS DEVELOPED OR CO-DEVELOPED FROM OUR OWN FUNDAMENTAL AND TRANSLATIONAL RESEARCH. (THE COMPLETE LIST OF OUR CLINICAL TRIALS IS PRESENTED ELSEWHERE IN THIS SCIENTIFIC ANNUAL REPORT).

<table>
<thead>
<tr>
<th>AVL CODE</th>
<th>REFERENCE</th>
<th>NOVEL TREATMENT</th>
<th>TUMOR TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>M06CRI</td>
<td>1, 2, 3</td>
<td>Chemoradiotherapy + surgery</td>
<td>Resectable Gastric Cancer</td>
</tr>
<tr>
<td>N10DMY</td>
<td>8</td>
<td>Dose reduction of preoperative RT</td>
<td>Liposarcoma</td>
</tr>
<tr>
<td>M11ART</td>
<td>9</td>
<td>Cisplatin + Adaptive High Dose Radiotherapy</td>
<td>Head & Neck Cancer</td>
</tr>
<tr>
<td>M13TNB</td>
<td>5-7, 12-16</td>
<td>Paclitaxel +/- VEGFi</td>
<td>BRCA21-like Breast Cancer</td>
</tr>
<tr>
<td>N13NAV</td>
<td>18, 36</td>
<td>Image-guided surgical navigation</td>
<td>Colorectal Cancer</td>
</tr>
<tr>
<td>M14HUM</td>
<td>25</td>
<td>Organoid biobank for drug discovery</td>
<td>Solid tumours</td>
</tr>
<tr>
<td>M14POS</td>
<td>20, 21, 43</td>
<td>Tamoxifen +/- PI3Ki</td>
<td>Breast Cancer</td>
</tr>
<tr>
<td>M14PRE</td>
<td>68, 69, 70</td>
<td>Predicting Response to Enzalutamide as 2nd line Treatment</td>
<td>Metastatic Castr. Resistant Prostate Cancer</td>
</tr>
<tr>
<td>M14TIL</td>
<td>19</td>
<td>TIL vs. Ipilimumab</td>
<td>Metastatic Melanoma</td>
</tr>
<tr>
<td>M14TUM</td>
<td>38</td>
<td>Tumor organoids: predict sensitivity to treatment</td>
<td>Colorectal Cancer</td>
</tr>
<tr>
<td>N14DAR</td>
<td>68, 69, 70</td>
<td>neoadjuvant enzalutamide</td>
<td>Prostate Cancer</td>
</tr>
<tr>
<td>N14TD</td>
<td>34</td>
<td>Immunogenicity of tumor organoids</td>
<td>Colorectal cancer, Lung cancer</td>
</tr>
<tr>
<td>N14RCS</td>
<td></td>
<td>Smart tools during surgery</td>
<td>Colorectal cancer</td>
</tr>
<tr>
<td>M15CRI</td>
<td>1-3, 33</td>
<td>Preop. chemoradiotherapy vs chemo+radiotherapy</td>
<td>Resectable gastric cancer</td>
</tr>
<tr>
<td>M16BRC</td>
<td>10, 37</td>
<td>Binimetinib + Encorafenib + Cetuximab (BEACON)</td>
<td>BRAF-mutant metastatic Colorectal Cancer</td>
</tr>
<tr>
<td>M16OPN</td>
<td>32</td>
<td>Neoadjuvant ipilimumab and Nivolumab (optimal combination)</td>
<td>Melanoma</td>
</tr>
<tr>
<td>M16GST</td>
<td>68,69,70</td>
<td>Finding biomarkers for optimal 2nd-line treatment sequence</td>
<td></td>
</tr>
<tr>
<td>N18PRB</td>
<td></td>
<td>Pre-operative breast irradiation</td>
<td>Breast Cancer</td>
</tr>
<tr>
<td>N16MC</td>
<td>44</td>
<td>Neoadjuvant ipilimumab & nivolumab</td>
<td>Advanced or recurrent head & neck cancer</td>
</tr>
<tr>
<td>N16CI</td>
<td>47</td>
<td>Neoadjuvant nivo, ipi&CDX2I</td>
<td>early-stage Colorectal Cancer</td>
</tr>
<tr>
<td>N15CT</td>
<td></td>
<td>Personalized T-cell therapy</td>
<td>Various solid tumours</td>
</tr>
<tr>
<td>N15TS</td>
<td></td>
<td>Biobank of patient-derived xenografts of soft tissue sarcomas</td>
<td>Soft tissue Sarcomas</td>
</tr>
<tr>
<td>N16UMB</td>
<td></td>
<td>UMBRELLA:MR guided Adaptive Radiation Therapy</td>
<td>all sites</td>
</tr>
<tr>
<td>N16VOM</td>
<td>45</td>
<td>HDACi vorinostat in resistant BRAF-mutated Melanoma</td>
<td>Advanced melanoma</td>
</tr>
<tr>
<td>M17GEL</td>
<td>71</td>
<td>Carboplatin + Atezolizumab (GELATO)</td>
<td>locally advanced or metastatic Lobular breast cancer</td>
</tr>
<tr>
<td>N17MRB</td>
<td></td>
<td>Monitoring MRI changes before and during Radiotherapy</td>
<td>Glioblastoma</td>
</tr>
<tr>
<td>N17DSM</td>
<td></td>
<td>Decision aid for breast cancer and DCIS patients</td>
<td>Breast Cancer</td>
</tr>
<tr>
<td>N17PSI</td>
<td>46, 50, 51</td>
<td>Increasing pazopanib exposure by splitting intake moments</td>
<td>Osteosarcoma</td>
</tr>
<tr>
<td>M17TDM</td>
<td>39</td>
<td>Therapeutic drug monitoring for oral anti-cancer drugs</td>
<td>All sites</td>
</tr>
<tr>
<td>M18CYP</td>
<td></td>
<td>Effect of erythromycin on pharmacokinetics of paclitaxel</td>
<td>Breast Cancer</td>
</tr>
<tr>
<td>M18BREL</td>
<td>65, 66, 67</td>
<td>MR-guided adaptable radiation</td>
<td>all sites</td>
</tr>
<tr>
<td>M18WDO</td>
<td>58, 59</td>
<td>Internet-based cognitive rehabilitation for cancer survivors</td>
<td></td>
</tr>
<tr>
<td>M18CLI</td>
<td>52</td>
<td>Cerenkov Luminescence Imaging during surgery</td>
<td>Prostate Cancer</td>
</tr>
<tr>
<td>M18LOD</td>
<td>61, 62, 63</td>
<td>Management of low-grade DCIS</td>
<td>DCIS/Breast Cancer</td>
</tr>
<tr>
<td>M18QUE</td>
<td>53, 54</td>
<td>Impact of the diagnostic trajectory on stage at diagnosis, primary treatment, clinical outcome and quality of life</td>
<td>Sarcoma</td>
</tr>
<tr>
<td>M18TRZ</td>
<td>55</td>
<td>Neoadjuvant radiotherapy + atezolizumab&bevacizumab</td>
<td>Rectal Cancer</td>
</tr>
<tr>
<td>N18BULN</td>
<td>18, 36, 60</td>
<td>Ultrasound-based navigation during liver surgery</td>
<td>Liver Tumours</td>
</tr>
<tr>
<td>M18WGS</td>
<td>48</td>
<td>WGS implementation in standard care diagnostics (WIDE)</td>
<td>All sites</td>
</tr>
<tr>
<td>M18CON</td>
<td>61, 62, 63</td>
<td>Control DCIS: ipsilateral invasive breast-cancer free rate after 10 years</td>
<td>Breast Cancer</td>
</tr>
<tr>
<td>M18DON</td>
<td>31, 32</td>
<td>Neoadjuvant Domotinostat + Nivolumab +ipilimumab (DGNM)</td>
<td>Melanoma stage III</td>
</tr>
<tr>
<td>M18STR</td>
<td></td>
<td>CYP3A4*22 genotype-guided dosing of TKIs</td>
<td>All sites</td>
</tr>
<tr>
<td>M19SUS</td>
<td>56, 57</td>
<td>Mapping of Sentinel lymph node Using SPECT/CT</td>
<td>Head & Neck Cancer</td>
</tr>
</tbody>
</table>

23. Van den Berg NS et al. Multimodal surgical guidance during sentinel node biopsy for melanoma: combined gamma tracing and fluorescence imaging of the sentinel node through use of the Hybrid Trace\"r\" indocyanine green-19mI1\-tacanocollodiod. Radiology 2015;275:521-9

67. Van de Lindt TN et al. MRI-guided mid-position liver radiotherapy: Validation of image processing and registration steps. Radiother Oncol. 2019;138:132-140

71. Karsten K et al. Exploiting the immunomodulatory properties of chemotherapeutic drugs to improve the success of cancer immunotherapy. Frontiers in Immunology, 2015;6
Chairman of Board of Governors
LJ Hijmans van den Bergh
as from May 2019

Patron
Her Royal Highness Princess Beatrix of the Netherlands

Chairman of Board of Governors
T de Swaan
till May 2019

Scientific Advisory Council

RH Medema
Chairman

LFA Wessels
Secretary

ACJ van Akkool

TR Brummelkamp

HGAM van Luenen

MK Schmidt

EE Voest

Board of Directors

RH Medema
Chairman and Director of Research

EE Voest
Medical Director

M van der Meer
Director of Organisation, Operations and Management

Board of Governors

LJ Hijmans van den Bergh
President

H Uhlenbroek
Vice-president

JHJ Hoelijmakers

AM Jongerius

JM JM van Krieken

M Levi
International Scientific Advisory Board

A Ashworth
Director of the UCSF Helen Diller Family Comprehensive Cancer Center, at the University of California, San Francisco

T de Lange
Leon Hess Professor, The Rockefeller University, New York, USA

SM Gasser
Professor of Molecular Biology, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland

SP Jackson
Head of Cancer Research UK Laboratories, The Gurdon Institute, University of Cambridge, United Kingdom

A Musacchio
Honorary Professor, Max-Planck Institute of Molecular Physiology, Dortmund, Germany

R Nusse
Professor of Developmental Biology, Stanford University, Stanford, USA

HL Ploegh
Professor of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA

SN Powell
Chairman, Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, USA

IF Tannock
Daniel Bergsagel Professor of Medical Oncology, Princess Margaret Hospital and University of Toronto, Toronto, Canada

K Vousden
Professor at The Francis Crick Institute, London, UK

National Scientific Advisory Board

DD Breimer
Professor of Pharmacology, Leiden University

JL Bos
Professor of Molecular Cancer Research, Utrecht University

EGE De Vries
Professor of Medical Oncology, University of Groningen

JHF Falkenburg
Professor of Experimental Hematology, Leiden University

CG Figdor
Professor of Experimental Immunology, Radboud University Nijmegen

P Lambin
Professor of Radiation Oncology, Maastricht University

A van Oudenaarden
Professor of Quantitative Biology of Gene Regulation, Utrecht University

CJH van de Velde
Professor of Surgical Oncology, Leiden University
Behavioral interventions in clinical oncology and health-related quality of life assessment

This research line has two primary foci: (1) development and testing of behavioral and psychosocial interventions to reduce symptom burden and improve the HRQOL of patients with cancer; and (2) development and use of health-related quality of life (HRQOL) assessments in clinical research and clinical practice.

Efficacy of internet-based cognitive behavioral therapy (iCBT) on treatment-induced menopausal symptoms in breast cancer survivors

In this randomized, controlled trial, we randomly assigned 254 BC survivors to a therapist guided or a self-managed iCBT group or a waiting-list control group. Compared with the control group, both iCBT groups reported a significant decrease in the perceived impact of HF/NS ($p<.001$, $ES=.63$ and .56) and improvement in sleep quality ($p<.001$, $ES=.57$ and .41). The guided group also reported significant improvement in overall levels of menopausal symptoms ($p=.003$, $ES=.33$), and night sweats frequency ($p<.0012$, $ES=.64$). At longer-term (6-month) follow-up, the effects remained significant with smaller ES, and also included significantly reduced frequency of hot flushes. iCBT, with or without therapist support, has salutary effects on the perceived impact and frequency of HF/NS, overall levels of menopausal symptoms and sleep quality.

Sustained effects of Internet-based cognitive behavioral therapy (iCBT) on sexual functioning of breast cancer survivors

We evaluated the long-term efficacy of iCBT for sexual dysfunctions in 84 breast cancer survivors (BCS). The positive immediate post-intervention effects of the intervention observed in our randomised controlled trial on overall sexual functioning, sexual desire, sexual arousal, vaginal lubrication, discomfort during sex, sexual distress and body image at immediate post-treatment were maintained at 3- and 9-month follow-up. Although sexual pleasure decreased during follow-up, it did not return to baseline levels. Our findings provide evidence that iCBT has a sustained, positive effect on sexual functioning and body image of BCS with a sexual dysfunction.

Patient-reported outcomes following treatment of localized prostate cancer and their association with regret about treatment choices

In this prospective, observational study we documented: (1) differences in physical and psychosocial patient-reported outcomes (PROs) following radical prostatectomy, external beam radiotherapy, brachytherapy, and active surveillance; and (2) how these PROs and other factors are associated with treatment decision regret. The sample included 434 men who completed validated PRO measures at baseline (pre-treatment) and 3, 6 and 12 months post-treatment. At one year follow-up, those men who had received: (1) radical prostatectomy reported significantly ($p<0.01$) more urinary incontinence, worse sexual function, more hormonal/masculinity-related symptoms, and less emotional distress; (2) external beam radiotherapy reported significantly worse sexual function, more hormonal/masculinity-related symptoms, and more physical distress; and (3) brachytherapy reported significantly more urinary obstruction and irritation symptoms, compared to patients under active surveillance. Decision regret was not significantly different across treatment groups. At one year follow-up 23% of the patients reported clinically relevant decision regret, which was associated with hormonal-related symptoms, educational level, and positive surgical margins.
Uncovering novel vulnerabilities of cancer

Our main research objective is to identify novel cellular vulnerabilities that can be exploited for cancer therapies. For this purpose, we developed, and are still developing, innovative genomic and genetic tools. Key targets are regulatory DNA elements such as enhancers and chromatin domains, mRNA translation, and non-coding RNAs. In particular, we employ novel and unbiased functional genetic screening approaches, perform mechanistic studies to understand their connection with the cancerous phenotype, and use this information for the development of innovative cancer therapeutic approaches.

SLC1A3 contributes to L-asparaginase resistance in solid tumors

Treating cancer with amino acid deprivation schemes showed limited success so far. Only in the case of acute lymphoblastic leukemia a combined treatment of L-Asparaginase with chemotherapy increased patient cure to ~95%. Attempts to broaden this treatment to solid cancer have failed so far. In 2016, we have developed differential ribosome profiling technology (Diricore) to uncover treatment-induced cellular amino acid shortages. Now, we used this technology, in combination with a genome-wide CRISPR-Cas9 functional genetic screen and identified SLC1A3, an aspartate and glutamate transporter, as a novel contributor to L-Asparaginase resistance in cancer cells. Our findings identify a novel role for SLC1A3 in ASNase resistance and suggest that restrictive aspartate and glutamate uptake might improve ASNase efficacy with solid tumors. (see figure).

Targeting the proline production pathway in cancer

PYCR1 is the final enzyme involved in the biosynthesis of proline and has been found to be upregulated in various forms of cancer. Due to the role of proline in maintaining the redox balance of cells and preventing apoptosis, PYCR1 is emerging as an attractive oncology target. Previous PYCR1 knockout studies led to a reduction in tumor growth. We reported this year the design and synthesis of the first tool compounds as PYCR1 inhibitors, derived from pargyline. Structural activity studies have revealed the key determinants of activity, with the most potent compound showing improved activity in vitro in enzyme and pathway relevant effects in cell-based assays.

Functional genetic screens of regulatory DNA elements

Functional characterization of non-coding regulatory DNA elements in the human genome is a major genomic challenge and the maturation of genome-editing technologies is revolutionizing our ability to achieve this task. In 2016 we initiated a CRISPR-Cas9-based genetic approach to functionally annotate tumor suppressor and oncogenic regulatory DNA elements. In 2019 we continue to use this technology to identify key players in tumor progression. A major determinant of chromatin structure is the CCCTC-binding factor (CTCF), that dimerizes and together with cohesin stabilizes chromatin loops and forms the boundaries of topologically associated domains. However, whether CTCF-binding elements (CBEs) are essential for ERα-driven cell proliferation is unknown. To address this question in a global manner, we implemented this year a CRISPR-based functional genetic screen targeting CBEs located in the vicinity of ERα-bound enhancers. Our data showed that distinct CTCF-mediated chromatin structures are required for ERα-driven breast cancer cell proliferation.

Selected publications

Macrophage dynamics in cancer progression and response to treatment

Our laboratory is interested in the microenvironment-mediated mechanisms of tumor maintenance, progression and resistance to therapeutic intervention. We aim to uncover the vulnerabilities in the heterotypic communication between cancer cells and immune cells that can be targeted, in order to develop novel therapeutic alternatives for therapeutically challenging cancers, as brain and liver tumors.

Heterogeneity underlies glioma-associated macrophage functions during therapeutic response to standard of care radiotherapy

The role of tumor infiltrating bone marrow-derived macrophages (BMDM) and tissue-resident microglia (MG) in glioblastoma (GBM) has been studied mainly in primary gliomas, and remains poorly defined. We employed multiple genetically modified murine models combined with lineage tracing of macrophages to identify the transcriptional changes in BMDM/MG subpopulations during the course of radiotherapy treatment, a standard of care for glioma patients. We performed single-cell RNA sequencing combined with proteomics analyses to identify de novo education programs acquired by both macrophage subsets in recurrent GBM post radiotherapy. Interestingly, these transcriptional programs are reminiscent of neurodegenerative phenotypes. Moreover, our preliminary data suggest that this recurrence-specific rewiring of brain macrophages supports glioma relapse post treatment. Our current work now focuses on identifying which signaling pathways activation underlie these changes in order to target them pharmacologically and genetically and enhance the effect of radio/chemotherapy in aggressive gliomas.

Optimizing the combination between radio- and immunotherapy in glioblastoma

Incorporating anti-PD1 T-cell immunotherapy (IT) to the current standard of care treatment in glioblastoma has failed to provide therapeutic promises in recent clinical trials. In collaboration with Dr Gerben Borst, we are investigating the efficacy of concurrent as opposed to an adjuvant IT to radiotherapy. Importantly, we collaborate with Dr Dieta Brandsma and neurosurgeons at VUMC to radiotherapy. Importantly, we collaborate with Dr Dieta Brandsma and neurosurgeons at VUMC to obtain primary and recurrent human GBM, to identify additional alterations in the immune contexture of recurrent disease, including macrophage and T cell phenotype.

Analyses of the tumor microenvironment dynamics in hepatocellular carcinoma (HCC) initiation and progression

We have developed multiple HCC murine models using the relevant oncogenic drivers of this disease, by taking advantage of hydrodynamic gene delivery and the Sleeping Beauty-mediated somatic integration in mouse hepatocytes in vivo. By recapitulating the genetic diversity of this disease, we found that different oncogenic drivers distinctively shape the HCC tumor microenvironment, as seen in the human pathology. In this project, we generated aggressive or slow-growing HCC, thus providing a platform for immune-based therapies. We are currently examining the mechanisms responsible for genetic-dependent immune landscape shaping, and intervening on the dominant immune cell subset present at different stages of these genetically distinct HCCs.

Analyses of the tumor microenvironment dynamics in hepatocellular carcinoma (HCC) initiation and progression

In collaboration with Rene Bernards’ lab, we have used a subset of our HCC models to successfully test novel pro-senescence/senolytic therapies. Our analyses of the tumor microenvironment response to induction of senescence in vivo revealed that both adaptive and innate immune cells are mobilized by senescent cancer cells. These findings are encouraging us to therapeutically target immune cells in the context of pro-senescence agents, to harness the potential of immune cells in this novel setting of treatment for HCC.
Oncologic Imaging Research

MR imaging for Personalised Treatment

Functional MRI for Organ preservation

Previous work in organ preservation of rectal cancer has shown that MRI can improve the selection of patients with clinical complete response after chemoradiotherapy. A multicenter rectal cancer Watch & Wait implementation trial, financed by the Dutch Cancer Society, aims to transfer the team’s expertise to centers throughout The Netherlands and implement this treatment nationwide. Our organ preservation research was expanded to osophageal cancer with clinical complete response after chemoradiotherapy. A study with 3 readers showed that diffusion weighted MRI reached AUCs of 0.70 for the detection of residual disease. A trial is currently running in collaboration with Erasmus MC, investigating the value of a multimodality approach towards selecting patients with clinical complete response.

Multiparametric MR imaging

Research projects in multiparametric MRI run in several cancer types.

In rectal cancer a multicenter study, funded by the Dutch Cancer society, aims to build models linking multiple MR parameters to clinical data to predict response and long-term outcome after treatment. In prostate cancer multiparametric imaging research investigates tumor phenotypes for advanced risk stratification and decision support systems for treatment management. In breast cancer deep learning modeling for lesion classification is executed using multiparametric breast MRI.

MRI of peritoneal carcinomatosis

Patients with limited peritoneal metastases from colorectal cancer may be candidates for cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (CRS-HIPEC). Selection is based on surgical inspection during laparoscopy or laparotomy. The aim of our MR project, funded by the Netherlands Organisation of Scientific Research (NWO), is to investigate whether diffusion weighted MRI can be used to select these patients. The first studies showed that all patients with resectable disease were identified by MRI and none were overstaged. A second multicenter trial was recently funded by the NWO, addressing the role of diffusion weighted MRI in patients with peritoneal metastases from ovarian cancer.

Interventional Oncology

In a collaborative project with the interventional oncology team of MSKCC we identified factors that could improve patient selection and modify ablative treatment approach resulting in an increased local tumor control and reduction of complications following lung and liver thermal ablation. Image fusion guided FNA cytology - fusing real time US with pre-procedural CT, MR or PET-CT - showed improved detection of metastatic cervical nodes in head and neck cancer. Image fusion guidance of biliary drainage and of local liver lesion treatment have shown to improve treatment efficiency because of better visualization of the target.

Artificial Intelligence in Immunotherapy and Radiogenomics

Artificial Intelligence research is translational and leverages AI methodologies to develop non-invasive Al-biomarkers and bring clinically-usable algorithms into the clinic. The AI research focused on exploring predictive radiomics signatures of response to immunotherapy in several cancer types. Our study in 213 patients with melanoma and NSCLC treated with anti PD-1 showed that a radiomics signature derived from 1055 lesions at baseline CTs could predict response at 12 weeks with AUC up to 0.78. A radio-genomics study - aiming to link radiomics signatures with clinically relevant genetic mutations - found in 400 colon cancer lesions certain radiomics signatures that were significantly correlated with four relevant genetic mutations in colon cancer.
Cancer specific dependencies

Our research continues to evolve around the discovery of regulators of crucial pathways deregulated in cancer, genotype specific dependencies and synthetic lethal interactions that can be explored as drug targets in precision therapy. To achieve these goals, we develop and apply functional genomic technologies including large scale RNAi and CRISPR/CAS9 screening. Besides CRISPR-based gene-editing, we apply CRISPR-based transcriptional activation, -repression and -base-editing screening technologies. With the ability to efficiently manipulate genomes in mammalian cells, we have developed screening models based on sensors that report gene-transcription, protein activation or pathway regulation. Although many of our screening technologies are based on pooled screening, we have also established a platform for single well CRISPR screens using synthetic guide RNAs. With this platform we are able to screen for complex phenotypes but also for genes that upon inactivation affect specific DNA modifications or affect the levels of (allele) specific gene transcription. These advanced tools will allow for the discovery of novel components and pathways involved in cancer relevant phenotypes. These approaches allow for the identification of specific dependencies in the context of tumor- and patient-specific alterations that can be explored for pathway-targeted therapeutics in cancer.

MAPK pathway hyper-activation as strategy to treat resistant cancers

Drug resistance is the largest factor limiting the success of targeted treatment. BRAF^{V600E}-mutant melanomas are strongly dependent on elevated MAPK signaling illustrated by the effectiveness of MAPK pathway inhibition using either single (BRAF) inhibitors or combinations of BRAF and MEK inhibitors. However, treatment with MAPK pathway inhibitors almost invariably leads to outgrowth of resistant disease in which both genomic and non-genomic mechanisms cooperate to restore MAPK pathway output to sufficient levels to compensate for the effect of the BRAF and MEK inhibitors. However, MAPK pathway output levels need to be tightly controlled as too much leads to anti-proliferative signals. We have previously shown that hyperactivation of the MAPK pathway using Prostratin, a PKC and MAPK pathway activator, results in enhanced cell death after BRAF/MEK inhibitor withdrawal in resistant BRAF-mutant melanoma cells. Although prostratin can be explored for clinical application, we have set out to identify negative regulators such as dual specificity phosphatases (DUSPs), which upon inhibition, result in deregulation and hyperactivation of the MAPK pathway. To study the relevance of DUSP4 and DUSP6 in MAPK hyperactivation in BRAF/MEK inhibitor resistant BRAF mutant melanoma cells, we have knocked-in an invertible intronic cassette (FLIP) in the first exon of both genes. After validation of the hyperactivation of MAPK pathway, we will study the consequence of inactivation of DUSP4 or DUSP6 expression after BRAF/MEK inhibitor withdrawal on proliferation and survival of BRAF/MEK inhibitor resistant BRAF mutant melanoma cells. This insight could to point to DUSPs as potential targets that can be explored to kill resistant melanoma cells upon drug withdrawal with potentially a more preferable therapeutic window than MAPK pathway activators such as Prostratin.
Pharmaceutical research: drug manufacturing – bioanalysis – pharmacokinetics and pharmacodynamics

Our research programs focus on drug manufacturing including cellular immunotherapies, bioanalysis and pharmacokinetics-pharmacodynamics modelling and simulation of (anticancer) drugs for both preclinical and clinical projects. In 2020 we will move to a brand-new, 3,000 m² pharmacy building housing state-of-the-art drug storage, dispensing, manufacturing, laboratory and supportive facilities.

Drug manufacturing

In 2019 we supported more than 20 mono- and (international) multi-center clinical trials (e.g. DRUP, POSEIDON, SUBITO, SENSOR) with drug manufacturing, packaging and distribution. In-house manufacturing of vorinostat capsules and oral solid dispersion tablet formulations of docetaxel (ModraDoc006) continued for ongoing clinical studies. New formulation technologies are currently explored. In 2019, we continued the production of Tumour Infiltrating Lymphocytes (TIL) infusions for metastatic melanoma patients treated in the first multi-center phase III trial with TIL therapy in the world. This unique and fully academic trial now includes 96 enrolled patients (30 patients were included in 2019, a two-fold increase compared to 2017 and 2018). Previously produced DNA vaccines for HPV induced malignancies are currently tested by the Gynaecology department with promising results. Total enrolment is now almost finalized (13/14) for this phase I/II clinical trial. In-house manufacturing of radiopharmaceuticals for imaging of prostate cancer is currently explored in collaboration with the Department of Nuclear Medicine.

Bioanalysis

We continued drug analysis for pre-clinical pharmaceutical research with carboplatin, cisplatin, endoxifen and olaparib. Samples from pharmacokinetic interaction studies with multidrug efflux transporters and multidrug metabolizing enzymes in in vitro transport systems and from knockout and transgenic mice were analysed (abemaciclib, ribociclib, milciclib, tivozanib, capecitabine, irinotecan, vinorelbine, morphine and ibogaine). Routine analysis to support clinical trials within and outside the Institute concerned docetaxel, capetitabine, vorinostat, doxorubicin, daunorubicin, etoposide, gemcitabine, vincristine and platinum (originating from cisplatin, carboplatin and oxaliplatin). Dihydropyrimidine dehydrogenase substrate uracil was quantified in serum of patients for a multicentre study to prevent the increased risk of developing severe fluoropyrimidine-related toxicity. This year we have received more than 6,000 (plasma) samples from treated patients in the context of Therapeutic Drug Monitoring (TDM). New LC-MS/MS equipment including a hyphenated LC-MS Q-TOF platform has been installed in the past year.

Pharmacokinetics and Pharmacodynamics (PK/PD)

We develop modelling methodologies to relate drug exposure to diverse measures of treatment outcome for both toxicity and efficacy. Research focuses mainly on PK and PD in special patient populations typically underrepresented in clinical trials e.g. in children. Further PK and PD studies with docetaxel were performed in castration resistant prostate cancer patients. Since 2010 a large scale TDM program is operational for precision dosing of oral anticancer agents increasing annually. Our program on treatment optimization of the repurposed anticancer PI3K/Akt inhibitor miltefosine for the neglected tropical parasitic disease leishmaniasis has been extended to other antibiotics. Besides we have expanded our modelling expertise and activities towards physiologically-based pharmacokinetic modelling (PBPK) to enable the prediction of target site/target tissue exposure, based on physicochemical properties of compounds, as well as translation of animal to human PK. In 2019 we started a project to introduce PK/PD modelling in nuclear medicine.

Jos Beijnen
Group leader
Division Pharmacy & Pharmacology

Jos Beijnen PhD Group leader
Joost van den Berg PhD Academic staff
Thomas Dorlo PhD Academic staff
Jeroen Hendriks PhD Academic staff
Alwin Hultema PhD Academic staff
Raween Kalicharan PhD Academic staff
Bastiaan Nuijen PhD Academic staff
Cynthia Nijenhuis PhD Academic staff
Hilde Risling PhD Academic staff
Bart Jacobs PhD Hospital pharmacist-in-training
Robbert Kapoen MSc Pharmacist
Karina Scheiner PhD Pharmacist
Rene Boossen MSc PhD student
Maaike Bruin MSc PhD student
David Camolleaux MSc PhD student
Maarten van Eijk MSc PhD student
Marie-Rose Flint-Crombag MSc PhD student
Jill Geenen MSc PhD student
Steffie Groenland MSc PhD student
Kimberley Inghams MSc PhD student
Sanne Hulleberts MSc PhD student
Julie Janssen MSc PhD student
Karen de Jong MSc PhD student
Pam Huydts MSc PhD student
Eveline van Kampen MSc PhD student
Jonathan Knikian MSc PhD student
Nancy Loos MSc PhD student
Laura Molenaar-Kuijsten MSc PhD student
Hidde Nolte MSc PhD student
Merel van Nuland MSc PhD student
Semra Palic MSc PhD student
Jeroen Rosendaal MSc PhD student
Ignace Roseboom MSc PhD student
Hinke Siebinga MSc PhD student
Lisa van der Heijden MSc PhD student
Marit Vermunt MSc PhD student
Luka Verrestd MSc PhD student
Aurelia de Vries Schuttink MSc PhD student
Lotte van Andel PhD Technical staff
Gitte Bavelaar Technical staff
Joke Beukers Technical staff
Abadi Gebretensae Technical staff
Michel Hillebrand Technical staff
Dianella Jong Technical staff
Csaba Koopman Technical staff
Luc Lucas Technical staff
Dieuwke Meijer Technical staff
Linda Nan Technical staff

Pharmaceutical research: drug manufacturing – bioanalysis – pharmacokinetics and pharmacodynamics

Charlotte Rentenaar MSc Technical staff
Saskia Schoeij Technical staff
Joke Scol Technical staff
Bas Thijsen Technical staff
Matthijs Tibben Technical staff
Nikkie Venkamp Technical staff
Rianne Voogd MSc Technical staff
Niels de Vries Technical staff
Maaike van Zon Technical staff
Interactions between prostate cancer and its microenvironment

The prostate cancer microenvironment consists of stromal and immune cells recruited to the microenvironment. Our lab has an interest in the interaction between normal prostate cells and prostate cancer. There is abundant evidence that these cells play a crucial role in the initiation and progression of prostate cancer. In contrast to the tumor cells, the stroma and infiltrated immunecells in the tumor microenvironment consist of normally regulated cells and might hold promise for clinical valuable biomarkers and drug targets.

Androgen receptor signaling in prostate cancer associated fibroblasts and macrophages

Androgen Receptor (AR) signaling is essential for the development of the prostate and for prostate cancer development. Not only normal and malignant epithelial prostate cells express the AR, but also cells in the prostate cancer microenvironment, including Cancer Associated Fibroblasts (CAFs) and macrophages. CAFs were isolated from biopsies of cancer-affected areas in prostatectomies and cultured in vitro. The isolated cells express various CAF markers and the AR. The AR bound to the chromatin upon testosterone, which suggests transcriptional activity. Exposure of prostate cancer cells to medium of testosterone stimulated fibroblasts, resulted in decreased migration mediated by CCL2 and CXCL8.

Multiple macrophage differentiations have been described, including inflammation associated M1 and cancer promoting M2 macrophages. The amount and differentiation of infiltrating macrophages proved to be prognostic factors for prostate cancer development. Immunohistochemical studies showed co localization of AR and the pan-macrophage marker CD68 in human prostate cancer samples suggesting that macrophages express AR. Moreover, single cell mRNA sequencing of myeloid (CD14+) cells isolated from human prostate cancer biopsies showed AR expression. Further studies showed that AR in macrophages regulates the expression of multiple cytokines that stimulate prostate cancer cell migration and invasion. AR in macrophages also stimulated differentiation into M2. These results suggest that inhibition of AR in macrophages is a novel mechanism of action of androgen receptor inhibitors.

Interaction between prostate cancer cells and cells in the microenvironment

As we have shown in previous work, fibroblasts and macrophages affect prostate cancer cell growth. We’re currently conducting a CRISPR knock out screen in prostate cancer cells cocultured with fibroblasts or macrophages or both. With this, we aim to identify genes in prostate cancer cells, essential for cellular killing.

Myeloid cell populations in human prostate cancer

Macrophages are among the most abundant non-cancerous cells in the tumor microenvironment and relatively recent studies introduced the concept of different subtypes of macrophages that are able to influence tumor progression. The overall aim of this project is to assess the phenotype of the myeloid cells compartment and their secreted factors in the tumor microenvironment of human prostate cancer. Myeloid cell populations are quantified in human prostate cancer specimen. Moreover, macrophages are isolated from biopsies from the cancer affected peripheral zone of human prostates and phenotypically characterized by single cell sequencing.
Functional genomics

My group uses genome-wide functional genetic approaches to identify powerful drug combinations, new drug targets and mechanisms of resistance to cancer drugs. We aim to bring our discoveries to the clinic in close collaboration with the clinicians of our affiliated hospital.

Pro-senescence therapies for the treatment of cancer

Induction of senescence represents a promising strategy for the treatment of cancer, especially when such pro-senescence therapy is followed by a second drug that selectively kills senescent cancer cells (senolytic agent). We published this year that such a “one-two punch” therapy is effective for the treatment of liver cancer. To make this approach more generally applicable, we have characterized a large panel of senescent cancer cells with the aim to find common vulnerabilities. We have performed CRISPR screens in senescent cancer cells to uncover such vulnerabilities. This resulted in the identification of several new candidate senolytic agents.

Multi Low Dose therapy

Targeted cancer drugs often elicit powerful initial responses, but generally fail to deliver long-term benefit due to the emergence of resistance. We hypothesized that partial inhibition of multiple components in the same oncogenic signaling pathway might add up to complete pathway inhibition, while at the same time decreasing the selective pressure on each individual component to acquire a resistance mutation (see figure). We tested this Multi Low Dose (MLD) model of drug administration in Epidermal Growth Factor Receptor (EGFR) mutant non-small cell lung cancer (NSCLC). We found that as little as 20% of the individual drug doses required for full inhibition of cell viability is sufficient to completely block MAPK signaling and proliferation when used in 3D (RAF+MEK+ERK inhibitors) or 4D (EGFR+RAF+MEK+ERK inhibitors) combinations. Importantly, EGFR mutant NSCLC cells treated with EGFR inhibitors at a high dose rapidly developed resistance in vitro, but the cells treated with 3D or 4D MLD therapy did not. Moreover, NSCLC cells that had gained resistance to high dose anti-EGFR therapies were still sensitive to MLD therapy. Using several animal models, including patient derived xenografts of NSCLC tumors that are resistant to EGFR inhibitors erlotinib and osimertinib, we found durable responses to MLD therapy without associated toxicity. These data support the notion that partial inhibition of multiple components of cancer-activated signaling pathways is difficult to circumvent and suggest that MLD therapy could deliver clinical benefit. We propose that MLD strategy could be an effective treatment option for EGFR mutant NSCLC patients, especially those having acquired resistance to even third generation EGFR inhibitor therapy.

PTPN11 as a drug target in RAS mutant cancers

In 2018, we published that combined inhibition of PTPN11 and MEK leads to dramatic therapeutic effects in KRAS mutant lung cancer. We have spent the past year to validate this concept in KRAS mutant pancreatic cancer with drugs that inhibit PTPN11 and the ERK kinases, in anticipation of the start of a clinical study with these drugs in pancreatic cancer in the course of 2020.
Understanding resistance upon immunotherapy

We aim to identify mechanisms of tumor immune escape and to develop therapeutic protocols to combine cancer immunotherapy with targeted and other therapies. Tumor immune escape mechanisms are often multifactor modulations of the tumor cells interacting with the immune cell network. In addition, systemic immune suppression seems to be an undervalued factor. The functional characterization of inhibitory networks, exploration of their inhibition and the examination of possible synergy with small molecule-based targeted and other immunotherapies may help in designing novel approaches to improve cancer immunotherapy.

Alteration of immune infiltrates to improve the outcome upon checkpoint inhibition

Targeted therapy does not only alter tumor signaling pathways, but also the tumor environment. Thus, it is crucial to simulate targeted therapies in immune-competent mouse models for cancer. Previously, we have tested combined targeting of the MAPK and the PI3K pathways (selective BRAF, MEK, PI3K and mTOR inhibitors) in murine melanoma. We found that short-term intermittent combination of BRAF and MEK inhibition was superior to all other targeted combinations when combined with PD-1 blockade. This has led to a phase 1b trial testing intermittent BRAF+MEK inhibition plus pembrolizumab in melanoma patients (IMPeMBra, NCT02625337). It was presented as late braking abstract at this year’s Melanoma Bridge meeting, showing excellent tolerability and for the first time a PFS benefit of intermittent short-term BRAF+MEK inhibition plus PD-1 blockade in comparison to anti-PD-1 monotherapy.

Currently, we are testing new approaches to alter the skewing towards low regulatory T cell content in tumors, more resistant T cells in the hostile tumor environment and improving the function of antigen presenting cells.

Biomarker identification for personalized immunotherapy

Immunotherapies like CTLA-4 or PD-1/PD-L1 blockade have revolutionized the treatment of late stage melanoma. We have postulated that immunotherapy works best when the tumor is still present, allowing the induction of a broader T cell immune response. Meanwhile, we have confirmed a nearly 80% pathologic response rate upon neoadjuvant CTLA-4 plus PD-1. Baseline biomarker analyses identified a neoadjuvant IFN-signature and tumor mutation burden as being associated with better outcome (100% response rate in double favorable patients). Pathologic response is also an excellent surrogate marker for long-term outcome, as only 1/71 (1.4%) responders has relapsed, while nearly 65% of non-responders have relapsed, so far. Extensive preclinical work trying to find the anti-tumor immune defects in these patients and a first trial testing alternative therapy approaches for these unfavorable patients have been set-up by our group.
Psychosocial oncology in clinical genetics and survivorship care

This psychosocial oncology group is concentrating on survivorship and quality of life in individuals with cancer, and those at high risk because of an inherited gene mutation. The overall aim of the research is to improve the quality of life and quality of care. The study designs vary from observational (uptake and impact studies) and prospective (long-term surveillance studies) to randomized controlled trials (psychosocial intervention studies to support decision making and improve quality of life and quality of care). Examples of ongoing studies on the two main themes of this group (clinical genetics and survivorship) are described.

Clinical genetics

Uptake of genetic testing after being informed by a clinical geneticist

A study about family communication, funded by the KWF, was initiated in 2016. This study aims to develop, test, and implement a new way to facilitate family communication of genetic test results to relatives of counselled individuals. First, a systematic review of the literature was done in which we critically evaluated studies on the uptake of pre-symptomatic genetic testing in hereditary breast-ovarian cancer (HBOC) or in Lynch syndrome (LS). We found that, based on information provided by the proband (15 studies), the uptake of pre-symptomatic genetic testing ranged from 15 to 57% in HBOC, while one study in LS kindreds reported an uptake of 70%. Based on information provided by genetics centers (15 studies) the uptake ranged from 21 to 44% in HBOC and from 41 to 94% in LS. However, when genetics centers contacted relatives directly a substantial number of additional family members could be tested. We are currently pilot-testing an additional strategy including the geneticist directly contacting relatives.

Survivorship and supportive care

Supporting women in making a well-informed decision about breast reconstruction: the development and evaluation of an online decision aid (TANGO-project)

In 2015, funding was received from Alpe d’HuZes/KWF for a five-year study which aims to develop and implement an interactive, online, patient decision aid (pDA) for the Dutch population of women who have to decide on breast surgery and reconstruction. Decisions about breast reconstruction are complex and largely depend on patients’ personal preferences. We developed the online pDA in partnership with ZorgKeuzeLab and together with a national multidisciplinary working group, based on the literature and a needs assessment among patients (n=17) and professionals (n=33). The resulting pDA consists of six modules with information about the reconstructive options, pros and cons of the options and the most frequent complications. The pDA also includes experiences of other patients and value clarification exercises that stimulate women to weigh the options. The study runs in eight hospitals. In 2019 we enrolled the aimed 250 women who are treated for breast cancer or ductal carcinoma in situ, undergoing ablative surgery and eligible for an immediate breast reconstruction. In 2020, we will analyze the data and report on the effectiveness of the decision aid.

Improving sleep quality, psychosocial functioning, and cancer related fatigue with light therapy (SPARKLE-study)

Cancer related fatigue is a frequently reported symptom in survivors of (non-) Hodgkin lymphoma (40-60%). This fatigue impacts on the quality of life, even years after diagnosis. A novel and promising intervention to treat this symptom is light therapy. During a 4-week light therapy intervention, patients are exposed to bright white light every morning for 30 minutes. The SPARKLE-study (financially supported by the KWF) is a multi-center RCT to investigate the efficacy of this intervention in (non-)Hodgkin survivors. We also explore possible working mechanisms, including changes in sleep quality, psychological variables, biological circadian rhythms, circadian activity rhythms, and/or inflammation markers that have been identified as correlates and potential causes of fatigue. The study is coordinated by the Netherlands Cancer Institute and performed in close collaboration with the BETER-consortium, a nationwide survivorship care program for lymphoma survivors. In 2019 we enrolled the aimed 164 patients in our study, stemming from 10 hospitals. In 2020 we will report the first results.
Optimizing treatment strategies for brain tumors, and uncovering irradiation escapes mechanisms

Glioblastoma (GBM) is the most common and aggressive brain cancer with a devastating prognosis due to the inevitable local tumor progression. Unfortunately, for many years the current standard treatment is still surgery followed by postoperative (chemo)radiation. Novel strategies of targeted agents enhancing the local (radiation) response are therefore needed, with an important role of advanced imaging techniques to optimize temporal-spatial modulating strategies.

Timing of immunotherapy
Following other disease sites that do benefit from immunotherapy (IT) this treatment modality is also tested for GBM patients. The first results of IT trials in GBM are however disappointing, both in the recurrent setting IT (CheckMate-143) as in the primary setting when combined with RT (CheckMate 498 and 548). This may be somewhat counterintuitive, because RT causes significant alterations in the tumor microenvironment that are thought to boost immunity. However, the working mechanism, optimal timing and sequence of IT in relation to RT are still unknown. In collaboration with the Akkari group we are investigating different timings of RT and IT in a pro-neural glioblastoma mouse model to further exploit the potential of IT in combination with RT in GBM patients.

Timing of cell cycle interfering agents during radiotherapy.
Mitotic enrichment has previously been clinically tested as radiosensitizing strategy with cytotoxic agents. However, both the compound(s) as the timing of the strategy were inappropriate and we want to revive mitotic enrichment as radiosensitizing strategy for GBM patients with better agents and scheduling. In collaboration with the Van Tellingen group we are currently evaluating the feasibility to introduce one of the candidate drugs in a clinical trial after promising in vivo data with repetitive dosing of mitotic inhibitors during fractionated radiotherapy.

Uncovering and exploiting new interphase effects of Tumor Treating Fields (TTF)
TTF is a new treatment modality for GBM patients improving the survival significantly by 5 months (to a median survival of 20.6 months). TTF is a local treatment using alternating electric fields that are delivered via insulated transducers. These electric fields are thought to specifically target dividing cells but research elucidating the exact working mechanism is still in progress. Our preliminary data uncovered additional effects of TTF in the interphase with an accumulation of cells in the G2 cell cycle phase. This effect is targetable with Wee1/Chk inhibitors showing a strong synergistic effect. We are currently optimizing a live cell imaging setup and preparing in vivo systems to move this promising combination strategy forward.

Anatomical and functional changes before and during radiotherapy
Surprisingly, limited data is available about anatomical and functional changes of the GBM tumors during fractionated RT. Both these aspects are of paramount importance to understand when and how to apply dose modifications and/or targeted agents to increase the treatment outcome. We study anatomical and functional changes of GBM patients throughout their treatment course for a better understanding of local response and how to improve this. Repeated MRI scans (with anatomical and functional MRI sequences) are made before, during and after the RT treatment in a prospective clinical trial. This study aims to identify markers that can be used for guidance of RT dose and timing of systemic treatment in combination with RT.
Experimental Biomedical Genetics

Using a classical genetic approach we mutate the DNA of an organism and study the consequences. We use two improvements to apply this approach to human biology with high precision and throughput: the use of haploid human cells and the application of deep sequencing to measure the effects of millions of mutations in parallel. We apply this approach to study how genes collaborate to affect phenotypes and to link new genes to human disease.

Regulators of Molecular Phenotypes

As key executers of biological processes, the activity and abundance of proteins is subjected to extensive regulation. Using mutagenesis in haploid human cells we have developed an approach to couple genomic mutations to protein measurements within individual cells. Using this approach, which is both sensitive and scalable, genes can be identified that regulate any quantifiable protein phenotype in haploid human cells. Besides known regulators this also points out new genetic connections: the E3 ligase subunit KCTD5 was identified as new regulator of the AKT signaling pathway, CMTM6 as a new component of the PD1-PDL1 axis and Vasohibins were recognized as the long-sought tubulin detyrosinating enzymes.

In the future the ability to link genes to protein phenotypes using deep sequencing will enable us to build a genetic wiring map for haploid human cells. To better understand how genes collaborate we also study two types of genetic interactions that: synthetic lethality and genetic suppression.

Pathogen Portals

Our group studies viral families that cause the most-deadly human infections (Filovirus [eg. Ebola virus], Arenavirus [eg. Lujo virus], Bunyavirus [eg Hanta virus] as well as the most frequent human infections (Picornavirus [eg rhinovirus]). We use haploid genetics to gain insight into the entry tactics of these pathogens into human cells.

Genetic screens revealed that our mechanistic understanding of virus entry was incomplete, notably at the step that involves escape from the endo-lysosomal compartment. For Ebola and Lassa virus we revealed a ‘receptor switch’ to an intracellular transmembrane protein, recognized deep in the endo-lysosomal compartment. For Picornaviruses we identified PLA2G16 and demonstrated recruitment of this host factor to the perforated endosomal membrane. Loss of PLA2G16 led to a virus-resistance phenotype that could be reverted by ablation of a pathway previously linked to the clearance of intracellular bacteria. Thus, infection by picornaviruses involves two competing processes triggered by viral membrane perturbation: activation of a pore-activated clearance pathway and recruitment of a phospholipase to enable genome escape.

Studies on Coxsackie A and New World Hanta viruses identified new virus entry receptors at the cell surface. Haploid genetic screens identified the WNT-pathway component Kremen-1 as a critical host factor for infection, a finding that could be validated in mouse models deficient for KREMEN. Remarkably, Kremen-1 functions as entry receptor for a large subgroup of Coxsackie A viruses for which entry receptors remained unknown. In collaboration with other research groups PCDH1 was identified as entry receptor for New World Hantaviruses, a finding for which the relevance could be shown using blocking antibodies and PCDH1-deficient hamsters generated using CRISPR-CAS9.
Impact of the immune system on metastatic breast cancer and therapy response

Metastasis formation and unresponsiveness to conventional therapies are the challenges in cancer therapy that urgently need solutions. We study how the immune system influences breast cancer metastasis and therapy responsiveness. Through mechanistic understanding of the crosstalk between the immune system and cancer cells, we aim to contribute to the design of novel immunomodulatory strategies to fight metastatic breast cancer.

Impact of the genetic makeup of breast cancer on pro-metastatic inflammation
Cancer-associated systemic inflammation is strongly linked with poor disease outcome in cancer patients. For example, high neutrophil-to-lymphocyte ratios in blood of cancer patients are associated with increased metastasis, and we (Coffelt et al. Nature 2015) and others have previously demonstrated that neutrophils promote metastasis formation in mouse tumor models. Given the emerging interest in immunomodulatory therapies for cancer, it is crucial to understand the mechanisms by which tumors shape the systemic immune landscape. In collaboration with Prof. Jos Jonkers (NKI), we uncovered the impact of the genetic makeup of breast cancer on pro-metastatic inflammation. We have revealed a novel role for p53 as a key regulator of systemic inflammation in breast cancer. Mechanistically, p53 loss in cancer cells induces paracrine stimulation of tumor-associated macrophages in a Wnt dependent manner, which elicits an inflammatory cascade leading to the systemic accumulation of neutrophils, which facilitates metastasis formation (Wellenstein et al. Nature 2019). These insights illustrate the importance of the genetic makeup of cancer cells in dictating pro-metastatic systemic inflammation, and set the stage for personalized immune intervention strategies for cancer patients.

Improving response to platinum-based chemotherapy by targeting macrophages
Poor chemotherapy response is a major obstacle to successful cancer treatment. There is a growing realization that the immune system influences the success of chemotherapy, however, the exact underlying mechanisms are largely unknown. Utilizing mouse tumor models that faithfully recapitulate human breast tumorigenesis, we discovered that targeting macrophages by CSF-1 receptor (CSF-1R) blockade enhances the anti-cancer efficacy of platinum-based chemotherapeutics. We mechanistically uncovered that CSF-1R inhibition stimulates intratumoral type I interferon signaling which is essential for the therapeutic synergy between cisplatin and CSF-1R blockade. Further elimination of immunosuppressive neutrophils was required to engage an efficacious anti-tumor immune response that further improved therapeutic benefit of cisplatin (Salvagno et al. Nature Cell Biology 2019). These findings illustrate the importance of breaching multiple layers of immunosuppression during cytotoxic therapy to engage anti-tumor immunity in breast cancer.

Translating our findings to breast cancer patients
In collaboration with medical oncologist and researcher Marleen Kok (NKI-AVL) we have established an extensive immunomonitoring program to perform in-depth profiling of the immune landscape in fresh blood samples of patients with different subtypes of breast cancer. Through these analyses, we validate the findings from our pre-clinical studies in patients, and we hope to gain a deeper understanding of the complex cancer-immune crosstalk in breast cancer patients.
Our research centers around the question: how are genes regulated within the context of the three-dimensional (3D) genome? We use a combination of genetic and acute perturbation experiments in combination with genomics tools to understand how distal regulatory elements (e.g. enhancers) contribute to the regulation of genes. In addition to implementing and developing genomics methods we also develop software for the analysis of chromosome conformation capture data.

Acute protein depletion

It is becoming increasingly appreciated that chromatin inside the nucleus is highly dynamic. Both the proteins binding to DNA and the DNA itself are in a constant flux. These dynamic processes contribute to the regulation of genes. However, because of the highly dynamic nature of nuclear organization it is difficult to determine cause and effect. The reason for this is that whereas the folding of chromosomes influences expression, expression in turn also influences the folding of chromosomes. In order to study the consequences of changes in genome folding we now make use of methods that can acutely (<1hr) and uniformly deplete a protein from cells. This is achieved by fusing a degron tag to a protein of interest which is sensitive to a small molecule. Following the addition of a small molecule the protein is then rapidly degraded.

We have performed acute depletion in mouse embryonic stem cells of a number of proteins that are important for nuclear organization. Our experiments show a rapid change in nuclear organization, reshaping the nucleus within a few hours. Changes in the 3D genome are followed by changes in gene expression. Our experiments are consistent with a model in which the 3D genome, driven by cohesin, is crucial for maintaining proper gene expression and the maintenance of the cellular state (see figure).

In vitro early differentiation models

A key event in the differentiation of multi-cellular organisms is gastrulation. During gastrulation the blastula which is single-layered and symmetrical reorganizes itself into a multilayered and asymmetric gastrula. The process of symmetry breaking leads to the establishment of different cell types in the early embryo. The gene regulatory factors that control this process in mammalian cell systems are still not fully delineated. This is in part due to the difficulty to obtain sufficient material from *in utero* or *in vitro* developing embryos. However, this can be overcome by using an *in vitro* culture system that uses embryonic stem cells that aggregate into so-called gastruloids. These undergo the process of symmetry breaking *in vitro*. Gastruloids will allow us to study the role of the 3D genome during the process of gastrulation. By making gastruloids of our acute depletion mouse embryonic stem cell lines, we can influence key regulators of expression during early development and delineate the key transcriptional response. We have set up single cell ATACseq that allows us to measure the open chromatin landscape of single cells, enabling us to deconvolute the different cell types and their regulators in gastruloids.
Regulation of translation in the intestinal epithelium

The main interest of our lab is in the role that RNA translation plays in normal and cancer cells. Understanding this mechanism of gene regulation, and how it is hijacked in cancer, will allow us to uncover proteins and pathways involved in cancer phenotypes.

RNA translation in intestinal stem cells
In particular we are focused on the stem cell populations in the intestine, and cancers of the same organ. We study this using genetically modified mouse models (GEMMS), and 3d organoid culture, which allow us to maintain the complexity of the organ, while still providing tractable systems to study. In particular, we use a tagged ribosome approach which allows us to isolate the ribosomes, and associated mRNA, in our cell type of choice. This gives us the ability to study RNA translation (via ribosome profiling) in specific cellular populations in a complex tissue like the intestine. Stem cells are the drivers of CRC development and resistance to therapy. Previous studies have suggested that there are global changes in protein synthesis in stem cells compared to differentiated cells. Using the above mentioned in vivo and in vitro tools, we have shown that multiple pathways are translationally regulated in intestinal stem cells. In particular, RNA translation controls metabolic pathways, resulting in increased mitochondrial metabolism and oxygen consumption in these cells.

Inhibiting translation reverses this metabolic switch, and causes the stem cells to change identity, driving the appearance of a normally rare population of fetal stem cells with distinct characteristics. We are now studying this stem cell population to understand their function in the normal intestine and cancer. These fetal stem cells also bear a similarity to Kras-driven colon cancer cells, so we have also translationally profiled these and are working to understand the similarities, including the role that they play in the resistance to therapy. Additionally, we are working to understand how translation is regulated in these cells, and whether this process can be targeted by therapy.

Ribosomal heterogeneity in normal and cancer tissue
We have developed a bioinformatics method for increasing the efficiency of ribosome profiling experiments, called Ribo-DDR. This has allowed is to carry out these experiments in difficult to work with tissue (such as the intestine). Interestingly, we have found that the same pipeline can also be used as a novel method to analyze ribosome populations in the cell.

Ribosomes have always been thought of as homogenous protein production factories. Recent work suggests that this is not the case however, and shows that differences in ribosomal populations can cause major changes in phenotypes. Using ribosome profiling data and Ribo-DDR, we are beginning to understand what populations are present in different cell types, and how oncogenic mutations can change them. As this work progresses we can also begin to dissect how these different populations affect what is being translate in the cell.
Immunotherapy, immunomonitoring and production facility

This research line is aimed at developing novel T cell-based immunotherapies that can be applied in cancer patients. The focus is on patients with solid tumors, especially melanoma, renal cell carcinoma, and HPV-associated cancers. These immunotherapies comprise DNA-based vaccines and T cell products, including Tumor Infiltrating Lymphocytes (TILs) and genetically modified peripheral blood T cells. GMP production of these therapeutic agents takes place in the Biotherapeutics Unit (BTU), situated in the hospital pharmacy. A second objective concerns immunomonitoring, primarily to evaluate the effects of novel immunotherapies. These studies are conducted together with the Schumacher, Kvistborg and Blank labs at the NKI-AVL and with national and international collaborators.

HIGHLIGHTS 2019

In collaboration with Sanquin and one European cancer center in Copenhagen, Denmark, we are continuing our international, randomized controlled phase III trial in stage IV melanoma patients, comparing Tumor Infiltrating Lymphocytes (TIL) with standard of care for second line treatment. Enrollment of patients started in October 2014. Up to date 97 patients have been randomized. Materials (liquid and tumor biopsies) are being collected for translational research. We have established additional funding from KWF to open additional clinical centers to speed up recruitment.

In pre-clinical studies, we have developed highly immunogenic and safe HPV 16 E6- and E7-containing DNA vaccines for which we have produced GMP grade vaccines. These vaccines are currently been tested in a phase I clinical trial (Prof. G. Kenter, gynaecologic oncologist and co-workers). Patients with HPV 16-positive Vulvar Intraepithelial Neoplasia Grade III (VIN III) are vaccinated using a novel and potent intradermal DNA vaccination strategy. Immunomonitoring is being performed by us, and vaccine induced E6 and E7 directed T cell responses have been detected directly ex vivo in blood to monitor the immunogenicity of these therapeutic vaccines.

Together with a third party and the Voest lab, we are working on strategies to extract tumor reactive cells from the blood as novel treatment option.

In addition, we have an exciting collaboration with NEON therapeutics (Cambridge, MA), in which we develop new T cell therapies directed against patient specific neo-antigens. For this collaboration, large scale engineering runs have been successfully executed.

In 2019, we obtained a large translational ZonMW grant to develop a fully personalized TCR gene therapy. In a Proof-of-Concept study in melanoma patients, neoantigen-specific TCRs will be identified using technology developed by Ton Schumacher and Wouter Scheper, and transferrred to patient T cells using CRISPR/Cas9 technology.
Our team focuses on the development of Computational Pathology approaches that combine clinical, pathology and genomics data with image analysis of solid tumors to identify biomarkers for prediction of treatment response. We train powerful computers to recognize tumor and their microenvironment by annotating pathology samples from the clinic. Combining these image-based quantitative results with genetic analysis of the cancer-immune interactions can be complementary or offer completely new observations to empower precision oncology.

Predicting response to immunotherapy by deep learning of quantitative tissue analysis

Currently, immunotherapy treatment decision making is based on quantification of Program Death Ligand 1 (PD-L1) or in clinical trials based on the percentage of tumor-infiltrating lymphocytes in pathology samples. Pathologists apply thresholds to assessments visually, which are image-dependent and operator-dependent. As a result, the critical decision of administering immunotherapy is made by applying very sensitive thresholds to a possibly inaccurate and subjective quantification of a largely variable stain. Therefore, there is an urgent need for reliable and more accurate biomarkers that can aid in the selection of cancer patients eligible for immunotherapy.

Last year, we developed a deep learning algorithm to quantify tumor infiltrating lymphocytes, PD-L1 and CD8 positive cells in digitized histopathology images of cancer patients treated with immunotherapy. The tool is based on deep learning algorithms, trained using multiple stainings of retrospective cancer cohorts. The resulting tool will allow accurate, objective and reproducible quantification of imaging biomarkers for the prediction of treatment response both in a metastatic and in an early-stage scenario. The system is currently being validated and applied to ongoing prospective clinical trials of cancer patients treated with immunotherapy.

Histogenomics: An integrative deep learning approach of histopathology and genomics to personalize cancer treatment

The last decade, genomic and molecular sub-classification of solid tumors potentially have important clinical implications, including identification of new therapeutic targets. However, these subclassifications are based on labor-intensive assays with fresh frozen samples and long turnaround times, limiting their routine use as treatment must start soon after diagnosis. The semi-quantitative morphological interpretation of histological sections of solid tumors by a pathologist is still the cornerstone of diagnosis and assessing cancer prognosis and response to treatment for more than 100 years. This phenotypic information reflects the aggregate effect of molecular / genomic alterations on cells and provides an inexpensive as well as convenient visual read-out of disease biology.

To combine genetic and histology markers, we have built a web-based platform (Slide Score) for characterizing solid tumors, based on artificial intelligence (AI) techniques, by combining genetic and histology markers. In more detail, in the coming years we will build automated AI-tools to investigate the relationship between genetic markers, histology and clinical outcome and treatment response, and combine these data for a comprehensive profile of each tumor. This approach has the potential to provide immuno- and targeted therapy to a much broader subset of patients with cancer. We will train and validate this on samples with Whole genome sequencing results (N-CIA, CPCT) and we will be validated and applied to ongoing daily clinical genomic testing of cancer patients (WIDE).
Programming mutagenesis and epigenetics in lymphocyte biology

Lymphocytes and their precursors are licensed to transiently activate specific mutation pathways that enable efficient remodeling of antigen-receptor genes. To generate the enormous diversity of clonotypic antigen receptors, specific DNA lesions are generated and resolved in an error-prone fashion at defined stages of lymphocyte development. These characteristics provide ideal model systems to study not only the role of DNA damage response (DDR) and DNA damage tolerance (DDT) pathways in resolving specific DNA lesions and shaping the immunoglobulin (Ig) repertoire but also in maintaining genome stability and tissue homeostasis.

Our research activities are focused on two subjects:
(i) DDT in physiology and precision cancer medicine
(ii) Genetic and epigenetic regulation of lymphocyte development

DNA damage tolerance is essential for hematopoietic stem cell maintenance and mammalian life

Stem cells are key players in central biological processes, such as tissue homeostasis, ageing, and cancer formation. Stem cells depend on genome maintenance to prevent disease formation. DDT pathways enable DNA replication in the presence of replication impediments and are regulated by PCNAK164 ubiquitination and REV1. The failure to generate Pcm1K164R/K164R;Rev1-/- deficient mice revealed DDT as essential for mammalian life. The compound mutation rendered hematopoietic stem cells (HSCs) and the hematopoietic precursors genetically unstable, instigating a pathological process where the associated HSC depletion culminated in a severe, embryonic-lethal anemia. Single cell RNA-sequencing of the remaining HSCs and progenitors identified CD24Ahigh and CD93low erythroid-biased progenitors (EBP) within the Lineage-, Sca1+, cKit- (LSK) population. In line, this subset was found to depend on the erythroid transcription factor Klf1. In conclusion, DDT is an essential activity within the DDR network and in maintaining HSC fitness. By studying this system, we identified a novel erythroid-biased progenitor subset within the LSK compartment.

Histone methyltransferase DOT1L controls state-specific identity during B cell differentiation

Differentiation of naïve peripheral B cells into terminally differentiated plasma cells is characterized by epigenetic alterations, yet the epigenetic mechanisms that control B cell fate remain unclear. We identified a central role for the histone H3K79 methyltransferase DOT1L in controlling B cell differentiation. Naïve and activated murine B cells lacking Dot1l prematurely acquired plasma cell features and failed to establish germinal centers (GC) and normal humoral immune responses in vivo. Mechanistically, combined epigenomics and transcriptomics analysis revealed that DOT1L promotes expression of a pro-proliferative (Myc) and pro-GC program (Bach2) and supports the expression of the H3K27 methyltransferase Ezh2, the catalytic component of Polycomb Repressor Complex 2 (PRC2). Thereby, DOT1L ensures PRC2-mediated repression of anti-proliferative and plasma cell differentiation program. Our findings show that DOT1L is a critical regulator of the core transcriptional and epigenetic landscape in B cells and establishes an epigenetic barrier warranting B cell naivety (details, see bioRxiv: doi.org/10.1101/826370). Similar observations were made in the CD8+ T cell lineage. (details, see bioRxiv: doi.org/10.1101/826255).

DOT1L has a key function in the generation and maintenance of pro-proliferative germinal center B cells and preventing premature differentiation towards terminally differentiated plasma cells.
Tight control of DNA repair is critical in maintaining genome integrity and preventing or treating pathology, but the underlying processes are not well understood. Therefore we lack important knowledge about the causes underlying cancer development and the consequences of DNA-damaging anti-cancer therapies. Our work focuses on (erroneous) DNA damage response and repair activities at telomeres and DNA double-strand breaks (DSBs) and how they contribute to cancer and aging by causing cell death, cell senescence, loss of genome integrity or genomic instability.

DNA repair pathway choice at telomeres and DNA DSBs

The main mechanisms by which cells repair DSBs are non-homologous end-joining (NHEJ) and homology-directed repair (HDR). These operate mutually exclusive and are activated by 53BP1 and BRCA1, respectively. The appropriate choice for engaging these two pathways is critical for genome stability and regulated at the level of DNA end-resection. End-resection inhibits NHEJ while committing to HDR. A few years ago we identified MAD2L2, a.k.a. REV7, as an unexpected protein that promotes NHEJ and inhibits HDR at telomeres and DSBs by counteracting 5' DNA end-resection downstream of 53BP1. Thereby MAD2L2 contributes to repair pathway choice between NHEJ and HDR and to the synthetic lethality of BRCA1-deficient cancer cells treated with PARP-inhibitors. In subsequent efforts to further understand MAD2L2 function we identified two previously uncharacterized factors, SHLD1 and SHLD2, that act with MAD2L2 and a third factor SHLD3, identified in parallel work by others. Together MAD2L2, SHLD1, -2 and -3 form a complex called shieldin that protects DNA ends against excessive resection, thereby promoting NHEJ and counteracting HDR (see figure). Loss of SHLD1 or SHLD2 renders BRCA1-deficient cells resistant to PARP-inhibitors, but increases their sensitivity to cisplatin, suggesting how defining the SHLD1/2 status of BRCA1-deficient tumors might aid patient stratification and expose new treatment opportunities.

Our most recent work addresses potential regulation of shieldin. For this we examined specific amino acid residues of MAD2L2 possibly critical for its role in DNA repair and searched for additional factors that might promote or counteract shieldin. Through a functional genetic screen for NHEJ regulators and mass-spectrometry for MAD2L2 interacting proteins we identified a potential regulator of MAD2L2 complex assembly with other factors. In this ongoing work we are assessing the role of this potential regulator on the different activities associated with MAD2L2 and on shieldin assembly and function.

Ubiquitin-mediated control of NHEJ at telomeres

Over the last year we also made significant progress on understanding how an E2 ubiquitin-conjugating enzyme, that we identified in a functional genetic screen, promotes NHEJ at telomeres. We discovered that this E2 contributes to DNA damage-dependent chromatin ubiquitylation and recruitment of DNA damage response proteins critical for NHEJ. Moreover, we found that it prevents excessive accumulation of the RNF168 ubiquitin-ligase and inactivation of a protein essential for heterochromatic DNA repair.
Biophysics of Cell signaling

We use advanced microscopy and spectroscopy techniques to study cell signaling events and cytoskeletal dynamics with high spatial and temporal resolution. Our expertise is predominantly in advanced functional imaging and Super Resolution microscopy. Functional imaging techniques like FRET, FLIM and FCCS aim to provide information about the function of molecules, rather than just static images of their position within the cell. We also develop methods, hard- and software for various advanced microscopy applications. These techniques are used in research projects in our group as well as in collaborations within and outside our institute.

FLIM imaging on wide-field and confocal microscopes

Having completed construction and testing of instruments for ultrafast Fluorescence Lifetime Imaging (FLIM) in our lab on both confocal and widefield microscopes, we have now moved forward to apply these developments in automated FLIM screens. FLIM records the fluorescence lifetime of a fluorophore, i.e. the average time that a fluorophore remains in the excited state following excitation and is an intrinsically quantitative method to detect molecular interactions in living cells. We use FLIM, in conjunction with a variety of Fluorescence Resonance Energy Transfer (FRET) sensors to dynamically read out various signal transduction pathways in individual single cells. In single cells we have characterized the sensitivity, response kinetics and cell-to-cell variability in well-known signaling pathways, including the cAMP-PKA axis, ERK signaling, PLC/Ca2+ signals, receptor tyrosine kinase activity and caspase signaling. Of particular interest is that with the current palette of FRET sensors, we can now follow activity of different nodes within the same signaling cascade, for example following GPCR activation, activation of the G-protein Gq, PIP2 hydrolysis, IP3 formation and Ca2+ release with individual FRET sensors. Being able to study these with sub-second temporal and micro-meter spatial resolutions will allow us to uncover cross-talk between signaling cascades, as well as feedback- and feed-forward mechanism that affect intensity and longevity of these signals. We also study the distribution of signaling activity in multi-cell preparations such as spheroids and organoids.

How does hypoxia affect activity of signal transduction cascades?

Until now, microscopy studies on living cells have been conducted exclusively at atmospheric oxygen levels (i.e., 20% of oxygen). This is remarkable, because the cells in our body are never exposed to 20% O2; rather, they experience between 2% and 7 % of O2 (normoxia). Solid tumours in our bodies almost invariably lack well-developed blood vessels, and large parts of the tumor are therefore devoid of O2 (<1 % of O2; hypoxia). Importantly, a large body of literature shows that hypoxic tumors are much less sensitive to clinical therapies, particularly to irradiation and to systemic cytotoxic agents. We therefore adapted our screening microscopes to allow imaging at arbitrarily set O2 and CO2 levels, thus mimicking the natural conditions of cells in our body much better. With these adaptations, we are studying cell growth and differentiation, signal transduction and migration in several model systems, partly with collaborators at the NKI-AVL.

Selected publications

High content characterization of cAMP signaling at the single-cell level. Cells are stimulated with isoproterenol.
Mouse models of breast cancer

My group studies human breast cancer development and progression, as well as therapy response and resistance, in genetically engineered mouse models (GEMMs) and patient-derived tumor xenograft models (PDX). We have developed mouse models for BRCA1/2-associated breast cancer and invasive lobular carcinoma (ILC), which are used to (1) study tumor cell-intrinsic and -extrinsic mechanisms of breast cancer development and progression; (2) develop novel therapeutic strategies for prevention and treatment of breast tumors; (3) study mechanisms of acquired resistance to targeted therapeutics.

Driver genes in BRCA1-associated breast cancer
We have developed several GEMMs for somatic modeling of BRCA1-associated breast cancer using intraductal injection of lentiviral vectors for stable overexpression of exogenous genes and CAs9-mediated disruption or APOBEC-Cas9n-UGI (BE3)-mediated base editing of endogenous genes. We have used these GEMMs to validate RB, PTEN, PIK3CA, MYC and MCL1 as bona fide driver genes in BRCA1-associated breast cancer. Moreover, MCL1 inhibition potentiated the in vivo efficacy of the PARP inhibitor (PARPi) olaparib, underscoring the therapeutic potential of this combination for treatment of BRCA1-associated cancer patients with poor response to PARPi monotherapy.

Therapy resistance in BRCA1-deficient breast cancer
BRCA1-deficient cancers are defective in homologous recombination repair and therefore hypersensitive to DNA-damaging agents, including platinum drugs and PARP inhibitors (PARPi). However, these treatments do not result in tumor eradication and eventually resistance develops. To study mechanisms of PARPi resistance, we combined functional genetic screens in BRCA1-deficient cells with multi-omics analysis of PARPi-resistant tumors from our GEMMs of BRCA1-deficient breast cancer. These studies have shown that PARPi resistance can be induced by loss of components of the 53BP1-RIF1-SHLD or CST complexes that govern protection of DNA double-strand breaks.

Driver genes in ILC
Using in vivo transposon-based insertional mutagenesis, we have found that overexpression of hyperactive truncated forms of MYPT1/2 and ASPP2 reduces actomyosin contractility and thereby promotes malignant transformation of E-cadherin-deficient mammary epithelial cells, resulting in ILC formation in mice. This work highlights actomyosin hypercontractility induced by E-cadherin loss as a critical barrier to ILC development.

In vivo models of DCIS
Since the advent of breast screening, Ductal Carcinoma In Situ (DCIS) accounts for 25% of all breast neoplasms detected. This increased detection rate has resulted in overtreatment since most DCIS lesions will not progress into invasive breast cancer. Better insight into the biology of DCIS is required to distinguish indolent lesions from potentially hazardous ones. To this end, we are using intraductal injections of lentiviruses encoding (combinations of) DCIS driver genes to generate genetically engineered rat models of DCIS. We are also using intraductal injections of patient-derived DCIS cells to generate mouse PDX models of DCIS. These approaches will enable the identification of DCIS driver genes and yield models to study disease progression and response to targeted therapeutics.
Improving breast cancer immunotherapy

Cancer immunotherapy, especially PD1-blockade, has resulted in durable anti-tumor responses in a subgroup of breast cancer patients. However, the overall response rates are still modest. Using innovative clinical trial approaches as well as applying state-of-the-art knowledge from fundamental cancer immunology, we work on i) the identification of those breast cancer patients that will benefit from immunotherapy, and ii) a better understanding of the interactions between breast cancer and tumor-associated as well as circulating immune cells in order to develop novel immunomodulatory strategies.

Modulation of the tumor microenvironment to improve response to PD-1 blockade

The response rate of triple negative breast cancer (TNBC) patients to PD-1 blockade is low, highlighting an urgent clinical need for strategies that render the TNBC tumor microenvironment (TME) more sensitive to PD-1 blockade. Immunomodulatory mechanisms have been proposed for both chemotherapy and irradiation, but it has not been established whether these therapies can favorably changing the TME. Patients with metastatic TNBC were randomized to anti-PD1 without induction or to one of four induction treatments, consisting of irradiation or a two- week low-dose regimen of cyclophosphamide, cisplatin or doxorubicin, all followed by anti-PD-1. The majority of clinical responses were observed on anti-PD1 in the cisplatin and doxorubicin induction cohorts. After doxorubicin and cisplatin induction, we detected an upregulation of immune-related genes, involved in PD-1/PD-L1, and T-cell cytotoxicity pathways. This was supported by enrichment among upregulated genes related to inflammation, JAK-STAT and TNFα-signaling after doxorubicin. In addition, we observed a trend towards increased T-cell infiltration, measured using T-cell receptor (TCR) sequencing, after doxorubicin. Together, this suggests that short-term doxorubicin and cisplatin may induce a more favorable TME and increase the likelihood of response to PD-1 blockade in TNBC (Voorwerk et al. Nature Medicine 2019).

PI3K-pathway and tumor-infiltrating lymphocytes (TILs)

TILs are correlated with good outcome in TNBC and HER2-positive BC. However, the role of TILs in luminal breast cancer is less clear. Emerging evidence has now demonstrated that genetic aberrations influence the immune landscape of tumors. Phosphatidylinositol 3-kinase (PI3K) is the most common altered pathway in ER-positive BC. It is unknown whether changes in the PI3K pathway result in a different composition of the breast TME. In a randomized trial in 563 ER-positive BC we found that CD8-positive TILs were significantly more abundant in PIK3CA-mutated tumors. While CD4 and FOXP3 were not significantly associated with prognosis, patients with tumors classified as CD8-high had increased risk of recurrence (Sobral-Leite et al. Breast Cancer Res 2019).

Systemic immune characteristics in breast cancer patients

There is substantial evidence that suppressive immune cells and soluble immune mediators can blunt the anti-cancer T cells response. Right now the question is whether this immunosuppressive phenomenon is present in BC patients. In collaboration with the group of prof Karin de Visser we have set-up a pipeline for analyses of these systemic immunosuppressive components using flow cytometry combined with functional assays on fresh material from BC patients who receive various combinations of chemo-immunotherapy in our clinical trials.
How checkpoint targeting therapy alters the tumor-reactive T cells

The immune checkpoint blockade ICB therapies are undoubtedly a massive success in treatment of many solid malignancies and have changed standard of care treatment for a large proportion of patients over the last years. Approximately 80% of stage IV melanoma patients respond to anti-CTLA-4/anti-PD-1 treatment. In spite of this success, 40% are not responding, and at 4 year follow up 58% of initial responders have relapsed. Even though a part of the heterogeneity in response to therapy may be explained by tumour cell intrinsic properties, it is known that T cell intrinsic properties contribute to lack of responses. To expand the success of these therapies it is of key importance to understand how the tumour-specific T cell compartment is composed in different malignancies, and the therapy induced alterations. Our team is focused on understanding how the tumour-reactive T cell response rendered dysfunctional in cancer can be improved with adequate support in terms of e.g. immunotherapies.

We have a strong interest in how the state of the tumour specific T cell response differ between patients and malignancies, and how therapies change the state of these cells. We are in particular interested in the effect of ICB alone or in combination with conventional therapies such as chemotherapy, and the ultimate aim is to identify novel targets and provide rationale for new combination therapies to broaden the success of immunotherapy. We are addressing these questions in two different manners: 1. Dissecting mechanism of action of checkpoint targeting therapies by analysing larger patient cohorts with high throughput strategies focusing on T cell responses restricted towards shared self-tumor antigens, and 2. In depth characterization of T cell responses specific for patient private neoantigens, and how therapy can alter these or not.

Immunocompetence in cancer

An important limitation of ICB is the occurrence of serious adverse events (SAEs) in a large proportion of treated patients. Data obtained from clinical trials show that approximately 80% of stage IV and 90% of stage III melanoma patients treated with dual CTLA-4/PD-1 blockade experiences grade 3/4 SAEs. A large proportion of these immune related toxicities are mediated by T cells not specific for the disease (bystander T cells). There is consensus among clinical oncologists that many patients are currently overtreated with ICB, which is likely to in part explain the high level of toxicity that is observed, however, tools are lacking to drive patient specific dosing of these drugs. The observation that SAEs occur more frequently in patients with a lower disease stage strongly suggests that the occurrence of events is related to general immune function, i.e. immunocompetence, of patients. In support of this model, prior work has provided evidence for immunosuppression in cancer patients, as based on analyses of dendritic cells from peripheral blood. Furthermore, this immunosuppression was shown to increase with disease progression, indicating that immune reactivity not related to the tumor-specific T cell response, is dependent on disease stage, and is a systemic phenomenon. On the basis of these observations it is of interest to examine the relationship between the activity/ transcriptome of bystander T cells (allowing high throughput analysis across patients) and disease stage as well as the SAEs to ICB. Such knowledge could be highly useful to predict potential SAEs for each individual and adjust the dosing schedule per patient to ensure treatment can be given in a safer manner. The main questions we are working on addressing are: 1) Do systemic bystander T cells change during disease progression? and 2. Does the immunocompetence correlate with toxicity to ICB?
Transcription dynamics in single cells

Gene expression is tightly regulated to ensure that genes are transcribed in the right cell at the right time. Single-cell studies have shown that cells in a population can show considerable heterogeneity in gene expression, and that even at steady state concentrations of individual RNAs and proteins randomly fluctuate from one moment to the next. This stochastic heterogeneity can influence essential cell-fate decisions, and can also contribute to heterogeneity in tumors. We use cutting-edge single-molecule imaging approaches to visualize transcription fluctuations in living cells, in order to understand the mechanisms and regulation of transcription dynamics in single cells.

Understanding the mechanisms of transcriptional bursting

Previous studies on transcription dynamics have shown that genes are often not transcribed in a continuous fashion, but show transcriptional bursting, with periods of gene activity followed by periods of inactivity. Transcriptional bursting is a conserved property that occurs from bacteria to yeast to human cells. However, the origin and regulators of bursting remain largely unknown. Our lab uses a single-molecule RNA labeling technique to directly visualize and measure transcriptional bursts in both yeast and mammalian cells to understand how different levels of regulation control bursting.

Interplay between transcription factors, nucleosomes, and bursting

A combination of \textit{in vitro} and \textit{in vivo} single-molecule imaging was used to study the interplay between transcription factor dwell time, nucleosome binding and transcriptional bursting at the galactose responsive genes in budding yeast. We directly correlated the binding of the transcription factor Gal4 with the transcriptional bursting kinetics of its target genes in living yeast cells, which showed that Gal4 dwell time sets the transcriptional burst size. The dwell time of Gal4 is determined by the affinity of the binding site. Moreover, Gal4 dwell time \textit{in vivo} is reduced by several orders of magnitude by promoter nucleosomes. Using a novel imaging platform called orbital tracking, we simultaneously tracked Gal4 binding and transcription at one locus, revealing the timing and correlation between Gal4 binding and transcription. Our data support a model where multiple polymerases initiate during a burst as long as the transcription factor is bound to DNA, and a burst terminates upon transcription factor dissociation.

Bursting of neighboring genes

Closely positioned genes may affect each other’s transcription, for example by shared binding sites or propagation of supercoils generated by transcription. We have set up a dual-color imaging assay technique to simultaneously monitor bursting of divergent and tandem gene pairs in the same cell. Transcriptional bursts of divergent genes show correlated transcription initiation. Rapid conditional degradation of enzymes that relieve supercoiling, called topoisomerases, decreases this correlation. Interestingly, the transcription of tandem gene pairs becomes mutually exclusive upon topoisomerase degradation, indicating that the inability to release supercoiling inhibits simultaneous expression of neighboring genes. We are currently using different perturbation approaches to determine the mechanism of this regulation.
Molecular dissection of cancer by differential drug sensitivity

In the clinic, we mainly use anticancer drugs based on outcomes of clinical trials that have identified the best treatment for the average breast cancer patient, not considering differential patient and tumor characteristics that define the case mixes studied. Hence, this approach serves only those patients whose outcome improves substantially with ‘the best treatment’ identified, while harming patients that do not derive benefit, or even develop metastasis or progress due to the same treatment.

The focus of our research line is to unravel underlying tumor and host mechanisms that ultimately define treatment efficacy and develop tests that will guide individualized treatment decisions in the clinic and eventually improve survival. For this purpose, we use several genome-wide approaches and molecular techniques, in order to dissect the mechanisms that divide clinically well-defined cohorts of breast cancer patients into resistant and sensitive to a particular treatment. We have a close collaboration with the groups of Jos Jonkers and Jacco van Rheenen, who use genetically engineered mouse models for breast cancer, to study differential drug sensitivity in a controlled fashion. In addition, we collaborate with the group of Wilbert Zwart, focusing on molecular mechanisms underlying endocrine therapy resistance.

A second research line focuses on prognostic molecular classifiers for adjuvant systemic treatment advice in breast cancer in collaboration with the groups of Lodewyk Wessels and Rene Bernards.

Molecular mechanisms underlying sensitivity to alkylating agents

Our institute previously described characteristic DNA copy number aberrations of BRCA1- and BRCA2-mutated breast cancers. We called these profiles BRCA1-like profiles. In posthoc analyses of several randomized controlled trials we have demonstrated that BRCA1-like breast cancer patients derive significant benefit from alkylating agents and PARP inhibition in the (neo)adjuvant setting. These findings are now investigated in a prospective, randomized trial (NCT02810743). Recently, we demonstrated that EZH2 is overexpressed in human BRCA1-deficient breast cancers and might predict sensitivity to high-dose, alkylating chemotherapy in HER2-negative, non-BRCA1-like, EZH2 overexpressing stage III breast cancers. Furthermore, EZH2 inhibition potentiated cisplatin efficacy in Brca1-deficient murine mammary tumors.

Endocrine therapy resistance in the adjuvant and metastatic setting

We showed that IGF-1R pathway activation contributes to adjuvant tamoxifen resistance in early breast cancer patients. Next, we showed that treating breast cancer cells with linsitinib can thwart IGF-1R signaling and restore tamoxifen’s efficacy. Patients with activated IGF-1R pathways may therefore do better with tamoxifen combined with linsitinib than tamoxifen alone. Combining endocrine therapy with PI3K/mTOR inhibition has shown promise in metastatic, estrogen receptor (ER)-positive breast cancer. In a phase 1b trial we investigated the combination of tamoxifen with taselisib, a potent, selective, PI3kinase inhibitor. Twelve of 30 patients (40%) had disease control for 6 months or more. Circulating tumor DNA studies using next-generation tagged amplicon sequencing identified early indications of treatment response and mechanistically relevant correlates of clinical drug resistance (e.g., mutations in KRAS, ERBB2) in some patients.
Cell cycle checkpoints and chromosome segregation

The research in the Medema group aims to gain a better understanding of the cellular response to classic anti-cancer drugs that damage the DNA or interfere with chromosome segregation. The ultimate aim is to identify vulnerabilities of cancer cells that could be exploited to selectively target the fitness of cancer cells. Our group uses the knowledge that is generated to define and experimentally test new anti-cancer strategies.

The cellular response to DNA damage

Our work on the DNA damage response aims to identify and characterize determinants of DNA damage sensitivity. We strive to answer questions such as: are there differences in cellular sensitivity to a single double strand break, and if so, what causes such differential DNA damage sensitivity? What factors contribute to the differences in DNA damage sensitivity in normoxic and hypoxic conditions? Can we identify novel factors that contribute to limiting the toxicity of DNA damage? Answering these important questions may help to better understand the response of a tumor to DNA damaging agents that are commonly used to treat cancer.

In an effort to identify novel chromatin-associated players that are involved in limiting the toxicity of DSBs we have identified PHF6 (Warmerdam et al., EMBO J, 2019). We showed that PHF6 is required for the efficient repair of DSBs by regulating the recruitment of 53BP1 and classical Non-Homologous End-Joining DNA repair. As such, PHF6 allows for efficient DNA repair and timely recovery of a damage-induced cell cycle arrest.

Using CRISPR/Cas9-technology to introduce DSBs at a defined set of locations, we investigated whether there are location-dependent differences in the response to a single DSB (van den Berg, bioRxiv, 2019). We showed that DSBs that occur in regions of accessible chromatin are much more likely to undergo excessive DNA end-resection. Such DSBs have a more detrimental effect on cellular outgrowth compared to breaks in less accessible regions, and we could show that his is due to the excessive resection of such breaks. These data imply that the cellular toxicity of a single DSB is in part determined by its nuclear location. Current efforts aim to identify additional determinants of DSB toxicity.

Chromosome segregation errors

The other aim of the lab is to unravel the causes and consequences of chromosome segregation errors, a trait that is very common to cancer cells. To reveal the liabilities of genomically unstable cells, we have performed multiple haploid genetic screens in collaboration with the Brummelkamp lab. In one of these screens we previously identified BUB1 as a synthetic lethal interactor with mitotic checkpoint deficiency. This was received as a surprising finding as BUB1 was suggested to be an essential player of the mitotic checkpoint itself. To exclude an essential role for BUB1 in the mitotic checkpoint, we now deleted the entire BUB1 gene in HAP1 cells and we verified that these full BUB1 KO cells are still able to elicit a functional mitotic checkpoint response (Raaijmakers and Medema, EMBO J, 2019). We are further exploiting the haploid genetics approach to study synthetic lethal interactions with genomic instability as a consequence of replication stress.

We also have a strong interest in understanding the consequences of segregation errors and the resulting abnormal karyotypes on cell fate. We reviewed the latest advances in this field (Soto et al. Trends Genet. 2019 and Lens and Medema, Nat. Rev. Cancer, 2019), and are currently addressing a major open question in the field: how are cancer cells able to tolerate abnormal karyotypes while this is such a detrimental condition in normal cells. As such, we are now studying the short-term consequences of segregation errors in single cells to understand how abnormal karyotypes are eliminated under normal conditions. Besides, we aim to get insight into how cells can adapt to the negative consequences associated to abnormal karyotypes on the long term.
Translational gastrointestinal oncology

Translating disease biology into new diagnostic applications holds great promise for improving outcome for patients. We characterize gastrointestinal pre-malignant and malignant lesions at DNA, RNA, and protein level by tumor profiling using multiple -omics techniques for biomarker development, to improve colorectal cancer screening as well as to stratify patient groups and arrive at individually tailored therapies. Disease biology is studied using pre-clinical model systems such as organoid cultures. Clinical validation is performed by making use of large series of patient sample collections derived from screening programs and multi-center clinical trials. To facilitate the logistics that are needed for these validation studies, we are involved in several (inter)national research infrastructure programs.

Early detection of colorectal cancer
Colorectal cancer screening programs using the fecal immunochemical test have a high sensitivity for cancer (80%) but <30% for advanced adenomas (i.e. precursors). We aim to improve on this by unravelling the biology of adenoma to carcinoma progression, and identifying and clinically validating novel biomarkers. This includes improved stratification of patients in groups at low- or high-risk of developing CRC.

Candidate protein biomarkers for colorectal cancer screening were identified using shotgun mass spectrometry on stool samples of individuals with or without cancer or adenomas, detected by colonoscopy. For these candidate biomarkers antibody-based assays were developed, and clinical utility was validated in a large series of 1298 FIT samples. Currently, we are preparing a prospective trial among 10,000 participants of the Dutch national bowel screening program. This study is planned to start by the end of 2020.

Inclusion of the MOCCAS (MOlecular stool testing for Colorectal CAncer Surveillance) study, where the performance of molecular markers in surveillance after polypectomy or cancer resection is evaluated, is almost complete (3736 out of 4000). An interim analysis has shown promising results to support the potential use of molecular markers in surveillance. A full Health Technology Assessment will be conducted after completion of the inclusion.

Our understanding of the natural history of colorectal adenoma to cancer progression still is incomplete. Previously, we observed specific DNA copy number alterations to be associated with adenoma to cancer progression risk. In the IntEnd study we aim to further substantiate this, by evaluating these same features in a large retrospective series of adenoma patients with detailed follow-up, and model alternative surveillance strategies. Within the same study we will also validate POFUT1, which we identified as a biomarker for risk of progression.

To conduct functional studies to address the same research questions, we have established a library of ~50 human adenoma organoids, representing both high-risk and low-risk adenomas, as defined by specific DNA copy number alterations. An extensive phosphoproteomics analysis of adenomas and cancers pinpointed several molecular pathways specifically active in adenoma to carcinoma progression. These pathways are being functionally tested in a series of adenoma organoids.

Patient stratification
With DNA-, RNA-, and protein-profiling we aim to stratify patients to optimize treatment outcomes. Whole Genome Sequencing (WGS) captures an accurate, unbiased and complete view of genomic characteristics of a tumor in one single test on a relatively low amount of tumor material. WGS can identify ‘clinically actionable’ targets in more patients than regular diagnostics, allowing a match with a registered and approved therapy. Yet, so far, WGS has been mainly evaluated in clinical trials, i.e. outside the routine clinical setting. In the WIDE (WGS Implementation in standard cancer Diagnostics for Every cancer patient) project we will together with Hartwig Medical Foundation...
and UMCU investigate the (i) feasibility and (ii) impact of WGS-based diagnostics in routine clinical practice. Nine months underway, accrual for the WIDE study is fully on schedule with >450 of the planned 1200 patients enrolled.

Liquid biopsies (i.e. blood samples) contain minute amounts of tumor material, can be obtained longitudinally and are less burdensome than tissue biopsies. We investigate whether analysis of liquid biopsy circulating tumor DNA (ctDNA) can be applied as biomarkers to better determine who to treat, how to treat, and when to treat patients. After surgery most stage II CRC patients do not receive systemic adjuvant chemotherapy (ACT), while still ~15% develop a recurrence and might have benefitted from ACT (undertreatment). Most stage III CRC patients do receive ACT, while ~50% of stage III CRC patients are cured by surgery alone (over treatment). Detection of ctDNA after surgery is highly prognostic for disease recurrence, and may therefore guide decisions who (not) to treat with ACT. To validate these observations, we collect and analyze blood samples longitudinally from stage II (MEDOCC study) and stage III (PROVENC3 study) CRC patients making use of the infrastructure of the Prospective Dutch CRC cohort (PLCRC). An interventional trial (CrEATE study) will start early 2020.

Detection of ctDNA in CRC patients with metastatic disease allows to monitor treatment response and to detect therapy resistance. We are collecting and analyzing blood samples longitudinally from patients with CRC metastases in the liver or in the peritoneum.

Highly sensitive technologies for detecting ctDNA are being developed by our collaborator prof. Velculescu (Johns Hopkins University, Baltimore), such as TEC-seq and DELFI.

The COIN (ctDNA on the way to Implementation in the Netherlands) project establishes a clinical validation framework for efficiently investigating clinical utility of ctDNA towards clinical implementation.

Translational research infrastructure

Successfully developing biomarkers to clinical implementation is critically dependent on dedicated infrastructure for facilitating study logistics and FAIR data stewardship. Rather than just using, we are heavily involved in co-developing this infrastructure, both locally as well as nationally (Health-RI, https://trait.health-ri.nl/trait-tools). This is of critical importance as user input is crucial to make sure that the needs of end users are met by the solutions built. These solutions comprise a series of applications to accommodate the different types of research data generated. For view and query of ‘final’ data cBioPortal now is used as the main data integration platform. Internationally, we align our activities with initiatives such as Cancer Core Europe and AACR GENIE.

Selected publications

Wanders LK, Cordes M, Voorham D, Sie D, de Vries SD, d’haens GRAM, de Boer NH, Ylstra B, van Grieken NCT, Meijer GA, Dekker E, Carvalho B. IBD-Associated Dysplastic Lesions Show More Chromosomal Instability Than Sporadic Adenomas. Inflamm Bowel Dis. 2019
Functional genomics for cancer and immune cell therapy

We use function-based, genome-wide experimental strategies to develop rational combinatorial cancer treatment, targeting both cancer and immune cells. By screening for novel therapeutic targets and predictive biomarkers, we aim to achieve more durable clinical responses for patients. On the one hand, we are increasing our understanding of how cancer cells rewire their signaling networks, to expose and exploit new pharmacologically tractable tumor susceptibilities, also in the context of immunotherapy. On the other hand, we are manipulating various cell types from the patient’s own immune system to boost their specific cytotoxicity towards tumor cells. With these function-based approaches, we develop new rational combinatorial therapies, which simultaneously eliminate the patients’ tumors and harness their immune systems.

CRISPR screening to break tumor resistance to immunotherapy

Notwithstanding clinical advances, it is clear that large groups of patients will not durably benefit from immunotherapy, mostly because of resistance. Therefore, in collaboration with the group of Ton Schumacher, we have built in vitro and in vivo systems to study interactions between tumor cells and T cells. We have used these systems to perform function-based screens to develop combinatorial targeted and immunotherapy regimens to achieve more durable clinical responses. For example, we have used this approach to break intrinsic resistance of melanoma to T cell killing. Whereas the interferon (IFN)γ pathway harbors both ICB resistance factors and therapeutic opportunities, this has not been systematically investigated for IFNγ-independent signaling routes.

A genome-wide CRISPR/Cas9 screen to sensitize IFNg receptor-deficient tumor cells to CD8 T cell elimination uncovered several hits mapping to the tumor necrosis factor (TNF) pathway. Clinically, we have shown that TNF antitumor activity is only limited in tumors at baseline and in ICB non-responders, correlating with its low abundance. Taking advantage of the genetic screen, we have also demonstrated that ablation of the top hit, TRAF2, lowers the TNF cytotoxicity threshold in tumors by redirecting TNF signaling to favor RIPK1-dependent apoptosis. TRAF2 loss greatly enhanced the therapeutic potential of pharmacologic inhibition of its interaction partner cIAP, another screen hit, thereby cooperating with ICB. Our results suggest that selective reduction of the TNF cytotoxicity threshold increases the susceptibility of tumors to immunotherapy.

Reversal of pre-existing NGFR-driven tumor and immunotherapy resistance

Continuing on this theme, we considered that little is known about mechanisms of intrinsic immune resistance. To mimic recurrent T cell attack, we chronically exposed a panel of (patient-derived) melanoma cell lines to cytotoxic T cells. This led to strong enrichment of a pre-existing cell population that exhibited immune resistance in vitro and in mice. These fractions showed high expression of NGFR, were maintained stably, and were found to be present in patients’ melanomas prior to treatment. Remarkably, these cells exhibited multidrug-resistance to other therapies including BRAF + MEK inhibition, suggesting that they exist in a stable and distinct cellular state. We are currently clinically corroborating these findings, and exploring how to translate this findings therapeutically.

New opportunities are needed to increase immune checkpoint blockade (ICB) impact for cancer patients. A genome-wide CRISPR/Cas9 screen uncovered several hits in the TNF pathway sensitizing tumor cells to T cell elimination. TNF antitumor activity was generally limited in tumors at baseline and in ICB non-responders, correlating with its low abundance. Selective inactivation of TNF signaling lowered melanoma and lung cancer thresholds to low TNF levels, thereby increasing tumor susceptibility to T cell attack and augmenting benefit from anti-PD-1 treatment.
Structural biology

We aim to provide molecular insight to macromolecular interactions and structures, understanding how these regulate specific biological activities in space and in time. In parallel we develop concepts, algorithms, and software for strive for improving the methods for this work. Our work enables the development of new specific drugs and biologics.

Structural studies of Autotaxin

ATX produces the signalling phospholipid LPA; LPA and ATX are involved in cancer metastasis and other pathogenic situations. Our detailed evaluation of the kinetics of the enzymatic activity of ATX, taking into account allosteric activation, allowed us to understand better how new types of inhibitors affect ATX action. Our focus remains in understanding how different inhibitors, targeting catalytic and non-catalytic activities of ATX, can have different clinical results in specific pathologies.

Structural studies of microtubule interacting proteins

Our major interest revolves around our collaboration with the group of Geert Kops, studying the spindle assembly checkpoint (SAC) and how the Mps1 kinase competes with microtubules for binding to the NDC80 complex in the outer kinetochores, regulating SAC activity. We also study the dynein adaptor Spindly that drives kinetochore expansion in a dynein-independent manner, promoting initial microtubule capture and subsequent correct maturation of attachments. The discovery of the long-sought tubulin detyrosination enzyme by the group of Thijn Brummelkamp, the complex between VASH1/2 and SVBP, has prompted us to extend our research to this tubulin-modifying enzyme complex. We determined the crystal structure of VASH1:SVBP, explaining how SVBP acts as a unique structural chaperone of the VASH1 catalytic subunit, stabilising the N- and C-terminal VASH1 domains by inserting between them a long helix. Together with mutagenesis experiments and cell-based assays, we deciphered the specificity determinants for the C-terminal tyrosine of the α-tubulin tail.

Methods for X-ray crystallography

PDB-REDO is a project we lead together with Robbie Joosten in my group. We strive to make better crystallographic structure models by improving published structures and making them available through the PDB_REDO data bank and providing a web-server that allows practicing crystallographers to take full advantage of the PDB_REDO procedure.

This year we took our work on using structural homology one step further, towards building a new web service (https://lahma.pdb-redo.eu) allowing researchers to look interactively for unusual – and thus potentially functionally interesting – features between structural homologues.
Chromosome biology

Human chromosomes are centimetres in length, but are organized such that they fit into a cell of micrometre-scale dimensions. Within this confined setting, chromosomes allow for tightly controlled cellular processes such as mitosis and transcription. These processes are made possible by two conserved protein complexes known as cohesin and condensin. Both cohesin and condensin are so-called SMC complexes that by building DNA loops, and by holding together DNA elements, can provide structure to chromosomes.

Research in our lab centres on the mode of action of cohesin and condensin. How do these complexes form DNA loops and shape the genome in 3D? How do these complexes entrap and release DNA? How does cohesin stably lock together the sister chromatids? How does condensin drive mitotic chromosome condensation? And how does loop formation by these complexes affect nuclear organization and gene expression? We are addressing these questions using a multi-disciplinary approach that covers genetics, genomics, biochemistry and imaging.

Chromosome organization by cohesin and CTCF

The cohesin complex is essential for the formation of chromatin loops across the genome. We recently discovered that the interphase genome is structured through a highly dynamic process that involves a continuous cycle of formation, loss and re-formation of loops by cohesin. We also found that the cohesin release factor WAPL limits the degree by which loops can be enlarged. Together, our findings support the model that cohesin structures chromosomes through the processive enlargement of DNA loops (Haarhuis et al., Cell 2017).

Cohesin is required for the formation of loops between CTCF sites along chromosomes. How cohesin and CTCF together enable the formation of such loops has remained unknown. This year we had a fruitful collaboration with the laboratory of Daniel Panne (University of Leicester), and found that a segment of the CTCF N-terminus interacts with the SA2-SCC1 subunits of cohesin. CTCF turns out to bind to a conserved surface on cohesin and hereby stabilizes cohesin on chromatin. This key interaction is essential for CTCF-anchored loops, and contributes to the positioning of cohesin at CTCF binding sites. We suggest that CTCF enables chromatin loop formation by protecting cohesin against loop release. Our results provide fundamental insights into the molecular mechanism that enables chromatin folding by cohesin and CTCF.

Chromosome condensation by condensin

As cells enter mitosis, condensin complexes convert the genome into compact and rigid chromosomes. Condensin drives chromosome condensation through the formation of loops along the DNA. This vital process ensures that chromosomes are shortened enough to allow the splitting in half of the cell during cytokinesis without DNA getting caught in the middle. Cohesin and condensin are enzymes with highly conserved ABC-like ATPases at their basis. In a productive collaboration with colleagues from Delft and Heidelberg, we discovered this year that one of condensin’s ATPase sites promotes the initiation of loops, while the other site determines the type of loops that condensin forms. Mutation of this latter site yields hyper-active condensin that compacts DNA faster than wild type, both in vivo and in vitro. Asymmetric ATPases with distinct roles for each ATPase site are likely to reflect a universal principle for SMC complexes that enables these ancient molecular machines to intricately control chromosome architecture.
Cognitive function in cancer patients

The projects constituting our lines of research center around the characterization of the incidence, pattern and course of cognitive problems associated with cancer and cancer therapies, the risk factors for cognitive problems and the mechanisms that underlie cognitive problems in patients with tumours either inside or outside the CNS. Our research is also directed to develop, evaluate and implement interventions to minimize and manage cognitive problems.

Internet based Work-related cognitive Rehabilitation for Cancer survivors

Cognitive problems are common in non-CNS cancer survivors. These problems are perceived as an important contributor to affect job performance and work ability. Various interventions for cancer-related cognitive impairment have been proposed, but effectiveness for work-related outcomes is not yet established. We therefore developed and internet-based cognitive intervention programme for occupationally active cancer survivors.

A three-armed randomized controlled trial including two intervention groups and a waitlist control group is currently in progress. 300 cancer survivors who have returned to work and who experience cognitive problems are recruited. Patients with and without cognitive dysfunction are eligible. The high-intensity arm will contain a comprehensive training programme (including psycho-education, fatigue management and cognitive strategy training) with individual guidance. The low-intensity arm will contain a brief cognitive training programme (including psycho-education and fatigue management) without individual guidance. The primary outcome will be accomplishment of an individually defined work-related treatment goal.

Accelerated brain aging after chemotherapy for breast cancer?

Chemotherapy for non-CNS cancer is associated with brain abnormalities that are compatible with a premature brain aging framework. Using machine learning we evaluated whether chemotherapy for breast cancer is associated with accelerated brain aging in a datapooling project initiated by the ICCTF Neuroimaging Working Group.

T1-weighted MRI scans from 6 sites (USA and Europe) acquired at 3 Tesla were included for brain age estimations in BC patients exposed to chemotherapy (CT+, n=182), BC patients who did not receive chemotherapy (CT-, n=154) and no-cancer controls (NC, n=145). Brain age was estimated with the brainageR toolbox. Subtracting brain age at baseline (preCT) from brain age at follow-up (postCT) provided a longitudinal estimate of brain aging. By dividing this with the interscan interval, we obtained a brain aging coefficient with percentages > 100% indicating accelerated brain aging. The mean brain aging coefficient was 144% for CT+ patients, 103% for CT- patients and 76% for NC (p=ns). Next, analyses were restricted to participants who showed longitudinal brain aging (i.e., positive numbers) between the time points (61% of participants). The brain aging coefficient for these subgroups was 498% for CT+ patients, 325% for CT- patients and 300% for NC (p<0.001), indicating that among participants who showed brain aging, BC patients exposed to chemotherapy showed more accelerated brain aging than patients not exposed to chemotherapy and no-cancer controls. Brain age estimations, particularly in longitudinal settings, are a new field of research with many unexplored avenues. They are a promising tool to study chemotherapy-associated neurotoxicity.
Genes and proteins involved in anticancer drug resistance and pharmacokinetics

We study genes and proteins that affect drug resistance in tumors, or influence the pharmacological and toxicological behavior of (anticancer) drugs and toxins, including carcinogens. Of special interest are multispecific drug efflux and uptake transporters, as well as drug-metabolizing enzymes. Insight into these systems may: i) improve pharmacotherapy approaches for cancer and other diseases; ii) increase insights into factors determining susceptibility to toxins and carcinogens, and; iii) allow elucidation of physiological functions. To understand the roles of these proteins we generate and analyze knockout or transgenic mice lacking or overexpressing the relevant genes. Below we describe a few recent studies illustrating our approach.

ABC transporters Mdr1a/1b, Bcrp1, Mrp2 and Mrp3 determine the sensitivity to PhIP-induced colon carcinogenesis

2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is an abundant dietary carcinogen. We investigated whether clinically relevant ATP binding cassette (ABC) efflux transporters can modulate PhIP-induced colorectal carcinogenesis using wild-type (WT), Bcrp1−/−;Mrp2−/−;Mrp3−/− and Bcrp1−/−;Mdr1a/b−/−;Mrp2−/− mice. Both knockout strains were more sensitive to DSS-induced colitis than WT mice. Lack of these transporters also led to altered disposition of activated PhIP metabolites. The results suggest that Mdr1a/1b, Bcrp1 and Mrp2 contributed to biliary excretion and Mrp3 to sinusoidal secretion of the pre-carcinogenic metabolite N2-OH-PhIP. A genotoxicity marker, PhIP-5-sulphate, was at least 4- and 17-fold reduced in the intestinal tissue and intestinal content of both knockout strains. The level of colon carcinogenesis was reduced by 2- to 4-fold in both knockout strains compared to WT mice. Thus, reduced activity of these ABC transporters may in part protect from PhIP-induced colon carcinogenesis. It thus appears that ABC transporters are important in protecting the body from inflammatory agents such as DSS, in the disposition of carcinogenic metabolites, and in determining the sensitivity to dietary PhIP-induced carcinogenesis.

P-glycoprotein (MDR1/ABCB1) controls brain accumulation and intestinal disposition of the novel TGF-β signaling pathway inhibitor galunisertib

Galunisertib is currently in trials for various cancers. Using genetically modified mouse models, we investigated the roles of the multidrug efflux transporters ABCB1 and ABCG2, the OATP1A/1B uptake transporters, and the drug-metabolizing CYP3A complex in galunisertib pharmacokinetics. Oral administration of galunisertib was very rapidly absorbed in mice. Galunisertib brain-to-plasma ratios were increased by 24-fold in Abcb1a/1b−/− and Abcb1a/1b;Abcg2−/− mice compared to wild-type mice. Galunisertib oral availability was not affected, but recovery of galunisertib in the small intestinal lumen was strongly reduced in Abcb1a/1b−/− and Abcb1a/1b;Abcg2−/− mice. Oral coadministration of the ABCB1/ABCG2 inhibitor elacridar boosted galunisertib brain accumulation in wild-type mice. Oatp1a/1b deficiency did not alter oral galunisertib pharmacokinetics or liver distribution. Cyp3a−/− mice showed a 1.9-fold higher plasma AUC0−8 h than wild-type mice, but this difference disappeared over 8 h. Also transgenic human CYP3A4 overexpression did not significantly alter oral galunisertib pharmacokinetics. Abcb1 thus dramatically restricts galunisertib brain penetration and affects its intestinal disposition, possibly through biliary excretion.
Molecular breast cancer epidemiology

Our work spans the themes of precision medicine (and precision prevention) and survivorship. We investigate germline genetic variants for their role in breast cancer subtype development and progression. We strive to translate and implement our findings in models and tools to facilitate shared decision-making by patients and physicians with overarching goals to prevent breast cancer and recurrence of cancer, to reduce overtreatment, and to improve outcome. We also investigate and try to implement the best Ethical, Legal, and Societal (ESLI) practices related to the (secondary) use of human data and materials.

Identification of hereditary variants relevant for breast cancer prognostication

We are using genome-wide genetic data of the Breast Cancer Association Consortium for over 95,000 women with breast cancer to study the impact of germline variants on breast cancer outcome. We adapted a network-based approach to handle this underpowered complex dataset to provide new insights into the potential function of germline variants in breast cancer prognosis. We used this adapted network-based analysis to study ~7.3 million variants in 84,457 breast cancer patients in relation to breast cancer survival and confirmed the results on 12,381 independent patients. Aggregating the prognostic effects of genetic variants across multiple genes, we identified four gene modules associated with survival in estrogen receptor (ER)-negative and one in ER-positive disease. The modules showed biological enrichment for cancer-related processes such as G-alpha signaling, circadian clock, angiogenesis, and Rho-GTPases in apoptosis.

Understanding and predicting risk of contralateral breast cancer

Contralateral breast cancer (CBC), a new primary tumor in the opposite breast, is a rare event (10-year cumulative incidence 4%) with potential for poor outcome. We need improved risk prediction and understanding of the disease etiology to identify high and low risk to develop CBC and to optimize the decision making around contralateral preventive mastectomy or tailored follow up. Therefore, we developed and validated a CBC risk prediction model, PredictCBC, using multiple studies including patient, oncogenetics and tumor and treatment information. Although in breast cancer patients with BRCA1/2 germline mutations, PredictCBC is potentially useful for clinical decision making, CBC risk prediction in the general breast cancer population remains challenging.

To address this remaining challenge, we are expanding the model with additional informative factors, such as a polygenic risk score (PRS). We investigated the impact of a PRS of 313 common genetic variants on CBC risk. Based on 56,068 breast cancer patients, we showed that the PRS is an independent factor associated with CBC risk; hazard ratio per standard deviation = 1.25 (95%CI = 1.18–1.33). Patients in the lowest and highest decile of the PRS distribution had 0.59 fold (95%CI=0.45–0.78) and 1.38 fold (95%CI=1.13–1.69) risk of CBC, respectively, compared with patients in the 40–60% group.

More transparency and facilitating research by improving consent procedures

We made a significant contribution towards improving consent procedures for the (secondary) use of residual tissue, images, and data for scientific research. Although most patients agree with the use of their materials and data for research, previous research of our group showed that patients felt that transparency around this topic should be improved. Moreover, changing societal norms increased the number of research studies for which the opt-out procedure does not suffice anymore. Since mid-2018, the Antoni van Leeuwenhoek hospital therefore informs all patients about this use, and asks their consent. We conducted patient and employee interviews, and evaluated the decisions patients took, which led to changes in patient information brochures, employee information, and technical systems.
Dissecting and manipulating tumor-specific immunity

The aim of our research is simple 1). To design novel technologies to examine and modify immune responses 2). To subsequently use these technologies to unravel and manipulate immune recognition of human cancer. Some of the highlights of the past year have been the following:

Dissecting and enhancing T cell recognition in human cancer

There is now widespread evidence for the clinical value of T cell-based immunotherapies in a number of human cancers. However, our ability to carry out mechanistic studies on the immune infiltrates in human tumors has historically been limited. To overcome this limitation, we have over the past years invested heavily in technologies to dissect and perturb aspects of human intratumoral immune function, with the expectation that this will yield novel biomarkers of response and an improved understanding of the functional capacity of the intratumoral immune pool, both in steady state and upon therapy. The two main platforms that have been spawned by this effort have been a technology to recover and functionally test intratumoral TCR repertoires, and a technology to measure immunotherapy response of human tumor fragments upon ex vivo perturbation. The former platform has over the past years proven useful to demonstrate that human tumors can contain very large fractions of ‘bystander T cells’ that appear irrelevant to tumor control. With the goal to, for instance, understand whether tumor reactivity can be accurately predicted by T cell phenotype, this technology has subsequently been adapted to allow high-throughput screening of very large collections of TCRs, an effort now led by Wouter Scheper in the Haanen lab. With the aim to, for instance, understand whether clinical response of tumors to immune checkpoint blockade is predicted by immunological response, and whether distinct subtypes of immunological non-responding tumors can be distinguished, we have profiled the ex vivo tumor fragment response of a large set of human cancers to PD-1 blockade. Key findings of this work led by Daniela Thommen have been the establishment of a relationship between clinical and immunological response of cancers, and the definition of a set of baseline parameters that predict the capacity of PD-1 blockade to rekindle intratumoral immune function.

An aspect of intratumoral T cell function that has received little attention is the putative effect of T cell-secreted cytokines as modifiers of the tumor micro-environment (TME) beyond the target cells that are directly contacted. In collaboration with the van Rheenen group, we have documented that T cell-secreted IFNg can modify bystander tumor cell behavior over very large distances, and in future work it will be of interest to expand this concept of ‘cytokine sensing’ to other cytokines and chemokines within the TME.

Development of T cell memory

In addition to our work in which we aim to dissect immune function in cancer tissue, we remain interested in the dissection of fundamental aspects of the formation of antigen-specific T cell memory. One highlight in the past year has been the development and use of technology to measure the replicative age of memory T cells in vivo. Data obtained demonstrate that, contrary to some of the prevailing models, memory T cells are derived from a cell pool that has undergone extensive proliferation, but that the capacity to induce recall responses is biased towards a more nascent subset of memory T cells.
Development of cancer is generally due to errors that occur in cellular pathways. Understanding the mechanisms of underlying processes will help to determine where the errors occur and how they can be treated. We combine biochemical and biophysical methods, including X-ray crystallography and cryo-EM (electron microscopy) to study protein function. This leads to insights in molecular mechanisms that we validate in cells. In addition, our structures provide targets for drug design studies. In this work we focus primarily on proteins involved in mismatch repair and ubiquitin conjugation, particularly in stress response and DNA repair pathways.

DNA mismatch repair

DNA mismatch repair (MMR) plays a crucial role in maintaining genome stability. Defects in the mismatch repair proteins in humans predispose to Lynch syndrome (or hereditary non-polyposis colorectal cancer) and are associated with a variety of sporadic cancers. DNA mismatch repair is initiated by recognition of a mismatch or an unpaired base by MutS (in Escherichia coli) or its MSH homologs (in humans). Initial recognition of the mismatch is followed by an ATP-dependent conformational change of MutS into a sliding clamp state that is recognized specifically by the next protein in the mismatch repair cascade, MutL. We studied how full length MutS is organized in the absence of DNA, and found that its coiled coil region can kink. Further analysis showed that this ability to kink is necessary for DNA binding, but does not affect MutL interaction (Bhairosing-Kok et al, 2019).

In collaboration with Meindert Lamers and Rafael Fernandez-Leiro we study different MMR states by cryo-EM. This generated unexpected insight into the conformational changes. Apparently, DNA positioning and the asymmetry of the MutS dimer are critical steps in the licensing of the mismatch repair.

Ubiquitin conjugation

Ubiquitin conjugation is an important signal in cellular pathways, changing the fate of a target protein, by degradation, relocation or complex formation. Deregulation of ubiquitin-dependent processes often leads to cancer. Ubiquitin signals are balanced by deubiquitinating enzymes (DUBs), which antagonize ubiquitination of specific protein substrates. Because ubiquitination pathways are critically important, we focus on mechanisms of ubiquitin conjugation to aid the process of drug design.

We are interested in the selectivity of the ubiquitination process, studying how three E3 ligases each modify a different set of lysines on H2A. In collaboration with Hugo van Ingen we used NMR to explain the selectivity of RNF168 for the N-terminal lysines K13 and K15 (Horn et al, 2019). We present a model for interaction that was validated with cross-link mass spectrometry and mutagenesis. We mutated a site on H2B that interfered with RNF168 and not with PRC1 modification. Intriguingly, this site is relatively frequently mutated in cancer.

DUB activity is often carefully controlled. We focus on the role of the target in this regulation. We found that intrinsic activation mechanisms and target interaction collaborate for full activity of the pleiotropic DUB USP7. Based on biophysical analysis on a series of different enzyme constructs we defined a model for USP7 activation on a peptide target-Ub conjugate. We validated our kinetic model by stopped-flow kinetic analysis and simultaneous fitting of all data, which elucidated kinetic constants for the different steps (Kim et al, 2019).
Adaptive radiation therapy

Geometrical uncertainties such as setup error, posture change, organ motion, deformations and treatment response limit the precision and accuracy of radiation therapy (RT). Consequently, the actually delivered dose typically deviates from the planned dose. To minimize the deleterious effects of geometrical uncertainties, adaptive radiation therapy (ART) aims to characterize the patient’s specific variation through an image feedback loop and adapt the patients' treatment plan accordingly. Adaptive radiation therapy research therefore includes 1) improving in room imaging, 2) patient variability characterization, 3) treatment plan modification and 4) outcome modeling.

AI based MRI reconstruction

Accelerating MRI acquisition and reconstruction time is important for efficient MR-guided radiotherapy systems. While sparse sampling accelerates the acquisition process, state of the art reconstruction using compressed sensing (CS) from sparsely sampled data is typically slow. We developed and characterized deep learning based reconstruction using recurrent Inference Machines (RIM) as a framework. We demonstrate the ability of RIM to generalize well by reconstructing different anatomies, different contrast and resolution, at different field strength, subjected to varying acceleration levels. We showed that RIMs outperform CS not only with respect to quality metrics, but also according to a rating given by an expert in a double blinded experiment.

Differences between planned and delivered dose for head and neck cancer

Anatomical changes induce differences between planned and delivered dose. Adaptive radiotherapy (ART) may reduce these differences but the optimal implementation is insufficently clear. In this study the difference between planned and delivered dose in head-and-neck cancer (HNC) patients were quantified and the value of differences in normal tissue complication probabilities (ΔNTCP) as an objective selection strategy for ART was evaluated. To that end, daily doses were accumulated to estimate the delivered dose for 52 HNC patients. ΔNTCP was calculated for xerostomia, dysphagia, parotid gland dysfunction and tube feeding dependency at 6 months. ART was deemed necessary if ΔNTCP was >5%. The positive predictive value was 0.86 and 0.38 for ΔNTCP at fraction 10 and clinical judgement respectively. The negative predictive value was 0.93 and 0.9 respectively. To identify patients accurately for ART, ΔNTCP based on the differences between planned and delivered dose at fraction 10 were superior to clinical judgement.

Dose and margin reduction

Considerable safety margins and high doses to central structures in radiation treatment of locally advanced lung cancer patients is associated with substantial toxicity. In an observational cohort study we evaluated the combined impact of margin and dose reduction. 308 locally advanced lung cancer patients were included in an observational study. A reduction in safety-margins and dose from 70 Gy to 60 Gy to the involved lymph nodes in LA-NSCLC patients receiving (chemo) radiotherapy did not result in an increase in regional failures. Moreover, significantly lower acute toxicities and an improved OS were observed in the reduction-cohort.
Receptors for matrix adhesion

Our main aim is to understand the molecular mechanisms that regulate the interaction of cells with components of the extracellular matrix and to establish the role of cell adhesion receptors in health and disease. A major class of cell adhesion receptors are formed by members of the integrin family. We would like to understand how integrins interact with their ligands and assemble multiprotein complexes at the cell-substratum site in normal and pathological conditions, define the interplay among different integrins and understand the underlying molecular mechanisms.

Assembly of different integrin-based adhesion structures

Integrins are obligate heterodimers composed of α and β subunits. In mammals 18 α and 8 β subunits have been characterized. We are investigating three integrins that are clustered in different adhesion structures and associate with distinct cytoskeletal elements. These are laminin-binding α3β1 and α6β4, and αVβ5, a receptor for vitronectin. While the integrins α3β1 and αVβ5 are connected to the actin cytoskeleton in focal adhesions, α6β4 associates with the intermediate filament system in hemidesmosomes. Additionally, integrins α3β1 and αVβ5 can localize to adhesion structures that are seemingly not connected with the actin cytoskeleton: αVβ5 can be found in flat clathrin lattices and α3β1, when in complex with CD151, resides in tetraspanin webs. We study the dynamic regulation of these adhesion structures, how they mediate cellular mechanotransduction and define the molecular mechanisms underlying mechanosensing. We found a novel role of α6β4-containing hemidesmosomes in resisting actomyosin-generated cellular tension, which is dependent on mechanical coupling of focal adhesions to hemidesmosomes and inhibition of mechanosensitive signalling. Furthermore, through their ability to influence cellular tension, α6β4 also controls the localization of integrin αVβ5 in flat clathrin lattices.

Role of integrins in health and disease

Integrin α3β1, which mediates the adhesion of epithelial cells to laminin-332 and -511 in the basement membrane and plays a role in the maintenance of cell-cell contacts, has been implicated both as a promoter and suppressor of tumorigenesis and metastasis in different types of tumors. Among others, we observed such dual role in cancer in a model of chemically induced skin tumorigenesis (OMBA/TPA treatment) in mice, where α3β1 is required for the initiation and development of the disease. However, during the later stages of skin carcinogenesis, the loss of integrin α3β1 resulted in increased invasiveness and metastases formation. The correlation between α3β1 and breast cancer development is even less clear, as independent studies of human samples have reported all possible outcomes – positive, negative and lack of correlation between α3β1 and tumor formation and progression. This reflects the complex role of this integrin during the lifespan of cancer. Our current work focuses on understanding the often opposing function of α3β1 in cancer by studying its role in specific stages and types of tumors. Our primary focus is to determine the mechanisms behind α3β1-dependent onset of skin tumors induced by DMBA/TPA treatment. To this end we are investigating the role of α3β1 in the proliferation, differentiation and dynamics of different skin cell populations during homeostatic conditions and during skin tumorigenesis and are studying the related α3β1-dependent signaling pathways and interactors. We are also interested in the role of α3β1 in breast cancer, which we investigated using a mouse model overexpressing the HER2 oncogene. We showed that the downregulation of α3β1 in a HER2-driven mouse model and in HER2-overexpressing human mammary carcinoma cells promotes progression and invasiveness of tumors. This invasion suppressing role of α3β1 was not observed in triple-negative mammary carcinoma cells, once again illustrating the tumor type specific function of α3β1 in cancer.
Genomic instability and carcinogenesis

How does genomic instability develop and impact the initiation and progression of cancer? We study two causes of genomic instability: (1) loss of DNA mismatch repair (MMR) and (2) defective G1/S control causing unscheduled S-phase entry and replication stress. We develop novel gene modification tools to study genomic instability in cell culture and mouse models.

Unclassified variants of MMR genes
Carriers of a deleterious MMR gene variant (deletion, stop codon) are cancer prone (Lynch syndrome, LS) and need surveillance to reduce cancer risk. However, single codon variants are difficult to interpret complicating the counseling of carriers. We developed a functional test to study such ‘Variants of uncertain significance’ (VUS): “oligonucleotide-directed mutation screening” (ODMS) (Houlleberghs et al., PNAS 2016; PLoS Genet 2017; J Med Genet 2019). We first introduce the VUS into ±0.01% of mouse embryonic stem cells (ESCs), hemizygous for an MMR gene, by a replication-coupled process only using short (21-25 nt) single-stranded DNA oligonucleotides (ssODN) (Van Ravesteyn et al., PNAS 2016). When the VUS is deleterious, modified cells form colonies in 6-thioguanine (6TG)-containing medium. This protocol identified 64 deleterious VUS among 149 MMR gene variants.

Further optimization of ‘oligo targeting’ and application in human cells allows us to also address extra-exonic variants (promoter and intron sequences) and to implement ODMS in clinical practice in the context of a nationwide KWF-sponsored consortium, termed INVUSE (investigating variants of uncertain significance for use in clinical practice).

CRISPR/Cas9-assisted gene modification
ssODN-directed gene modification is stimulated by a CRISPR/Cas9-induced DNA break. Strikingly, DNA MMR impacts ssODN-directed gene modification without and with nuclease activity differently: while suppressing oligo targeting without nuclease, in the presence of a break MMR activity promoted break-distal nucleotide substitution instructed by the 3’-half of the ssODN. This finding implies templated break repair rather than oligonucleotide integration to underlie CRISPR/Cas9-mediated nucleotide substitution (Harmsen et al., NAR 2018). Additional strategies, including a ‘co-CRISPR’ protocol, improved recovery of single-nucleotide substitutions.

We corrected a disruptive mutation in the Fanconi anemia (FA) gene Fancf using CRISPR/Cas9 and a 120-nt ssODN template in mouse ESCs and fibroblasts. Although the frequency was low (3-6%) FA corrected ESCs rapidly overgrew non-corrected cells, which even allowed recovery of very rare templated gene editing events obtained by using Cas9D10A nickase. Notably, unlike wild-type Cas9, nickase activity resulted in mono-allelic gene editing without undesired mutagenesis (Van de Vrugt et al., Sci Rep 2019).

Replication stress
Unscheduled S-phase entry of G1/S checkpoint defective, mitogen-starved cells causes replication stress, revealed by slow fork progression, low origin firing, DNA breakage and proliferative arrest (Van Harn et al., Genes Dev 2010). Strikingly, mitogen-independent proliferation was promoted by disruption of the Tp53/p21(CIP1) axis, not only by attenuated DNA damage response, but rather by restored origin firing and reduced DNA breakage (Benedict et al., Elife 2018). However, replication speed remained low, and genetic screens divulged pathways that were critical for proliferation in the absence but not the presence of mitogens. An example is the requirement for WAPL-dependent removal of cohesion rings to allow rapid RAD51-dependent repair of broken replication forks (Benedict et al., Developmental Cell, 2020, in press). Furthermore, we found cohesion loss in many cancer cell lines, suggesting that active cohesion removal from newly synthesized sister chromatids is necessary for cancer cells to handle oncogene-induced DNA replication stress.
Cancer survivorship

Our research objective is to understand the impact of cancer, treatment and supportive care strategies on physical and psychosocial functioning of cancer survivors.

Patient Reported Outcomes Following Initial treatment and Long-term Evaluation of Survivorship (PROFILES)

In 2009 we initiated the PROFILES registry for the study of the physical and psychosocial impact of cancer and its treatment. Today we have evaluated patient reported outcomes (PRO’s) of more than 25.000 cancer survivors in 80 hospitals in the Netherlands, resulting in 148 scientific publications. In 2016 we obtained a large investment grant from NWO to upgrade the PROFILES registry to facilitate studies of the mechanisms of declining health after cancer. We are currently collecting novel data that includes biological markers, biosensor data, online food diaries and body composition.

International development of quality of life questionnaires

We have developed disease-specific EORTC QoL questionnaires for patients with (non) Hodgkin lymphoma (N-HL) or chronic lymphocytic leukaemia (CLL). Furthermore, in the past years we have been developing an EORTC cancer survivorship questionnaire that includes physical, emotional and socio-economic functioning. We are currently conducting international validation studies for both (sets of) questionnaires.

Effectiveness of patient-reported outcome feedback and a web-based intervention on lymphoma patients’ self-management skills

The objective of the multicentre Lymphoma InterVeNtion (LIVE) RCT is to examine whether feedback to patients on their PROs and access to the web-based self-management intervention Living with lymphoma will increase self-management skills and satisfaction with information and reduce psychological distress. Patients with (non) Hodgkin lymphoma are invited via their haemato-oncologist 6 to 15 months after diagnosis. The intervention is based on cognitive-behavioural therapy components and includes information, assignments, assessments, and videos. Patient recruitment has been completed, analyses are currently ongoing.

Efficacy of the eHealth application ‘Oncokompas’ to support cancer survivors to self-manage their symptoms and health-related quality of life

Oncokompas is a web-based eHealth application that supports survivors in self-management by 1) monitoring health-related quality of life (HRQOL) and (cancer-generic and tumour-specific) symptoms; and 2) obtaining tailored feedback with a personalized overview of supportive care options. In this RCT, survivors diagnosed with head and neck, colorectal, and breast cancer, and (non-)Hodgkin lymphoma were randomised to the intervention group (access to Oncokompas: N=320) or wait-list control group (N=305). After a median follow-up of 6 months, Oncokompas did not significantly improve knowledge, skills and confidence for self-management (possibly because the study population was already performing relatively well), but seems effective to reduce symptom burden and improve HRQOL.

GERSOC and PROSPEC trials

In 2019 we furthermore continued data collection for the pragmatic cluster randomized GERSOC (GERiatric Screening in the treatment of elderly patients with Ovarian Carcinoma) trial and the individually randomized PROSPEC (PROstate cancer follow-up care in Secondary and Primary hEalth Care) trial.
Personalized Oncology in sarcoma and adolescent and young adult (AYA) cancer patients

The personalized oncology group is currently concentrating on two principal research lines: (1) the short-, long-term and late consequences of cancer at adolescent and young adult age; (2) diagnosis, treatment, outcome and health-related quality of life issues of people with sarcoma.

Adolescents and Young Adults

Adolescent and Young Adult (AYA) cancer patients, diagnosed with cancer between the age of 18-39 years old, suffer from delay in diagnosis, lack of centralization of care, age-adjusted expertise and follow-up care. This group presents with a unique spectrum of cancers, distinctive tumor biology, cancer risk factors, developmental challenges and treatment regimens that are different compared to children. There will be a burden of medical and psychosocial problems, that could result in compromised health-related quality of life and reduced life expectancy. Findings derived from childhood cancer survivors cannot be extrapolated to AYA. It is imperative for advances in the field of AYA oncology to pool data sources (patient-reported outcomes, clinical, genetic and biological data) across institutions and create large cohorts that include the full range of AYA ages and diagnoses to be able to address the many pressing questions that remain unanswered in this vulnerable population. We are currently running the SURVAYA study to examine the long-term consequences of cancer at AYA age among people who were diagnosed 5-20 years ago. Additionally, we are working on a unique nationwide infrastructure (COMPRAYA) for research into the prevalence, predictive and prognostic markers (risk factors) and underlying mechanisms of (age-specific) medical and psychosocial outcomes, and to facilitate the development and testing of (early) intervention strategies to improve these outcomes for patients (at risk). We will establish a prospective observational cohort of 1-year AYA cancer survivors followed prospectively for 20+ years or until death. Within COMPRAYA we will pay special attention to AYA cancer patients living with life-limiting cancer: how does this diagnosis impacts normal (daily) life and what are the challenges they face within the health care system?

Sarcoma

Health-related quality Of Life in patients with advanced Soft Tissue sarcomas treated with Chemotherapy: the HOLISTIC study

Chemotherapy is the mainstay of treatment for patients with metastatic soft tissue sarcomas (STS). Treatment intent is usually palliative, aiming to improve symptoms, stabilize or reduce tumour-burden and extend life. Clinical trials for advanced STS have traditionally used radiological response, time to progression and survival as measures of treatment efficacy. Treatment decisions are often challenging due to modest response rates and potential adverse side-effects. Health-related quality of life (HRQoL) is at least equally- or more important than survival for many patients with advanced cancer. Systematically collecting HRQoL data during chemotherapy can provide greater insight into treatment efficacy from the patient perspective. The primary aims of this study are to evaluate HRQoL in patients with advanced STS treated with chemotherapy over time, explore the decision-making process and patient reflections post-treatment.

Quality of life and Experiences of Sarcoma Trajectories: the QUEST study

The prognosis of patients with rare cancers in general and sarcomas in particular suffers from delay in diagnosis. Routes to diagnosis have neither been studied in detail in larger numbers before, nor in a direct comparison between two countries with different health systems. Comprehensive assessment of diagnostic delays and its determinants, including demographic, clinical, psychosocial and health care system factors, is necessary to improve referral pathways and come to best practice and patient reported outcomes for sarcoma patients. This study aims to quantify diagnostic delay (including patient, general practitioner and system delay) and evaluates routes to diagnosis and referral to sarcoma expert centers in the Netherlands and England; to comprehensively evaluate risk factors of diagnostic delay; determine the association between diagnostic delay and outcomes (HRQoL, quality adjusted life years, patient satisfaction, TNM classification, time to local/distant relapse and overall survival); and to assess differences between both countries.
Incorporating the patient voice in sarcoma research: how can we assess health-related quality of life in this heterogeneous group of patients

There is limited high-quality HRQoL data in sarcoma. Previous studies have predominantly used generic HRQoL instruments, which cover some relevant issues but do not capture all the unique experiences of patients with sarcoma, and thus lack content validity. A sarcoma-specific questionnaire or validated items should be able to detect, with more sensitivity, side-effects, symptoms and problems with function that are particularly relevant to patients with different presentations and subtypes of sarcomas. Given the heterogeneity of the disease in terms of subtype, location, age and treatment, the development of a single sarcoma questionnaire is impossible. Therefore, we have started a study to develop standards of HRQoL measurements in the broad spectrum of patients with sarcoma. This is a collaborative project between the EORTC Quality of Life Group (QLG) and the EORTC Soft Tissue and Bone Sarcoma Group (STBSG).

Sarcoma Priority Setting Partnership Study

Research in sarcoma has historically been the domain of scientists and clinicians attempting to understand the disease in an effort to develop effective treatments. There is growing recognition of the importance of integrating patient perspectives (e.g., preferences, expectations, and expanded definitions of what constitutes “successful” outcomes) into clinical research. This evolution is reflected in the growth of patient-centered organizations and patient advocacy groups that seek to meaningfully integrate patients into the process of prioritizing research needs and creating alliances wherein patients and researchers can partner together to accomplish research goals. The group leaders are leading a project together with the patient advocacy group SPAEN aiming to identify the unanswered questions about sarcoma from patient, carer and clinical perspectives and then prioritise those that patients, carers and clinicians agree are the most important for research to address.

Selected publications

Husson O, de Rooij BH, Kieffer J, Derlemons S, Mols F, Aaronson NK, van der Graaf WTA, van de Poll-Franse LV. The EORTC QLQ-C30 Summary Score as Prognostic Factor for Survival of Patients with Cancer in the “Real-World”: Results from the Population-Based PROFILEs Registry. The Oncologist 2019

Imaging technology in radiation oncology

Dose painting for prostate cancer

The FLAME trial, a multi-center phase III randomized trial of dose escalation in prostate cancer using external-beam radiotherapy, will reach its primary endpoint of 5y biochemical failure free survival in 2020. In this study, a focal boost to the visible tumor inside the prostate to a dose of 95 Gy was given and compared to the standard treatment of 77 Gy to the gland. In total 571 patients have been randomized. To allow a pattern-of-failure analysis, we image patients with recurrent prostate cancer (PCa) with PET and/or multi-parametric (mp-)MRI to delineate local recurrences.

We trained a tumor probability model for recurrent cancer based on mp-MRI on a cohort of patients with recurrent PCa. The model was tested on another cohort of patients who received salvage prostatectomy, allowing for whole-mount section histological validation of the model predictions. We found an area under the curve of 0.77, and an accuracy of automatically derived tumor delineations that was comparable to delineations by trained radiologists.

Quantitative MRI for radiotherapy

While many imaging biomarker studies have been conducted to establish their prognostic value after radiotherapy, the vast majority of studies is small and the methodology between studies varies widely. On the Unity MR-linac system patients receive an MRI as part of each treatment fraction. Acquisition of quantitative MRI sequences is feasible without prolonging the treatment time. This makes the Unity system uniquely suitable for MRI biomarker studies for response assessment.

Within the MR-linac consortium, we established the feasibility of multi-parametric MRI on the Unity system, applying relaxometry, diffusion-weighted MRI and dynamic contrast-enhanced MRI during a radiation treatment session. The repeatability of these quantitative techniques was measured in a study with 4 centers and showed results consistent with diagnostic MRI scanners.

Within the MR-linac consortium we recently formed a collaborative working group with the aim of initiating MRI biomarker studies using consistent methods for quantitative MRI.

MRI-guided radiotherapy

The department of Radiation Oncology has now treated about 100 patients on the MR-linac. Studies to improve image quality are ongoing. The Umbrella-II trial has started, allowing us to investigate the feasibility of multiple techniques and software for MR-guided adaptive radiation therapy on the Elekta Unity MR-linac. We validated that the system for electronic portal imaging dosimetry is reliable for dose verification in patients.

The introduction of systems for MRI-guided radiotherapy has resulted in an increased interest in the use of MRI within all phases of radiotherapy. With a team of authors form various institutes, we published a book on MRI in radiotherapy, describing its use for planning, delivery and response assessment.

Image-guided radiotherapy of rectal cancer

To improve the results of radiotherapy for rectal cancer, we investigated various image-guidance strategies using brachytherapy and external-beam radiotherapy. We demonstrated that fiducial markers, implanted around the tumor, can serve as a surrogate for the tumor position despite small displacements of the markers relative to the tumor volume. In particular in patients with tumors located in the mid and upper rectum, this may result in a reduction of PTV margins when boosting the tumor.
Personalized treatment of urological cancers

Individualized therapy in bladder cancer: molecular targets and biomarkers
Bladder cancer is a common cancer, with a worldwide prevalence of 2.7 million patients. Although bladder cancer is often superficial at diagnosis, 30-40% of patients present with more advanced disease or progress to more aggressive disease. For patients with locally advanced or metastatic bladder cancer, platinum-based chemotherapy is the mainstay of treatment. Most patients will eventually die of their disease. In recent years, immunotherapy has shown to be active in bladder cancer. Impressive responses are seen, however only a minority of patients benefit from these treatments and it is unclear which patients respond. We aim to advance the development of a personalized approach to bladder cancer by exploring novel molecular targets, mechanisms of resistance and biomarkers that can guide systemic therapy. Our key focus is on the neoadjuvant setting, as we believe the highest gains in cure rates can be achieved here. Through the large number of bladder cancer patients, excellent multidisciplinary collaboration and broad availability of clinical trials with novel therapeutics at the NKI-AVL, discoveries can rapidly be translated into clinical trials.

Neoadjuvant treatment with combination Immunotherapy
In 2019, we completed the first cohort of the NABUCCO study. In this study, we investigate the feasibility of pre-operative ipilimumab/nivolumab in locoregionally advanced bladder cancer. 24 patients (14 cT3-4N0; 10 cN+) were enrolled, of whom 23 (96%) had resection <12 weeks from 1st cycle, meeting the primary endpoint. One patient, responding radiologically, had a delay in surgery because of immunotherapy-related (irAE) hemolysis. Grade 3/4 irAEs occurred in 54% of pts; 42% when excluding clinically insignificant lab deviations. 11/24 patients (46%) achieved a pCR. 3 additional pts (12%) had a small focus of noninvasive cancer at resection (2 CIS, 1 pTa), resulting in an overall rate of 58% (13/22) without invasive cancer cells at resection. In a subset of the remaining patients, clear signs of response were noted. Response was associated with PD-L1 positivity and massive infiltration of CD8+ T-cells in the tumor bed. Translational analysis of this unique set of 24 paired pre/post tumor samples is ongoing and a follow-up cohort of 30 patients, testing adjusted dosing schedules, has been initiated.

Genetic mechanisms of resistance to androgen receptor inhibitors
Novel androgen receptor (AR) inhibitors have clinical benefit in castration-resistant prostate cancer patients. Still, cancer cells eventually develop resistance to these therapies. We are investigating genetic resistance to these drugs through several means.

In a genome-wide CRISPR-Cas9 screen using LNCaP prostate cancer cells, loss of the co-repressor TLE3 conferred resistance to AR antagonists apalutamide and enzalutamide. Genes differentially expressed upon TLE3 loss shared AR as the top transcriptional regulator, and TLE3 loss rescued the expression of a subset of androgen-responsive genes upon enzalutamide treatment. Of this subset, GR expression was strongly upregulated upon AR inhibition in a TLE3-negative background. In another component of this project, clinical samples are being collected through the CPCT network and sequenced using WGS. In addition, plasma is collected to analyze development of genetic resistance throughout treatment.
Early stage technology assessment, operations research and cancer rehabilitation

Early Stage Technology Assessment
As healthcare costs are continuously increasing sustainability of future oncology services will inevitably become an issue. Gradually we can expect Health Technology Assessment (HTA) not only to be involved in policy and coverage decisions, but also in earlier stages in the translational research process.

From 2003 through 2010, an HTA study was conducted on the introduction of the 70-gene micro array test as a prognostic tool in the treatment of node negative breast cancer (the RASTER-study) and as a side study of the European randomized controlled trial (the MINDACT-study). We continued the series of Cost Effectiveness Analyses of this test with the results of the MINDACT trial. In 2015 an early stage technology assessment of TIL-adoptive cell technology in advanced melanoma started in a Coverage with Evidence Development project, as well as in 2017 for gastric HIPEC and on high-dose chemotherapy for triple negative breast cancer, and recently HIPEC for Ovarian cancer was accepted as well. The CED programs are coordinated by Valesca Retèl, and Joost Verbeek started a PhD project on the HTA in the ongoing CED programs. Valesca Retèl works as Senior Scientist 50% employed by NKI and 50% for the Health Technology and Services Research group at the University of Twente. She is primary investigator of the TANGO project in the Personalized Medicine program of ZonMw (HTA coordinator: Wim van Harten) on a specific HTA model regarding implementation of Whole Genome Sequencing. As part of Tango the work package on ethics and legal aspects, has shown mainly theoretical improvements so far.

Ann-Jean Beck works on HTA of various interventions in Head & Neck survivorship care. Melanie Lindenberg is evaluating early stage translational technologies in oncology including image guided interventions and the TIL study (ATMP). In the CERA-Pro study we compare historic cohorts of laparoscopic versus Robot Assisted Prostatectomies on cost-effectiveness in 2020. Danalyn Bing is active in the field of HTA in de-escalating treatment for early stage breast cancer and DCIS in the PRECISION consortium. Nora Franzen is working on research and modelling of alternatives for the present system of patents and pricing in expensive cancer drugs. In 2019 it was decided to host the European Fair Pricing Network in our group at the NKI.

Improving Oncology Services
Benchmarking is a possibly powerful tool to inform management on improvement options and patients on the quality of services. In 2013 the EU-subsidized project BENCH-CAN started to develop and pilot a European benchmarking system on Comprehensive Cancer Care. Anke Wind started a follow-up project on pathway benchmarking, including value-based health care principles. Bruno Vieira is conducting a PhD project on improving radiotherapy logistics by use of Operations Research methods. After developing a number of algorithms to improve various aspects of RT logistics, an implementation project was started which is innovative as most OR projects have shown mainly theoretical improvements so far.

Rehabilitation, Physical Activity and Cancer
As follow-up to the major ACARE2, Alpe d’Huzes funded KWF project Laura Kooij performs research into e-health interventions and survivorship care, such as IT-supported stepped care and video consultation.

A PhD student works at IQ-Healthcare in Nijmegen on the structured implementation of physical activity interventions for cancer survivors in ten Dutch hospitals and is expected to finalize her PhD in 2020.

The PABLO trial involves a web-based and blended intervention on physical activity in breast and prostate cancer survivors. Wim Groen is PI and PhD student Hester van de Wiel focuses on aspects that influence effectiveness from both physical as psychological perspective. Willeke Naaktgeboren performs a PhD project (KWF-funded) on cardiovascular status and late effects after physical activity interventions during chemotherapy in the PACT-PACES-HEART study.

Selected publications
Cancer epidemiology

The cancer epidemiology group is currently concentrating on two principal research lines: (1) the long-term health consequences of cancer treatment, particularly in terms of the risk of developing second malignancies or cardiovascular disease; and (2) the etiology of hormone related cancers, with a focus on breast and ovarian cancer. Special interest is in cancer etiology in BRCA1/2 families and late effects of ovarian stimulation for in vitro fertilization.

Late effects of cancer treatment

Now that curative treatment is available for a substantial group of cancer patients, it is increasingly important to evaluate how the occurrence of late complications of treatment affects their long-term survival. We aim to evaluate the risk of second malignant neoplasms (SMNs) and cardiovascular disease (CVD) after radiotherapy (RT), chemotherapy (CT) and immunotherapy for Hodgkin lymphoma (HL, n=8,500), non-Hodgkin lymphoma (n=3,200), testicular cancer (n=7,100) and breast cancer (n~23,000) over a period of up to 40 years after primary treatment.

In 2019 we reported on two studies assessing the risk of CVD after treatment for breast cancer and one study assessing subclinical cardiac dysfunction after anthracycline-chemotherapy for breast cancer.

In the first study we assessed the relationship between radiation dose to the heart and risk of myocardial infarction (MI). We included 183 patients diagnosed with MI after breast cancer and 183 matched controls with breast cancer, but no CVD. For all patients our Oxford colleagues (Prof. Darby’s group) retrospectively estimated mean heart dose (MHD). We found that the MI rate increased linearly with increasing MHD, with an excess rate ratio (ERR) per Gray of 8.4%. Patients who received >20 Gy MHD had a 3.4-times higher MI rate than non-irradiated patients. The ERRs were higher for younger women. As radiation oncologists nowadays strive for a much lower MHD, we expect lower MI risk among current survivors. The second study assessed the dose-response relationships between anthracyclines, trastuzumab, radiation dose and risk of heart failure (HF). HF was defined as either dilated cardiomyopathy or HF with reduced ejection fraction (LVEF<50%). 102 HF cases and 306 controls were included. HF risk was most strongly increased among patients treated with anthracyclines and trastuzumab compared to no chemotherapy (Relative risk=35). HF risk increased linearly with increasing anthracycline dose (ERR=1.5% per mg/m²). MHD was alone associated with HF risk among anthracycline-treated women. Compared to women with MHD <10 Gy and no anthracyclines, women with a MHD <10 Gy and anthracyclines had a RR of 6.3, while women with MHD >10 Gy and anthracyclines had 12.4-fold increased risk.

These results emphasize the need to evaluate preventative strategies. The prevalence of subclinical cardiotoxicity in young breast cancer survivors treated with anthracyclines is currently unknown. Subclinical measures of left ventricular dysfunction are needed to early identify patients at increased risk of symptomatic cardiac disease. Echocardiography-based cardiac deformation imaging may be a promising technique to identify survivors at high risk of cardiac disease.

In the HARBOR study, we therefore assessed subclinical cardiotoxicity among breast cancer patients diagnosed at ages 40-50 years, who were 5-12 years after initial treatment. At clinic visit, transthoracic tissue Doppler echocardiography was performed and global longitudinal strain (GLS) was measured.

In total, 569 women were included, of whom 313 received anthracycline-chemotherapy and 256 were not treated with anthracyclines. Median ages at breast cancer diagnosis and at cardiac assessment were 46.7 and 55.5 years, respectively. Anthracycline-treated patients more often had low LVEF (10% versus 4%), impaired GLS (34% versus 27%) and elevated NT-proBNP (23% versus 8%) compared to patients not treated with anthracyclines. 54% of anthracycline-treated women had at least one indicator of subclinical cardiotoxicity. Both GLS and LVEF worsened in a linear fashion with increasing cumulative anthracycline dose; GLS was worse for patients who had received left breast irradiation. Patients who received 241-300mg/m² anthracycline had the highest probability to have a NT-proBNP>125ng/L compared to patients without anthracyclines (RR 3.3). The study shows that a substantial proportion of young survivors treated with anthracyclines has signs of subclinical cardiotoxicity. GLS may be a promising measurement to identify survivors at high risk of...
cardiac disease but we plan to perform longitudinal assessment to determine its precise prognostic value.

Etiology of hormone-related cancers

In our nationwide cohort study among families tested for a BRCA1/2 mutation (HEBON study; 48,757 relatives, including 41,707 women (6,293 BRCA1/2 mutation carriers) and 6,508 men (including 1,821 BRCA1/2 mutation carriers), we are studying whether 1) hormonal/lifestyle factors modify cancer risk in BRCA1/2 families, and 2) common genetic alterations are associated with the risk of breast cancer among BRCA1/2 carriers.

To improve breast cancer risk prediction for BRCA1 and BRCA2 mutation carriers, we investigated hormonal/lifestyle risk factors of breast cancer as established in the general population. We coordinated an international cohort consortium, including HEBON (5,983 BRCA1/2 mutation carriers), to examine reproductive risk factors, alcohol and smoking using data of 5,707 BRCA1 mutation carriers and 3,525 BRCA2 mutation carriers in Cox proportional hazards models. For BRCA1 mutation carriers, there was no overall association with parity when compared with nulliparity. However, relative to being nulliparous, uniparous BRCA1 mutation carriers were at a 69% increased BC risk in the prospective cohort. Relative to being uniparous, an increasing number of full-term pregnancies was associated with a decreasing breast cancer risk. An increasing duration of breastfeeding was associated with decreasing risk of breast cancer as well. For BRCA2 mutation carriers, being parous was associated with a 33% increase in BC risk and there was no apparent decrease in risk associated with multiparity except for the 28% decreased risk of women with 4 or more full term pregnancies. These findings suggest differential associations with parity between BRCA1 and BRCA2 mutation carriers, with higher risk for uniparous BRCA1 carriers and parous BRCA2 carriers.

When compared to parous women who never smoked, smoking for more than five years before a first full-term pregnancy (FFTP) was associated with a 19%-36% increased risk for BRCA1 mutation carriers and a 25%-30% increased risk for BRCA2 mutation carriers. Similar associations between early smoking and breast cancer have been found in the general population. For both carrier groups, alcohol consumption was not associated with BC risk, although the weakly increased risk as known for the general population could not be excluded.

In HEBON we investigated the breast cancer-specific mortality reduction for BRCA1/2 mutation carriers undergoing a bilateral risk-reducing mastectomy (BRRM) or breast surveillance. During a mean follow-up of 10 years, 722 out of 1712 BRCA1 (42%) and 406 out of 1145 BRCA2 (35%) mutation carriers underwent BRRM. For BRCA1 mutation carriers, we observed 20 breast cancer deaths in the surveillance group, and 1 breast cancer death after BRRM (HR 0.06). Breast cancer-specific survival at age 65 was 93% for surveillance and 99.7% for BRRM. For BRCA2 mutation carriers more follow-up is needed.

The aim of the Nightingale Study, a cohort of 59,947 nurses, is to assess the association between shift work and risk of breast cancer. The first prospective analyses are ongoing using 626 incident cases of breast cancer identified through a recent linkage with the Netherlands Cancer Registry.

The aim of the nationwide OMEGA study is to assess risk of hormone-related cancers after fertility treatment in a nationwide cohort of 30,800 women treated with in-vitro fertilization (IVF) 1983-2001 and 10,000 women treated with subfertility treatments other than IVF. Analyses on the effect of IVF treatment on risk of ovarian cancer are ongoing, as are analyses on childhood cancer in an expanded cohort of 30,000 children conceived by intracytoplasmic sperm injection or IVF compared with 13,761 children that were naturally conceived.

Selected publications

Myocardial dysfunction in long-term breast cancer survivors treated at ages 40-50 years. European Journal of Heart Failure. 2019

Data from the OMEGA study showed that among testicular cancer patients, exposure to anthracyclines was associated with an increased risk of mortality from cardiac disease but we plan to perform longitudinal assessment to determine its precise prognostic value.

Associations between cumulative anthracycline dose and left ventricular ejection fraction (LVEF) (A) and global longitudinal strain (GLS) (B). Bold lines depict linear associations and regular lines depict 95% confidence intervals (CI). Associations can be described by LVEF = 59.9-0.40 per cycle of 60 mg/m2 anthracycline dose; GLS = -18.7 + 0.23 per cycle of 60 mg/m2 anthracycline dose; NT-proBNP = 72 + 7.2 per cycle of 60 mg/m2 anthracycline dose.
Switching genes on or off and keeping them in that state involves packaging of the genome by wrapping it around histone proteins. Histones carry different chemical modifications that affect the packaging of DNA by epigenetic mechanisms. The Van Leeuwen lab studies mechanisms and principles of epigenetic regulation using innovative proteomic, genetic, and (epi)genomics approaches. Our general strategy is to develop new tools and technologies, most recently two DNA-barcoding approaches to discover epigenetic regulators and to decode proteomes of specific genomic loci (figure 1). These innovations enable us to explore new areas of chromatin biology and to dissect specific chromatin processes in high molecular detail. We take advantage of yeast as a powerful model system. In parallel we are developing tools in mice and cultured human cells using CRISPR-Cas9 to translate our findings to mammals.

Function and regulation of histone methylation

Errors in chemical modifications of histones can lead to changes in gene expression and cancer. We previously discovered the histone methyltransferase Dot1, which methylates lysine 79 of histone H3 (H3K79). This modification influences gene regulation and oncogenic transformation in mammals. A major goal of our research is to understand the regulation of H3K79 methylation and its function in gene control. We recently discovered a conserved regulatory mechanism of Dot1 in yeast and DOT1L in mouse T cells with relevance for lymphomagenesis (figure 2). We are currently studying DOT1L in lymphoma and in epigenetic control of normal T- and B-lymphocyte fate and differentiation.

Decoding chromatin proteomes by DNA sequencing

Gene regulation involves interactions of specific genomic loci with many different proteins. How these interactions are orchestrated at any given location over time is largely unknown because systematically measuring protein-DNA interactions at a specific locus in the genome is challenging. To address this problem, we developed DNA barcode-based Epigenetics technologies in yeast. Epi-Decoder, a method orthogonal to proteomics, enables decoding of local chromatin proteomes and has identified hundreds of chromatin-interacting proteins at actively transcribed barcoded loci (figure 1). Epi-ID, which is aimed at identifying regulators of known chromatin marks or chromatin-binding proteins, recently led to the discovery that H3K79 methylation is regulated by a histone deacetylase in yeast and mice (figure 2).

Together, the aim of our studies is to provide a deep molecular understanding of the dynamics and inheritance of protein-based epigenetic information in dividing cells and the impact of chromatin-based information on gene regulation in normal development and disease.
Role of polycomb-group genes in transcriptional repression, stem cell fate and tumorigenesis

We study transcriptional repression by Polycomb-group (PcG) protein complexes, and the effects of deregulation of PcG genes on development, cell cycle control, cancer and stem cell maintenance. For this a range of conditional polycomb transgenic and knockout mouse models are used in combination with specific cancer-predisposing mutations mimicking closely cognate human cancers. Recent focus is on using CRISPR screens in selected polycomb-dependent tumor models to uncover new synthetic lethal interactions and vulnerabilities.

Context-dependent roles of PRC2 in tumorigenesis

We recently demonstrated an oncogenic role for Ezh2 (histone methyltransferase and catalytic subunit of Polycomb repressive complex 2 (PRC2) in Kras driven non-small cell lung cancer. However, prolonged inactivation of PRC2 in aggressive Kras;P53 mutant NSCLC uncovered a profound tumor suppressive function for PRC2 loss resulting in tumor cell identity change, driven by inflammatory responses and EMT. This resulted in new vulnerabilities that can be exploited using combined inhibition of PRC2 and inflammatory responses. Ezh2 is overexpressed in glioblastoma multiforme (GBM) suggesting a possible oncogenic role. In a mouse model for GBM we demonstrated using inducible Ezh2 shRNAs and specific Ezh2 inhibitors that short-term intermittent inhibition indeed slowed tumor growth and prolonged survival. However, prolonged Ezh2 inhibition caused a robust switch in cell fate, resulting in enhanced proliferation and invasion, enhanced DNA repair and activation of a stem cell pluripotency network, resulting in therapy-resistant aggressive GBM. This illustrates that dosing of Ezh2 inhibition is critical, and Ezh2 inhibitors need to be used with caution.

We are using these GBM models with CRISPR screens to find more effective combination therapies.

Modeling and investigating BAP1-deficient malignant mesothelioma

Besides PRC2, also a variety of PRC1 complexes contribute to dynamic polycomb repression. These PRC1 complexes differ in subunit constitution but all harbor a critical E3 ubiquitin ligase monoubiquitylates H2A at K119. This mark can be removed by the de-ubiquitylase BAP1. Interestingly, BAP1 is a prominent tumor suppressor that is frequently mutated in malignant mesothelioma (MM), uveal melanoma and clear cell renal cancers. Together with the Berns lab we have generated a conditional mouse model that closely mimics BAP1-deficient human MM. Interestingly, BAP1 deficient MM shows increased polycomb repression and recruitment and dependency on PRC2 and Ezh2. We are using this model and tumor cell lines to screen for the underlying cancer relevant polycomb targets and pathways. This model is also used to screen for new vulnerabilities and targeted combination therapies.

Genome wide Chromatin profiling using a transposon-reporter system

In collaboration with the Wessels and van Steensel labs we have developed high-throughput chromatin profiling by using Thousands of PiggyBac transposon-based Reporters In Parallel (TRIP). The power of TRIP lies in combining different (inducible) transcriptional reporters in transposons with random barcoding and high throughput sequencing to study position effects and influences of local chromatin and epigenetic states on reporter expression. As an example, we recently used TRIP to test the genome-wide influence of epigenomic context on CRISPR-Cas9 activity.
Intravital Microscopy of cancer plasticity

Our laboratory studies the identity, behavior, and fate of cells that drive tumor initiation, progression, metastasis and the development of therapy resistance. These population of cells are difficult to study since they are rare, and their behavior (e.g. migration) and traits (e.g. stemness) change over time. To be able to study these dangerous cells, we have developed intravital microscopy techniques to visualize individual cells in real-time in living animals, often referred to as intravital microscopy. In order to trace specific cell types (e.g. stem cells, EMT cells, proliferative cells) within the primary tumor and at distant organs for several weeks, we combine genetic mouse models for breast and colorectal cancer with fluorescent mouse models in which identity, behavior or lineage is labeled by fluorescent colors.

Tumor initiation and progression revealed at the single cell level

Adult stem cells (SCs) are long-lived, able to self-renew and differentiate into specialized cells to drive tissue homeostasis and tissue repair, and in addition are considered to be crucial for the initiation of tumors. Using intravital microscopy, we have identified the behavior of the adult stem cells that drive the development and homeostasis of intestinal and breast tissues. By developing new fluorescent mouse models, intravital microscopy, mathematical modelling, and single cell sequencing we are currently investigating how the dynamic behavior and fate of these SCs can be manipulated to reduce the initiation and progression of colon and breast tumors. For example, we have shown that the competition between mutant and wild-type stem cells can be enhanced by diet (e.g. calorie restriction). Moreover, we investigate if and how benign breast lesions (DCIS) can progress to malignant lesions (IDC).

Metastasis and minimal residual disease revealed at the single cell level

Only a minority of cells within a tumor acquire traits and are surrounded by microenvironments that enable them to resist therapy, gain long-term clonogenic capacity, and/or to disseminate and form distant metastases. We have established genetic colorectal and breast cancer mouse models in which cells that possess or acquire these states, such as stemness and epithelial-to-mesenchymal-transition (EMT), are fluorescently marked. We are currently filming these cells during the metastatic cascade and during and after therapy. Moreover, we try to identify the tumor microenvironment that induces the deleterious cellular states that cancer cells can acquire, and how these states and microenvironment be manipulated to inhibit metastases and the recurrence of therapy resistant tumors.

Cellular mechanisms that drive therapy resistance

The cellular composition of tumors is highly heterogeneous, and can have a large influence on how tumors respond to therapy. We have related the cellular composition of tumors in breast cancer patients to their response to different therapies and showed that the cellular composition can be used to select the most optimal treatment. In mouse models, we are currently dissection the cellular and molecular explanation for these observations. Combined with this work we hope to identify new biomarkers for personalized medicine.
Chromatin genomics

Gene expression is controlled by promoters, enhancers and other regulatory elements, and by packaging of DNA into chromatin. In addition, the spatial organization of interphase chromosomes is thought to be of key importance for genome expression and maintenance. In order to gain insight into these fundamental processes, we develop and apply new genomics techniques to reveal the interplay of chromatin and regulatory elements, and to study the architecture of chromosomes inside the nucleus.

Nuclear lamina interactions and gene regulation

We previously found that the genome of mammalian cells is associated with the nuclear lamina through ~1,300 large Lamina-Associated Domains (LADs). By gene expression analysis and systematic promoter transplantation approaches we identified hundreds of genes that are repressed inside LADs. Another set of genes is much less sensitive to the LAD context. We found that these differences are in part encoded in the promoters, and in part due to local variation in the repressive potential of LADs. Conversely, we found that forced activation of genes inside LADs can lead to local detachment of these genes from the lamina. This detachment is restricted to the activated gene plus several tens of kilobases of flanking DNA.

Furthermore, we have improved the temporal resolution of the DamID mapping method. Using this approach, we have studied the dynamics of LAD - lamina interactions during the cell cycle. This revealed that these interactions are mostly established in the first hour after mitosis with a preference for distal chromosome regions, and show a transient increase during DNA replication.

Finally, we have begun to map association of the genome with other nuclear compartments, such as nucleoli and pericentric heterochromatin domains. This extends our understanding of the dynamic spatial architecture of chromosomes in relation to gene regulation.

Genomics tools to study regulatory elements

We previously developed SuRE, a genome-wide method to study how regulatory elements are functioning. We recently applied SuRE to study the impact of human genetic variation on gene regulation. Among ~6 million single-nucleotide variants we identified ~30,000 that alter the activity of enhancers and promoters. These data can help to overcome the limited mapping resolution of large genome-wide association studies, to pinpoint genetic variants responsible for various human traits and predisposition to disorders such as cancer. Furthermore, we are developing new approaches to study the communication between enhancers and promoters. How enhancers ‘choose’ their target promoter(s) is still poorly understood. We have begun to dissect this logic by testing thousands of enhancer-promoter pairs in a multiplexed reporter assay. This will provide insight into the rules that determine compatibility of enhancers and promoters. In addition, we are developing a method to disrupt the physical interaction (looping) of selected enhancer-promoter pairs. This method is based on the parMRC segrosome, which can push apart two DNA molecules in prokaryotes. We are introducing this system in mammalian cells and test its ability to physically disrupt enhancer-promoter pairing and other genomic loops. Together, these approaches provide insights into fundamental principles of gene regulation, which are needed to better understand defects in gene expression in cancer.
Glioblastomas and the quest for better therapies

Glioblastoma (GBM) is a uniformly fatal brain tumor. The location and invasive nature of GBM renders complete surgical resection impossible, side effects prohibit the delivery of curative doses of radiotherapy (RT) and the blood-brain barrier (BBB) hinders the adequate delivery of drugs. Our mission is to develop more effective pharmacotherapies for this disease.

We have made further progress with our research concerning so called multi-targeted combination therapy. GBM is characterized by over-activation of the PI3K, MAPK and CDK4/6-Rb pathways, being a major reason why single-targeted therapies are not very efficacious. We have observed meaningful responses in GBM models with a combination of three drugs targeting these pathways: buparlisib, PD0325901 and palbociclib. The drugs were given at dose levels that resulted in clinically relevant plasma levels and were well-tolerated. Importantly, sustained exposure to this combination of inhibitors not just inhibits proliferation, but also triggered cells to undergo senescence, which was observed both in vitro and in vivo.

The transport proteins ABCB1 and ABCG2 are important components of the BBB and restrict the brain penetration of many drugs. Our aim is to repurpose elacridar, a dual ABCB1/ABCG2 inhibitor, as a platform to improve the drug delivery to the brain. To inhibit ABCB1/ABCG2 at the BBB, the plasma levels should be sufficient. Unfortunately, the bioavailability of elacridar is restricted by poor solubility and first-pass metabolism. We have now increased the metabolic stability of elacridar by replacing hydrogens for deuterium at selected sites in the molecule. In rat, which is a more predictive species than mice, this resulted in a 30-40% increased systemic exposure.

The groups of van Tellingen and Borst have intensified their collaborations on the treatment of GBM, following the relocation of the Gerben Borst group to H3. We are conducting studies with tumor Treating Fields (TTFields); a novel treatment modality for GBM. TTFields is perceived as a black box therapy, especially since the mechanism of action is largely unknown. Interestingly, we observed an accumulation of cells in G2 when synchronized cells were exposed to TTFields, which did not occur when combined with a Wee1 or Chk1 inhibitor. When combining TTFields with a G2 checkpoint inhibitor we observed a striking synergy in proliferation and colony forming assays. We are now using live cell imaging to achieve a more in-depth insight into the kinetics of cell cycling and cell fate and will further investigate if this boosting of TTFields can be confirmed in in vivo models.

These last years, we have been working on the concept of “mitotic enrichment” to enhance the efficacy of radiotherapy (RT) in GBM. Dividing tumor cells are most vulnerable to RT when in mitosis and much less in other phases of the cell cycle. However, only a minor fraction of cells will be in mitosis when irradiating an asynchronous population of tumor cells. Combination of RT with mitotic inhibitors such as vincristine have been tried in the past, but were unsuccessful due to unacceptable side effects and poor blood-brain barrier (BBB) penetration. We have identified better candidate drugs for this mitotic enrichment strategy. These have already been clinically tested, but abandoned due to insufficient single-agent antitumor efficacy. One of these compounds is an oral drug, has sufficient BBB penetration and can safely be given daily at a dose level providing mitotic enrichment of tumor cells in the brain. This PK-PD profile matches perfectly with the standard daily RT of GBM with dosing of our drug 8 h prior to RT. We have demonstrated efficacy in experimental GBM models and are currently confirming these finding in other clinically relevant models. Based on these results we are planning to initiate a clinical trial.
Personalized medicine by employing tumor organoids and genomics

Emile Voest’s laboratory group is devoted to bringing personalized medicine to patients and is focused on mechanistic studies and identification of biomarkers that predict treatment efficacy. The results from these studies are subsequently translated in clinical studies. These translational approaches are performed across tumor types with emphasis on epithelial tumors.

Genomics, immunotherapy and (tumor)organoids

In 2019 we published several papers in high ranking journals that were the fruits of a long-standing vision on creating a data base of clinical and genomic data of patients with metastatic cancer. By employing whole genome sequencing we have not only generated significantly more insight in the genomic landscape of several cancer types but also created treatment opportunities for patients with cancer. The Drug Rediscovery Protocol, in short the DRUP study, is now a brand name for defined off label use of approved drugs. In this multi-pharma (12 companies to date), multi-drug (27 drugs to date), multi-center (37 centers to date) study we now have created a platform through which patients can get access to approved medication based on a genomic profile coupled to a tumor type. These drugs are provided for free by pharma and the number of drugs and hospitals are expanding. At the closure of 2019, we have received and reviewed >1150 patient submissions of which 520 patients are actively treated with targeted agents. We have encountered a stable clinical benefit ratio (defined as complete or partial remission or stable disease >16 weeks) of ~30%. This is surprisingly high and reflects that patient selection is key in such a personalized medicine approach.

A true highlight of the DRUP approach is the agreement with the Dutch Healthcare Institute and national health care insurers to reimburse on a pay for performance basis successful cohorts of DRUP, starting with MSI tumors treated with nivolumab. This model is now mentioned as an example of more sustainable drug development (by parliament, regulatory bodies and pharma).

Taken together, WGS is here to stay and I am very excited that, in collaboration with Hartwig Medical Foundation, in 2019 all patients of the NKI had access to WGS, an unprecedented step in the implementation of precision medicine.

Immunotherapy

Several trials and translational studies have continued to accrue patients in 2019. The NICHE trial is a unique study that investigates the use of neoadjuvant immunotherapy in colorectal cancer. First results are now coming in which allows the assessment of safety and initial outcome. We also invested a great deal of time and energy in obtaining paired biopsies from tumors such as melanoma or lung patients treated with e.g. immunotherapy. This is extremely challenging but we feel that (with the help of the Nefkens Foundation) this will be very rewarding in better understanding resistance pathways.

Organoids as a tool to personalize medicine

In 2019 we have published our autologous T cell-organoid protocol. This will facilitate researchers to use this innovative platform. Next, we have completed several clinical trials to investigate the value of these organoids as predictive tools. These trials included validation studies in patients with chemotherapy and targeted therapy in lung and colorectal cancer (TUMOROID), organoid-guided experimental treatment studies (SENSOR) and more. We have now shown that tumor organoids can predict nonresponsiveness to irinotecan-based chemotherapy but not to oxaliplatin-based treatment. Unfortunately, studies with breast cancer organoids have been terminated due to very slow growth rate and success rate to create organoids of biopsies (44%). We also stopped using lung cancer organoids because of the potential overgrowth of normal epithelial organoids.

In summary, my group is strongly committed to develop a better understanding of individual tumors and their responsiveness to immunotherapy and targeted therapy.
Molecular pathology of breast cancer

Breast cancer is a heterogeneous disease. Accurate pathological and molecular analyses are key to make accurate predictions regarding prognosis and response to treatment. We aim to find, validate, and implement biomarkers to optimize precise and personalized predictions regarding prognosis and treatment response.

Finding the balance between over and undertreatment of breast Ductal Carcinoma In Situ (DCIS)

Ductal carcinoma in situ (DCIS) now represents 20-25% of all breast neoplasia due to large-scale detection by population-based breast cancer screening programs. Uncertainty as to which DCIS lesions will progress to invasive drives massive overtreatment of this often harmless disease. Distinguishing DCIS that may progress to lethal disease from the majority of harmless DCIS is therefore an urgent need to save thousands of women with low risk DCIS the burden of radical treatment without any survival benefit. Therefore, we started the PRECISION (PREvent ductal Carcinoma In Situ Overtreatment Now) initiative in 2015, to distinguish harmless DCIS from hazardous DCIS. In 2017 the PRECISION team received the Cancer Research UK Grand Challenge Award, co-funded by the Dutch Cancer Society.

We aim to reduce the burden of overtreatment of DCIS (surgery, radiation therapy, hormonal therapies) through the development of novel tests that promote informed and shared decision-making between patients and clinicians, without compromising the excellent outcomes for DCIS management presently achieved. We collected a nation-wide, population-based cohort of about 20,000 women treated for primary DCIS between 1989 and 2015 in the Netherlands with long-term follow-up. Within this cohort we assess which factors of the patients, the DCIS lesion and its treatment relate to the risk of developing recurrences in the same breast. We showed that women with HER-positive and overexpressed COX-2 had a fourfold increased risk of developing a subsequent invasive breast cancer. In a comprehensive multiplex immunohistochemistry study, no differences were found in the density, number and type of periductal lymphocytes between DCIS in patients developing subsequent invasive breast cancer compared to those that did not. Yet, we did find a higher number of these cells for ER-positive, HER2-negative, and/or higher grade DCIS. We are now continuing our efforts to unravel DCIS progression. In addition, the prospective active surveillance LORD-trial to test safety of active surveillance for low risk DCIS is ongoing.

Development of clinically useful molecular tests to predict chemotherapy response of primary breast cancers

We continued our work to identify predictive biomarkers for neoadjuvant chemotherapy treatment in breast cancer (collaboration with Lodewyk Wessels and Gabe Sonke). An extensive molecular characterization of matched pre- and post-treatment samples of 22 luminal and triple negative patients showed a multitude of differences between pre- and post-chemotherapy samples, revealing a wide range of potential, distinct mechanisms of resistance. Among these, proliferation- and stroma-related genes play a prominent role. The large degree of heterogeneity in possible resistance mechanisms makes effectively targeting chemotherapy resistant cells challenging. New projects are ongoing to unravel treatment resistance mechanisms in HER2 positive breast cancer. In addition, we are focusing on liquid biopsies to diagnose breast cancer and predict treatment benefit.
Computational cancer biology

We aim to quantify and understand treatment response in model systems and human patients. To this end we focus on three themes. In Theme 1, Cell decisions, we employ single cell profiling and (combinatorial) perturbation techniques to infer the regulatory machinery employed by (cancer) cells to regulate the transitions between different cellular states such as proliferation, senescence and apoptosis. Theme 2, Cell maps, aims to map the regulatory circuitry in (cancer) cells by performing network inference on large scale screens combined with experimental validation. Finally, in Theme 3, Treatment response, we aim to understand treatment response by performing analyses on pre-treatment and on-treatment measurements and employing these insights to build better predictors of treatment response. Below we present some exemplary projects from these themes.

Modeling mTOR inhibitor response by multi-omics integration

Invasive lobular carcinoma (ILC) is the second most common type of breast cancer. Recent studies revealed that PI3K/AKT/mTOR signaling is frequently activated in ILC. Therefore, inhibition of this pathway is the promising therapeutic strategy. However, prolonged inhibition of this pathway results in resistance. We are investigating such resistance mechanisms using an in-vivo mouse model of human ILC: K14Cre; CDH1F/F;P53F/F. With this mouse model, we are tracking transcriptional and proteomic dynamics upon the treatment of dual mTORC1/2 inhibitor, AZD8055, from pre- and post-treatment tumors that are sensitive and resistant to AZD8055. We found that the immune response was initially induced by treatment, while the tumors lost this response when they acquired resistance. Interestingly, we also found that a subset (43%) of resistant tumors showed high expression of Myc, mainly driven by genomic amplification of Myc. These tumors had distinct molecular profiles, showing stronger downregulation of immune response and stronger upregulation of proliferation. Additionally, a recurrent focal amplification of Chromosome 2 appears in 24% of the resistant tumors, and is mutually exclusive with Myc activation, indicating an independent mechanism. We expect that these leads will provide avenues to overcome intrinsic and acquired resistance to mTOR inhibitors in ILC tumors.

PRECISE: Transfer of response prediction from cell lines to tumors

Cell lines have been used extensively to understand the molecular underpinnings of cancer. However, important differences with human tumors hamper the translation of findings from cell lines to the human setting. In particular, transfer of cell line derived drug response predictors to the clinical setting remains a challenging task. As very large drug response datasets have been collected for cell lines, and patient drug response is sparse, there is an urgent need for methods that can achieve this transfer efficiently. We developed PRECISE, a novel methodology based on domain adaptation, that captures the common information shared amongst cell lines and human tumors in a consensus representation. Employing this representation, we train predictors of drug response on pre-clinical data and apply these predictors to stratify human tumors. We show that the resulting domain-invariant predictors show a small reduction in predictive performance on cell lines, but, importantly, reliably recover known associations between independent biomarkers and their companion drugs on human tumors.
Improving treatment responses in head and neck cancer

Novel treatments to improve clinical outcome in head and neck cancer

Head and neck cancer can be categorized by two distinct aetiologies: tobacco and/or alcohol use in combination with genetic predisposition, or infection and activity of viral oncogenes. Head and neck cancers are characterized by a microenvironment invaded by various immune cells (see figure) that each may play a role in treatment response and resistance. Despite intensive treatment regimens of surgery w/wo (chemo-)radiotherapy (RT), prognosis in our patients remains relatively poor.

To improve clinical outcome in our patients, my group designed the phase Ib/II IMCISION trial (EudraCT 2016_002366_31) concerning toxicity and feasibility of T-cell checkpoint inhibitors nivolumab w/wo ipilimumab immunotherapy neoadjuvant to standard of care (extensive surgery) in patients with advanced disease. This trial has been completed end of 2019, and we are currently analysing the data.

Also, we identified a promising novel lead compound that showed tumor selective radiosensitizing activity in vitro, while having no effect on cell viability in the absence of irradiation. The target was found to be ATM, part of the DNA repair pathway. We are currently chemically optimizing the lead compound in collaboration with the Division of Chemical Immunology of Prof Neefjes and Prof Ovaa in het LUMC in Leiden, the Netherlands, and should define better options for radiotherapy in our patients.

In 2018 we have also completed a phase 1 trial providing trans-tympanic administration of an oto-protective drug to rescue patients from irreversible hearing loss due to high-dose cisplatin anti-cancer treatment. The idea is that the rescue drug will diffuse from the middle ear to the inner ear via the round window. In this phase 1 trial we could safely administer the drug in all patients. Moreover, to our great enthusiasm, our protocol and mode of administration of the drug indeed resulted in successful oto-protection in single patients.

Selected publications

Tumor microenvironment of oropharyngeal cancer. Various coloured cells represent the various immune cells that surround and invade the squamous cell carcinoma (courtesy Bianca Cioni, Jan Paul de Boer, André Borgman, Erik Hooijberg).
Hormones in cancer

Hormonal therapies represent the first and most-successful targeted therapeutics in cancer. In most breast and prostate cancers, hormonal therapy forms the very backbone of systemic treatment, both in adjuvant and metastatic treatment. However, resistance to hormonal intervention is common, and many patients relapse despite treatment.

We study hormonal action in multiple tumor types; breast cancer, prostate cancer, endometrial cancer and lung cancer. Our ultimate goal is to better understand hormonal signaling and elucidate therapy resistance in cancer, contributing to personalized clinical decision-making, optimized treatment selection, identification of novel therapeutic options and minimized over-treatment. By enhancing our knowledge on steroid hormone receptor function in cancer and elucidating mechanisms of treatment resistance, our research will be instrumental to fully tailor endocrine treatment selection in the future, selecting the most-suitable therapy for the individual patient.

Glucocorticoid Receptor signaling axis in lung cancer

As hormone receptors are expressed in a wide spectrum of tumor types, we explored wider applicability of hormonal therapies beyond their regular use. We found expression of the glucocorticoid receptor (GR) is associated with favorable outcome in lung cancer patients, with activation of this receptor inducing cellular quiescence in a subset of lung cancer cell lines (Prekovic et al., submitted). By integrating functional genomic studies on GR activity, transcriptomics and CRISPR knockout methods, we identified GR-controlled CDKN1C expression as the key-driver to dictate drug response. A small compound screen revealed a novel drug-drug synergy between GR activation and IGF1R inhibition to eradicate lung cancer cells. In vivo studies are ongoing to explore the therapeutic potential of this novel drug-drug combination in lung cancer treatment.

Genome-wide Androgen Receptor profiling in prostate cancer

Prostate cancer is the second-most prevalent malignancy in men, in which the Androgen Receptor (AR) is considered the sole-driving factor in cancer development and progression. In collaboration with the lab of Mathieu Lupien (Princess Margaret Cancer Centre, Toronto), we integrated AR chromatin interactome analyses in healthy prostate tissue and primary tumors with somatic mutation data and prostate cancer risk SNPs. Both somatic and germline variants were enriched in the tumor-specific AR DNA interactome, shared with other prostate cancer driving transcription factors, including FOXA1 and HOXB13. While most variants did not functionally alter AR activity, convergence of somatically acquired and germline risk factors was observed at specific enhancer elements that drive tumor progression (Mazzrooei et al., 2019). We are currently performing analogous studies in two Phase II clinical trials, in which patients receive AR-targeting Enzalutamide treatment in the neo-adjuvant (DARANA; Dynamics of Androgen Receptor Genomics and Transcriptomics After Neoadjuvant Androgen Ablation. NCT03297385. PI: Henk van der Poel) and metastatic (PRESTO; Predicting Response to Enzalutamide as a Second Line Treatment for Metastasized Castration Resistant Prostate Cancer Patients: a biomarker design study. PI: Andre Bergman) setting, aimed elucidate the cellular plasticity of AR function in prostate cancer and treatment resistance, and to better understand the impact of DNA mutations on transcriptional regulation in cancer.

Glucocorticoid Receptor signaling axis as therapeutic inroad for lung cancer treatment.

A. GR expression is correlated with lung cancer patient outcome.
B. GR activation induces cellular quiescence in vitro (left) and in vivo (right).
predictive markers. The relevance of these steroid concentrations as prognostic and outcome predictors in (advanced) breast and prostate cancer steroid hormone signalling pathways is important. At the department of clinical chemistry and laboratory medicine (CCLM), research is conducted on the role of steroid hormones in tumour growth and on developing state-of-the-art steroid analysis based assays for amongst others testosterone and estrogens to offer superior analytical performance and enable studying the role of these hormones in breast and prostate cancer steroid hormone signalling pathways. Most systematic research on the role of steroid hormones in tumour growth is based on plasma analysis. However, the lack of satisfactory analytical performance of state-of-the-art steroid analysis based assays for amongst others testosterone and estrogens has led to the development of technologies such as liquid biopsy. Liquid biopsy is increasingly used in clinical practice. Such an approach to cancer diagnostics is based on the detection of ctDNA in bodily fluids. ctDNA is shed into bodily fluids from tumour cells and offers the possibility to study the tumour cell in situ. The liquid biopsy is particularly useful for studying the tumour in situ for patients with progressive disease under TKI treatment. Liquid biopsy can be performed from blood or urine samples, and the ctDNA can be analysed using state-of-the-art sequencing technologies. This approach allows for early detection of immunotherapy non-responsiveness and is an important focus of the department. The role of liquid biopsy in (advanced) breast and prostate cancer steroid hormone signalling pathways is important. At the department of clinical chemistry and laboratory medicine, research is conducted on the role of steroid hormones in tumour growth and on developing state-of-the-art steroid analysis based assays for amongst others testosterone and estrogens to offer superior analytical performance and enable studying the role of these hormones in breast and prostate cancer steroid hormone signalling pathways.
Our department actively participates in several hospital-wide research lines. We introduce new techniques, facilitate their implementation, and advise on regulatory issues. A mechanical workshop is part of our department, where we build, adapt, and design devices used in several clinical and pre-clinical research projects.

Our expertise and skills:

- MR physics: develop, implement, and evaluate new MRI sequences for biomarkers and image-guided therapy applications.
- Medical imaging: develop segmentation, registration, and visualization algorithms for image-guided therapy applications. PACS interface to facilitate large-scale imaging studies (in collaboration with the Radiomics group).
- Pharmacokinetic modeling and radiation dose calculations.
- Optical and physiological measurement techniques: development, implementation, and evaluation.
- We are member of the medical ethics committee to guard the patient safety studies involving patients.

THE NETHERLANDS CANCER INSTITUTE FAMILY CANCER

For many of the 1450 patients (families) visiting the Family Cancer Clinic the indication for referral is a possible genetic predisposition for breast and/or ovarian cancer. Other indications include suspected Lynch syndrome, colorectal polyposis syndromes, Li-Fraumeni syndrome and a possible genetic predisposition for stomach cancer, renal cancer, melanoma and pancreatic cancer.

Increasingly, results of DNA-analysis have implications for the treatment of cancer. This development results in more referrals and, sometimes, a different way of genetic counselling.

The DNA-diagnostic laboratory of the Family Cancer Clinic

The implementation of Next Generation Sequencing (NGS) for the BRCA1/2 genes in 2016 made it possible to offer BRCA testing for germline and somatic DNA, isolated from blood cells and more importantly FFPE fixed tumor or normal cells. Several clinical trials require rapid testing of tumor DNA for a BRCA1 specific or a BRCA1ness profile. In this respect, we are able to offer a complete test panel for BRCA1ness: germline and somatic BRCA1/2 testing, BRCA1 promoter methylation and CNV seq to assess the genomic tumor profile for BRCA1ness features (in collaboration with P. Nederlof, head Molecular Diagnostics). In the last quarter of 2019 we started to implement an NGS test containing 17 genes which is suitable for FFPE isolated DNA and can be used for breast and ovarian cancer. In 2019 the following genes were added to our NGS tests: CHEK2, ATM and PALB2 for breast cancer. Using Sanger Sequencing CDK4 and MIPT for melanoma were added. January 1st 2020 we will start with an NGS panel specific for ovarian cancer and this panel contains BRCA1, BRCA2, BRIPI, RAD51C and RAD51D.
Research projects

We contribute to national (HEBON) and international (BCAC, CIMBA) efforts to understand the etiology, risk and outcome of breast cancer. We are involved in international efforts to establish polygenic risk scores for breast cancer and we are looking for opportunities for implementation studies in the clinic, in collaboration with group Schmidt. In 2017 a unique prospective breast cancer study was granted by Pink Ribbon/KWF (in close cooperation with M.J. Hooring and A. Hollestele, ErasmusMC, M.K. Schmidt, and M.A. Adank, NKI-AVL) to assess all prospects of breast cancer in women from families with a CHEK2 c.1100delC mutation. For this study, women are currently invited to participate.

TP53-mutation carriers from Li-Fraumeni syndrome families nation-wide are screened by total body MRI in the NKI. Data on the MRI-results and on the psychosocial impact of this screening tool (M. Ruijs, E. Bleiker, G. Sonke (Division of Medical Oncology) and Loo Division of Radiology)) are continuously collected. In close cooperation between the PSOE (E. Bleiker) and the Family Cancer Clinic (F. Menko, L. vd Kolk) new methods for informing family members are developed and evaluated aimed at improving the communication of cancer risk and better use of preventive measures.

Furthermore, we participate in ongoing collaborations (inter) nationally to elucidate the clinical role of DNA variants found by the DNA diagnostic laboratory (INVUSE, BRCA1/2 VUS, ENIGMA). Our department is also interested in the ethical, legal and social aspects of unsolicited genomic findings, particularly in the context of tumor testing (WIDE study) and clinical genetic testing and counseling; Lizet van der Kolk is a member of the core team of the ELSI Servicedesk and of the WIDE study team.

department of nuclear medicine

In the past year, the department of nuclear medicine has further elaborated on some important topics as advanced image analysis and quantification. The aim of such studies is to enable better characterization of primary tumors and metastases as well as to predict response to therapy. A study on this by Saadani et al. (J Nucl Med. 2019;60(11):1545-1552) for the first time showed that BRAFV600 mutation status of melanoma is not associated with, nor can it be predicted with, conventional PET features, as radiomic features were of low predictive value (AUC = 0.62). Recently, comparable results were also found in breast cancer and lung cancer, again indicating that radiomics in nuclear medicine might differ from other aspects of breast cancer in women from families with a CHEK2 c.1100delC mutation. For this study, women are currently invited to participate.

Several studies have been performed last year in which the value of FDG PET/CT was evaluated in patients scheduled for radiotherapy. In one of these studies by Gouw et al. (Clin Nucl Med. 2019;44(11):1019-1026).
Med. 2019;44(5):e323-e328), increased baseline TLG was associated with worse DFS in HPV-negative Oropharyngeal cancer and it might be used as biomarker for risk stratification in these patients. Interestingly, it was not possible to confirm this association in HPV-positive patients. Furthermore, FDG-PET/CT has excellent performance for the detection of recurrent disease in oropharyngeal cancer, with a sensitivity and negative predictive value approaching 100%. Due to these excellent results is examination under anesthesia today in the vast majority of the PET-negative cases not necessary anymore. Some new tracers and isotopes have been studied in the past years, leading up to the first thesis covering translational studies on 195mPt-Cisplatin. This successful work formed the basis of an ongoing collaboration with among others NRG-Petten, four UMC’s and the NKI-AVL, the so-called ‘FIELD-LAB’. This consortium was launched in 2019 to speed up development and translation of the new generation radiotracers. Consequently, our department gained access to several upcoming diagnostic and therapeutic tracers that will be evaluated for clinical practice within this institute. One example of an on-going project is 177Lu-PSMA, a small molecule directed towards the prostate specific membrane antigen, that was tested at our department as part of an international multicenter study. The outcomes will be published next year.

Finally, several methodological and clinical studies (funded by NWO-KWF) related to Cerenkov Light Imaging (CLI) were initiated, of which the technical part was already published this year by Olde Heuvel et al. (EJNMMI Phys. 2019;6(1):17). In the upcoming months the first clinical results will become available, by NWO-KWF) related to Cerenkov Light Imaging (CLI) were initiated, of which the technical part was already published this year by Olde Heuvel et al. (EJNMMI Phys. 2019;6(1):17). In the

DEPARTMENT OF PATHOLOGY

Pathology is all about diagnosing the nature of disease processes, to guide clinical decision-making and optimize personalized and precision treatment of cancer patients. Our challenge is to generate as much relevant information from tissue, cell and DNA samples aimed at the best personalized treatment for patients today and in the future. Important questions to be answered relate to finding, validating, and implementing prognostic and predictive biomarkers, combined with tumor classification issues. The progress of the research by the Translational Gastrointestinal Oncology group (PI’s, Beatriz Carvalho, Remond Fijneman and Gerrit Meijer,) and the lung group (PI Kim Monkhorst), as carried out in the Division of Diagnostic Oncology and the translational mamma research (PI Jelle Wesseling) and the computational pathology research (PI Hugo Horlings), as carried out in the Division of Molecular Pathology, can be found in the first part of this report. The progress of the Laboratory of Familiar Tumors (head Frans Hogervorst) is summarized in the chapter of the Department of Clinical Genetics. In addition to the major lines of research the department is further developing its role as a key player in translational research through the Pathology Translational Research Core (PTRC). The PTRC provides research services for both basic, translational and clinical researchers to accelerate laboratory discoveries into patient care. The PTRC...
offers state of the art expertise from pathologists, molecular biologists, biomedical scientists and bioinformaticians. The PTRC also offers data services related to pathology. An important asset to this is the Core Facility Molecular Pathology (CFMPB, head Annegien Broeks) which is key to tissue biobanking as well as laboratory support for translational studies. CFMPB has developed automated staining protocols for multiplex fluorescent marker panels. More details about the CFMPB are reported in the first part of this report. The clinical studies unit of the PTRC supports the logistics of the pathology part of clinical studies, sample handling and shipping of tissues. In the context of the PTRC and in close collaboration with CFMPB, multi-spectral imaging, employing Vectra-3 hardware (Akoya and HALO image analysis software (Indica Labs), is further developed coordinated by Erik Hooijberg). In order to meet the increasing demand for image analysis the number of modules and the number of license seats is increased. Data analysis is supported as well. Moreover, NanoString technology has been introduced, coordinated by Linda Bosch. Researchers from in- and outside NKI have successfully analyzed their samples using this robust technology and the first results have been published in Lancet Oncology (see below) for publication. In close collaboration with Daan van den Broek of the department of Clinical Chemistry, Remond Fijneman and Kim Monkhorst make use of clinical trials to perform translational research studies of cell-free circulating tumor DNA as prognostic and predictive biomarkers for colorectal cancer and lung cancer, respectively. Most staff members are actively involved in multidisciplinary research activities in the field of thoracic oncology, urology, gastrointestinal oncology, melanoma, ovarian cancer, head and neck cancer and immunotherapy. In 2019, the department was involved in 181 clinical trials and 419 translational studies. The scientific output includes 108 publications. Three projects were granted by ZONMW and KWF, with a total budget of €3.3 M. MRI of peritoneal carcinomatosis research determines the impact of DW-MRI for the detection of peritoneal carcinomatosis in CRC and ovarian cancer. The Dutch Organisation of Science funded a randomized multicentre trial to evaluate whether DW-MRI can replace diagnostic laparoscopies in colorectal cancer CRS/HPIC candidates. A second multicenter trial funded by the Dutch Organisation of Science is running, evaluating its role in patients with peritoneal mets from ovarian cancer. Multiparametric imaging research aims to build models linking MRI to clinical, CT and PET data to predict response and long-term outcome in various cancers and treatments, including a large multicenter trial in rectal cancer with additional Radiomics analysis (funded by two research grants from the Dutch Cancer Society). In Prostate cancer multiparametric imaging research focuses on identifying tumor characteristics and phenotypes for advanced risk stratification and decision support systems in biopsy and treatment management. Ultrasound image fusion projects fusing real time US with CT, MR or PET-CT aim to improve the characterization of cervical nodes in Head and Neck ca and imaging guidance in treatment of vanishing liver metastases. Interventional radiology research group reported the results of intra-hepatic Mitomycin-C in breast cancer liver metastases also in combination with Y90 radioembolization. Kidney ablation projects reported on the safety and efficacy of MWA. The combination of local therapies plus immunotherapy is one of the main focus of the interventional research. A prospective registration of the combined use of cryo-ablation and embolization for kidney T1b tumors is running. Prospective registry studies for image fusion (Percunav) during biliary drainage and for LUMI (radio-opaque) beads for transarterial embolization in NET tumours are running. Studies including new treatment approaches for the patients with colorectal liver metastases will start including neoadjuvant ablative dose in Y-90 radioembolization and combined treatment of MWA plus transarterial chemoembolization. A multidisciplinary project has started for interventional treatment of complex painful bone metastases non responsive to conventional treatments. This year a collaborative project with MSKCC analyzing biomarkers associated with local control and survival following treatment of CRC limited metastatic disease has been completed and results in a dissertation.

Radioimmunotherapy study for prostate cancer is in collaboration with the nuclear medicine and urology department to investigate the feasibility of direct intraarterial embolization of prostate cancer. AI Immunotherapy research focuses on therapeutic response assessment and predictionas well as
biological profiling of immune-relevant tumours. The research showed predictive radiomics signatures for response to immunotherapy in melanoma and NSCLC, and to clinically relevant genetic mutations in colorectal carcinoma. We have expanded our research to include further cancer types, and external validation cohorts in collaboration with international cancer centers. AI-powered analysis was executed to assess brain metastasis response to immunotherapy in melanoma. Studies on deep learning-derived of brain metastases have shown both prognostic and predictive values in immunotherapy. Furthermore, AI model is being built to improve imaging diagnostic of immune-related adverse effects. As of this year technically oriented questions addressing clinically relevant questions have started being investigated, most prominently integrative approaches for the development of novel AI-biomarkers for evaluation of treatment response in liver, head and neck, colon, breast and lung cancer.
The Division of Medical Oncology includes the Departments of Gastroenterology, Internal Medicine, Neurology, Pharmacology, Psychiatry, and Pulmonology. The Division has a capacity of 60 in-patient beds, a day clinic hosting 54 beds for chemotherapy, a large outpatient clinic, and a GCP certified Clinical Research Unit (CRU) for the conduct of phase I-IV clinical trials with 16 beds. The Division treats about 13,000 patients per year, accommodates a staff of 57 medical specialists, and offers a training program for residents in gastroenterology, medical oncology, neurology, and pulmonology.

Research at the Division of Medical Oncology

The Division aims to combine high quality care with cutting edge research. These ambitions are matched by a strong focus on clinical and translational research and close collaborations between clinical and research staff within the institute. A selection of clinicians serves as group leaders of laboratory-based research and spend 25-50% of their time on laboratory research. The NKI funds part of their salary and research staff. In addition, the Division actively stimulates other clinicians to initiate clinical research.

Translational research in Medical Oncology requires laboratory space and expertise, which is provided by the research sections (NKI), such as Divisions of Experimental Therapy, Immunology, Molecular Biology, Molecular Carcinogenesis, and Molecular Genetics. There is also strong interaction with the Departments of Pathology and Molecular Pathology.

There are 69 PhD students currently employed, while 64 PhDs successfully defended their theses over the last five years. All our PhD students participate in the oncology graduate school of Amsterdam (OQA) accredited by the Royal Netherlands Academy of Sciences (KNAW). At the moment, 91 research grants are active with a total budget of 62.4 million euro. Approximately 125 clinical trials are actively recruiting patients. All new clinical trials are reviewed by an internal committee on clinical and translational research (CKT). This committee is composed of a number of research oriented medical specialists from the Division and selects potential studies based on alignment with the Institute’s research themes, study methodology, translational research opportunities, competing studies, and financial and logistical arrangements.
BREAST AND OVARIAN CANCER

Vincent Dezentjé, Marloes van Dongen, Marleen Kok, Sabine Linn, Lemonitsa Mammatas, Carolien Smorenburg, Marcel Soesam, Gabe Sonke, Jacqueline Stouthard, Leonora de Boo, Marijke Bruggeman, Marjolein Delfos, Maxime Duijst, Marjo Holtkamp, Chaja Jacobs, Lisette Jansen, Vincent de Jong, Inge Kemper, Chris Klaver, Simone Koole, Marte Liefard, Ingrid Mandjes, Lennart Mulder, Annemiek van Ommen, Iris Nederlof, Margaret Schot, Mariette Schrier, Tessa Steenbruggen, Ruby van Stein, Sonja Vliek, Anna van der Voort, Leonie Voorwerk

Background and objectives

The objective of this research program is to develop and improve systemic therapy for patients with early breast cancer and to improve treatment options in (oligo-) metastatic breast cancer. Our studies are in close collaboration with the Dutch Breast Cancer Research Group, the EORTC Breast Cancer Group, the Breast International Group, and Cancer Core Europe. In 2019, we included 196 patients in 15 clinical studies. The team is also involved in optimizing the treatment of ovarian cancer.

(Neo)adjuvant systemic treatment

The neoadjuvant chemotherapy program is the core of a multidisciplinary research effort to optimize systemic treatment and response prediction. It currently comprises studies for ER+/HER2- tumors (AFTER, NEOLBC, BELLINI), triple negative tumors (SUBITO, BELLINI) and HER2+ tumors (TRAIN-3). The 20-year follow-up data of the N4+ study will be published in JAMA Oncology early 2020, showing that overall survival benefit of high dose chemotherapy is maintained at 20 years in patients with >10 involved axillary lymph nodes, most notably in triple negative breast cancer (TNBC). Building on the N4+ results, the SUBITO study currently evaluates high-dose chemotherapy with stem cell transplant in women with high-risk triple negative breast cancer harboring homologous recombination deficiency. The BELLINI study has started in 2019 and evaluates the value of PD1-blockade in HER2-negaive breast tumors with high levels of tumor-infiltrating lymphocytes. The TRAIN-3 study investigates if the number of pre-operative chemotherapy cycles can safely be reduced in case of an early radiologic complete pathologic remission. In addition, 3-year follow-up data of the earlier TRAIN-2 study is collected and will be presented in 2020.

Metastatic breast cancer

The OLIQO study, Triple B-study, and ABC study investigate the treatment of patients whose tumors harbor DNA repair defects as interrogated with the BRCA-like test. The triple B-study evaluates the addition of anti-PD-L1 (atezolizumab) to a backbone of paclitaxel or platinum-based chemotherapy as first line treatment for metastatic TNBC. The NKI led international phase Ib/IIPOSEIDON and nationwide SONIA studies investigate the optimal use of an isoform selective PI3K inhibition and CDK4/6 inhibition, respectively, added to endocrine therapy in advanced ER+/HER2- breast cancer. In 2019, we published the final clinical data and the first translational data of the TONIC trial in Nature Medicine. The data showed that induction with doxorubicin or cisplatin can result in a more favorable tumor microenvironment and more responses on nivolumab. The GELATO study is a

Anna van der Voort MD PhD student
Leonie Voorwerk MD PhD student
Berbel Ykema MD PhD student
Maxime Duijst Technical staff
Yvonne Schuller Research physician
Mathijs Tijben Technical staff
Sandra Adrianausz Nurse practitioner
Marjolein Delfos Nurse practitioner
Simone Dokter Nurse practitioner
Emmy Harrms Nurse practitioner
Peggy den Hartog-Lievaart Nurse practitioner
Yvonne Hilhorst Nurse practitioner
Marjo Holtkamp Nurse practitioner
Lisette Jansen Nurse practitioner
Inge Kemper Nurse practitioner
Annemiek Koenen Nurse practitioner
Suzanne van der Kolk Nurse practitioner
Maria Kulper Nurse practitioner
Elisabeth van der Laan Nurse practitioner
Nancy Lardenoijle Nurse practitioner
Anoesjka Lechner Nurse practitioner
Judith Linsvijt Nurse practitioner
Henk Mallo Nurse practitioner
Susanne Onderwater Nurse practitioner
Saskia Pulleman Nurse practitioner
Lisette Saeveur Nurse practitioner
Bodden Schilder Nurse practitioner
Margaret Schot Nurse practitioner
Wim Wuylterlinde PhD Nurse practitioner
Jana van der Sar Nurse practitioner
Marion Zimmerman Nurse practitioner

SELECTED PUBLICATIONS DEPARTMENT OF GASTROENTEROLOGY

Pool D, Boyd LN, Beehof R, Schatborst T, Pham TV, Piersma SR, Knot JC, Jimenez CR, Verheul HM, Buffart T. Pharmac analysis of mrP-195 and mrP-487 replacement reveals potential candidates that increase sensitivity to oxaliplatin in MSI/P53wt colorectal cancer patients. Cells 2019;8:p06; E1111

SELECTED PUBLICATIONS DEPARTMENT OF THORACIC ONCOLOGY

SELECTED PUBLICATIONS DEPARTMENT UROLOGIC ONCOLOGY

SELECTED PUBLICATIONS DEPARTMENT CLINICAL PHARMACOLOGY

GASTROENTEROLOGY

Tineke Buffart, Annemieke Cats, Myriam Chalabi, Jolanda van Dieren, Cecile Grootscholten, Monique van Leerdam, Margot Tessellaar, Wieke Verbeek, Marieke Vollebergh, Thomas de Wijkerslooth, Sonja van Veenendaal, Elvira Nuijten, Lisette Al, Berbel Ykema, Esther Toes, Arthur Kooyker

Background and objectives

The Department of Gastroenterology is involved in early detection and prevention of and innovative multimodality treatments for gastrointestinal cancers including neuro-endocrine tumors (NET) and hereditary GI-cancer syndromes.

Upper GI cancer

For esophageal cancer several imaging studies are being performed including the evaluation of fiducials, MRI and 4D-PET. We started a neo-adjuvant pilot study with immunotherapy for GI-junction and gastric cancer. Furthermore, we are evaluating a watch-and-wait policy for esophageal cancer. The first studies have been published. In 2015, 788 patients with primary resectable gastric cancer were enrolled in the international, randomized, phase II CRITICS study. The results are published in Lancet Oncology and subgroup analyses are being done.

Lower GI cancer

We are responsible for evaluation of the Dutch population-based CRC screening program (www.rvmm.nl) in collaboration with the Erasmus MC in Rotterdam. We published data on quality and yield of the screening program and influence on stage distribution. Furthermore, we are expert center for hereditary GI cancer syndromes and run several research projects in patients with hereditary CRC syndromes, serrated polyposis syndrome, and second primary CRCs (MLDS grants). Other studies focus on DPD activity. Genotype-guided dosing resulted in adequate systemic drug exposure and improved safety and was cost-effective. A meta-analysis of 7365 patients treated...
with fluoropyrimidines estimated the prevalence of various DPYD genotypes. Prospective studies are ongoing. We are involved in translational and multicenter clinical studies with targeted and immunotherapy for CRC in all stages. The first data about neo-adjuvant Immunotherapy for CRC has been presented, showing (near) complete responses in all MMR deficient CRCs.

Neuro-endocrine tumors (NET)

In close collaboration with the UMCU Utrecht, we are an ENETs center of excellence and a Dutch NUPEP NET expertise center. Since the start of PRRT in March 2016 we have all techniques to diagnose and treat NET patients. Several research projects are going such as exploring new blood biomarkers in patients with metastatic NET as well as GEP-NEC.

THORACIC ONCOLOGY

Paul Baas, Sjaak Burgers, Wieken Buikhuisen, Maria Disselhorst, Wanda de Kanter, Joop de Langen, Egbert Smit, Willemijn Theelen

Background and objectives

The Department of Thoracic Oncology stands for optimizing patient care, performing translation research and introducing new systemic therapies.

Immune checkpoint inhibition

Following implementation of immunotherapy in 1st line setting in lung cancer, we now focus on treatment of recurrent disease. We published in JAMA Oncology that stereotactic body radiotherapy prior to pembrolizumab was well tolerated and lead to a doubling of response rate. New studies investigate the combination of IO agents before start of surgery or chemo-radiation in patients with locally advanced stages. Using compounds targeting different pathways we hope to improve outcome and better understand the involved pathways. In collaboration with the AUMC biomarker studies investigate the usefulness of immuno- and small molecule PD-(L)1 PET/CT for response prediction and pharmacodynamic changes during IO (combination) treatment. Outcome of the pilot study of PD-1 and PD-L1 PET/CT have been published in Nature Communications. A perspective on pembrolizumab for the treatment of advanced NSCLC has been published in the Lancet.

Malignant pleural mesothelioma

The DENIM phase III vaccination study after chemotherapy in first line is currently running, in collaboration with Erasmus MC in Rotterdam. Our INITIATE study (anti-PD-L1 + anti-CTL4) in patients with recurrent mesothelioma has been published in Lancet Respiratory Medicine. The Mesoscope Database (ETOP) has recruited almost 500 patients and data on epidemiology and treatment outcomes have been presented.

Neuro endocrine tumors (ENETS center of excellence)

We continue to focus on the diagnosis and treatment of patients with neuro endocrine tumors. Recently, a phase 2 study with a PD1 inhibitor in patient with low grade metastatic neuro endocrine tumors has been finalized. Other studies like the phase 3 with lanreotide versus placebo have been completed.
Targeted agents
We optimized the molecular work-up for NSCLC, which now includes all known molecular drivers and genetic alterations of resistance to targeted treatment. Six investigator-initiated and ten externally sponsored mutation defined studies are open.

The NKI is one of the referral centers in the Netherlands for patients with rare (incidence less than 5%) genetic alterations. The European Thoracic Oncology Platform (ETOP) initiated dedicated studies, such as alectinib in RET rearranged tumors. We actively participate in the CPCT-02 and DRUP studies and co-authored two seminal papers that were published in Nature this year. Over 200 patients were included in the national LEMA study (Early Molecular Assessment) analyzing the mutational status in all patients with primary adenocarcinoma of the lung.

Small cell lung cancer
A randomized study with lurbinectin (a tubulin inhibiting agent) with chemotherapy versus chemotherapy alone in second line has finished accrual.

Smoking cessation
The current focus is the prevention of smoking in adolescents. A manipulation of filter cigarettes leading to higher toxic products during inhalation was discovered. Although a criminal lawsuit to file charges against the tobacco companies was rejected, recommendations to politicians to defer from tobacco lobbyists continues.

CLINICAL PHARMACOLOGY

Neeltje Steeghs, Frans Opdam, Serena Marchetti, Marloes van Dongen, Roos Achterbergh, Bastiaan Nuijen, Hilde Rosing, Alwin Hultema, Jos Beijnen

Background and objectives
Research activities of the Departments of Clinical Pharmacology, the Department of Pharmacy & Pharmacology and the Division of Pharmacology are closely integrated. Currently, we perform 48 phase I/II, pharmacological and proof of concept studies. We are referral center for phase I studies in the Netherlands. We annually screen over 350 and recruit over 200 new patients in early phase industry sponsored and investigator initiated clinical trials. In 2019, the main themes of our investigator-initiated research were the personalized dosing of oral anti-cancer drugs, drug-drug interaction, and genomic profile selected phase I/II studies.

Personalized dosing of oral anti-cancer drugs
Oral targeted anti-cancer agents have a complex pharmacological profile, narrow therapeutic index, and a marked pharmacokinetic interpatient variability. Individual patients have a high probability to be either underdosed (>30%) or overdosed (>15%). Therapeutic drug monitoring (TDM) refers to personalized dosing based on measured drug levels. We have started a nationwide project to study and implement TDM in the Netherlands. Over 450 patients have been included so far and first results were presented at several international meetings, i.e. ESMO conference in Madrid.

Genomic profile selected phase I/II studies
Based on preclinical work done in the lab of Rene Bernards, three clinical trials study the combination of pan-HER and MEK inhibitors in KRAS mutant and PIK3CA wildtype lung cancer, pancreatic cancer, and colorectal cancer. We initiated a phase II study with the WEE-1 inhibitor AZD1775 plus carboplatin for TP53 mutated platinum refractory ovarian cancer. We also initiated an international study (MoTrIColour consortium) to treat colorectal cancer patients according to molecular defined subtypes. Finally, we initiated the Basket of Basket trial within the Cancer Core Europe Consortium that treats a pancancer population according to molecular targets.

Improving doctor-patient dialogue in early phase clinical trial participation
With a consortium grant from the Dutch Cancer Society we started the OnVaCT study. This study aims to qualitatively evaluate life values of patients with advanced cancer facing the choice to participate in early phase clinical trials. We aim to develop a value clarification tool that helps the decision-making processes of patients and working routines of oncologists.

UROLOGIC ONCOLOGY

André Bergman, Martijn Kerst, Michiel van der Heijden, Vincent Dezentje, Jeanette de Feijter, Elisabeth van der Laan, Anoesjka Lechner, Suzanne van der Kolk, Helga Schrijver, Helga Hoogenhout, Rebecca Louhanepessy, Sushil Badrising, Marit Vermunt, Nick van Dijk, Jeroen van Dorp, Hielke-Martijn de Vries

Background and objectives
Our group focuses on the treatment of prostate, bladder, testicular, penile, and rare urological cancer. We aim to contribute to international trials and to play a leading role in initiation of national trials and translational research.

Prostate cancer
In 2019, multiple investigator initiated- and industry sponsored trials in metastatic castration resistant prostate cancer (mCRPC) patients were open for recruitment. Investigator initiated trials included the national OSTRICH study, randomizing patients between cabazitaxel and abiraterone or enzalutamide as a second line treatment. Biomarker studies include serum levels of cytokines involved in neutrophil homeostasis and analysis of cDNA. In the PRESTO study, biopsies of metastatic sites are taken prior to enzalutamide treatment. In the biopsies, chromatin accessibility and binding profiles of transcription factors to the chromatin are assessed, which may hold biomarker properties as a predictor of response to enzalutamide. The ROTOR registry aimed to assess activity of radium-223 in contemporary patients and the course of pain in a non-study population treated with radium-223. Multiple biomarker studies are connected to this study.

Bladder cancer
In 2019, we completed the first cohort of the NABUCCO study. In this study, we investigate the feasibility of pre-operative ipilimumab/nivolumab in locoregionally advanced bladder cancer.
24 patients were enrolled, of whom 23 (96%) had resection <12 weeks from 1st cycle, meeting the primary endpoint. Eleven patients (46%) achieved a pCR. Three additional patients only had a small focus of non-invasive cancer at resection, resulting in an overall rate of 58% without invasive cancer cells at resection. Translational analysis of this unique set of 24 paired pre/post tumor samples is ongoing and a follow-up cohort of 30 patients, testing adjusted dosing schedules, has been initiated. ICRA is another investigator-initiated trial, which investigates paclitaxel in combination with anti-CTLA4 (tremelimumab) for urothelial cancer progressing to chemotherapy and checkpoint blockade.

Testicular cancer

The NKI multidisciplinary testicular cancer group (Expert Centre for rare urological diseases) has an ongoing focus on patient treatment, including salvage chemotherapy and robotic laparoscopic surgery and on studies on long-term effects of platinum-containing therapy (cardio-vascular risks and second tumors). In addition, the group works on Introducing the sentinel-node procedure in clinical stage I testicular cancer.

Penile cancer

We initiated the PERICLES study. In this study, advanced penile cancer patients are treated with atezolizumab (anti-PDL1). A subset of patients with locoregional lymph node metastases receive additional radiotherapy.

CLINICAL IMMUNOTHERAPY

Background and objectives

Our group is primarily involved in the treatment of melanoma and renal cell carcinoma patients. Research focuses on neo-adjuvant targeted and immunotherapies, dissection of immunological changes upon immune checkpoint inhibition plus targeted agents, combination with local therapy (RFA, oncolytic viruses), and on adoptive cellular therapies.

Clinical adoptive T cell transfer program

There is an unmet medical need for patients with stage IV melanoma who have failed anti-PD-1 treatment. Based on promising data from our and other institutes, we initiated the first phase 3 TIL trial worldwide, which compares efficacy of TIL therapy versus ipilimumab as 1st or 2nd line treatment in stage IV melanoma. Collaborating with Herlev Hospital in Denmark and Sanquin, 97 patients have been randomized so far. We received financial support from the Dutch Cancer Society to increase accrual by opening the study in CHUV in Lausanne and DKFZ in Heidelberg. Together with Neon Therapeutics we are developing a strategy to induce and augment neoantigen-specific T cell populations from metastatic melanoma patients for adoptive transfer. The idea is that using adoptive T cell therapy with products enriched for neoantigen-specific T cells can overcome resistance to immune checkpoint blockade. A proof-of-concept phase Ib trial is being planned for 2020.

Neoadjuvant immune checkpoint inhibition in melanoma

Anti-PD-1 (nivolumab, pembrolizumab) with or without anti-CTLA4 (ipilimumab) has become standard therapy for metastatic melanoma. Nivolumab and pembrolizumab are also used as adjuvant therapy in stage III melanoma, improving recurrence-free survival of many patients. We have pioneered in developing neoadjuvant checkpoint inhibition studies, with the idea of inducing broader immune responses with checkpoint when the primary tumor is in situ. The three-year update of the initial OpACIN trial was presented at ESMO 2019 and confirmed long-term relapse free survival in patients achieving a pathologic response. The OpACIN-neo trial established high efficacy with a combination regimen that has reduced toxicity and therefore allows broad application. The subsequent PRADO extension cohort closed inclusion in 2019 and aims to confirm the observed responses and toxicities and addresses whether a complete lymph node dissection can be omitted in patients achieving a major pathologic response. Based on these data, a phase 3 registration trial, comparing neoadjuvant versus standard adjuvant checkpoint inhibition, is currently developed. Novel combinations, like HDACi + PD-1-blockade +/- CTLA-4 blockade or oncolytic virus therapy (T-VEC) + PD-1 blockade, are currently set-up as investigator-initiated trials with the aim to develop alternatives for patients not responding to neoadjuvant ipilimumab + nivolumab. This will lead eventually to personalized neoadjuvant immunotherapy. Together with MD Anderson Houston and Melanoma Institute Australia, the NKI has set-up the International Neoadjuvant Melanoma Consortium. Together, we recently published our framework on neo-adjuvant on study design and translational research. In addition, we presented full PFS results from the ImPemBra trial at the Melanoma Bridge Congress 2019. This feasibility trial combines pembrolizumab with short-term dabrafenib/trametinib in BRAF V600 mutated metastatic melanoma patients. The short course targeted therapy added to PD-1 blockade was better tolerated than continuous combinations, and a promising PFS benefit was observed. This novel approach will also be tested in a neoadjuvant study for patients with an unfavorable baseline biomarker profile who are unlikely to respond to ipilimumab + nivolumab.

Renal cell cancer

Our group is involved in implementing or participating in trials to improve the treatment with small molecule receptor tyrosine kinase inhibitors (RTKI) in combination with checkpoint inhibitors in the metastatic disease setting, and in the neoadjuvant setting with high-risk clear cell RCC. We participate in adjuvant immunotherapy trials and in a trial for patients with non-clear cell metastatic RCC patients.
This research line aims to optimize surgical procedures by better surgical guidance during operative procedures. To this end new imaging technologies are developed and tested to improve tumor mapping and staging pre and intra-operative. These imaging and surgical guidance procedures should lead to more radical resections while sparing normal tissue and organ function. The research line is a strong collaboration between the NKI-AVL, Technical University Twente and industrial partners. For the moment 3 project lines are running. In the first project we are developing tools for optical guidance during surgery by means of spectroscopy. We published for the first time that both techniques can be used seamlessly in the current workflow for the detection of breast cancer, colon cancer, lung cancer and head and neck tumors. Accuracy to detect malignancies varied from 90-95%. We will further concentrate to incorporate the developed technology into surgical tools and we started a STW project to further develop this technology in combination with ultrasound as well as with laparoscopy. In a second project we aim to improve the balance between radical surgery and preventing morbidity in extensive surgery, by bringing innovative navigation technology to the OR. We introduced this first in world electromagnetic navigation system for abdominal and pelvic surgery into clinical practice. Over 150 patients have been operated this way with great success and enthusiasm amongst the surgeons working with the system. The project team was able to obtain funding from the KWF/Alp d’Huzes and the Vriendenloterij. We published the first in man navigation study for abdominal tumor tracking. A third project line concentrates on the introduction of hyperspectral imaging for cancer surgery. This project is funded by the European project Astonish and received a grant from the Dutch Cancer Society (KWF). TKI and recently also from STW/KWF. We aim that in the near future all tumor resection samples can be analyzed almost real time within the OR enabling additional resection when necessary.

Surgical Oncology

Patient care and clinical research is largely organized in subunits who work in multidisciplinary teams: breast, melanoma, sarcoma, thoracic tumors, upper gastro-intestinal, and a combined unit of lower gastro-intestinal, liver, and colorectal peritoneal metastases. The goal of our research is twofold: to improve the survival for patients with more advanced disease, and to improve the quality of life of all patients by minimizing the side-effects and trauma of oncological treatment. A first new imaging technologies are developed and tested to improve tumor mapping and staging pre and intra-operative. These imaging and surgical guidance procedures should lead to more radical resections while sparing normal tissue and organ function. The research line is a strong collaboration between the NKI-AVL, Technical University Twente and industrial partners. For the moment 3 project lines are running. In the first project we are developing tools for optical guidance during surgery by means of spectroscopy. We published for the first time that both techniques can be used seamlessly in the current workflow for the detection of breast cancer, colon cancer, lung cancer and head and neck tumors. Accuracy to detect malignancies varied from 90-95%. We will further concentrate to incorporate the developed technology into surgical tools and we started a STW project to further develop this technology in combination with ultrasound as well as with laparoscopy. In a second project we aim to improve the balance between radical surgery and preventing morbidity in extensive surgery, by bringing innovative navigation technology to the OR. We introduced this first in world electromagnetic navigation system for abdominal and pelvic surgery into clinical practice. Over 150 patients have been operated this way with great success and enthusiasm amongst the surgeons working with the system. The project team was able to obtain funding from the KWF/Alp d’Huzes and the Vriendenloterij. We published the first in man navigation study for abdominal tumor tracking. A third project line concentrates on the introduction of hyperspectral imaging for cancer surgery. This project is funded by the European project Astonish and received a grant from the Dutch Cancer Society (KWF). TKI and recently also from STW/KWF. We aim that in the near future all tumor resection samples can be analyzed almost real time within the OR enabling additional resection when necessary.

Surgical Oncology

Patient care and clinical research is largely organized in subunits who work in multidisciplinary teams: breast, melanoma, sarcoma, thoracic tumors, upper gastro-intestinal, and a combined unit of lower gastro-intestinal, liver, and colorectal peritoneal metastases. The goal of our research is twofold: to improve the survival for patients with more advanced disease, and to improve the quality of life of all patients by minimizing the side-effects and trauma of oncological treatment. A first new imaging technologies are developed and tested to improve tumor mapping and staging pre and intra-operative. These imaging and surgical guidance procedures should lead to more radical resections while sparing normal tissue and organ function. The research line is a strong collaboration between the NKI-AVL, Technical University Twente and industrial partners. For the moment 3 project lines are running. In the first project we are developing tools for optical guidance during surgery by means of spectroscopy. We published for the first time that both techniques can be used seamlessly in the current workflow for the detection of breast cancer, colon cancer, lung cancer and head and neck tumors. Accuracy to detect malignancies varied from 90-95%. We will further concentrate to incorporate the developed technology into surgical tools and we started a STW project to further develop this technology in combination with ultrasound as well as with laparoscopy. In a second project we aim to improve the balance between radical surgery and preventing morbidity in extensive surgery, by bringing innovative navigation technology to the OR. We introduced this first in world electromagnetic navigation system for abdominal and pelvic surgery into clinical practice. Over 150 patients have been operated this way with great success and enthusiasm amongst the surgeons working with the system. The project team was able to obtain funding from the KWF/Alp d’Huzes and the Vriendenloterij. We published the first in man navigation study for abdominal tumor tracking. A third project line concentrates on the introduction of hyperspectral imaging for cancer surgery. This project is funded by the European project Astonish and received a grant from the Dutch Cancer Society (KWF). TKI and recently also from STW/KWF. We aim that in the near future all tumor resection samples can be analyzed almost real time within the OR enabling additional resection when necessary.
increasingly applied in a neo-adjuvant setting, and with a focus on a better assessment of the response it becomes possible to individually tailor the extent of the surgery to the type of response. Some well-responding tumors can be removed with less extensive surgery, and in some patients, surgery can be omitted altogether. Some very advanced unresectable tumors may become resectable after neoadjuvant therapy.

A second common theme is the technical development and clinical use of intra-operative imaging and tissue differentiation techniques that allow more precise identification of tumor tissue, allowing both a better complete removal of the tumor and sparing of non-involved tissues. The department of surgery has initiated many phase I and II trials, and is participating in multicenter phase III trials, some of which have been initiated by NKI-AVL. In addition to the surgical staff, over 40 researchers were associated with the department. In 2019 this resulted in 172 publications in peer reviewed journals, PhD theses, and regular media coverage.

Upper GI cancer

Translational research focuses on the identification of genetic patterns based on copy number variation in relation to treatment response of the tumor, immune activity, and patients’ survival. The results of the multicenter clinical NKI-AVL study on (neo)-adjuvant multimodality treatment in gastric cancer was internationally well recognized with a major Lancet Oncology publication. Ongoing studies in this field are further investigating the role of multimodality neo-adjuvant treatment, e.g., neoadjuvant chemoradiotherapy and immunotherapy for gastric cancer and a surgery-as-needed protocol for oesophageal cancer. An ongoing clinical and research focus is on the role of hyperthermic intraperitoneal chemotherapy (HIPEC) in gastric cancer patients with peritoneal metastases.

Thoracic surgery

Clinical innovations in surgical treatment for NSCLC include minimally invasive surgical techniques such as 3D-video assisted thoracoscopic surgery (VATS), robotic surgery and segmental resections. Scientific research focuses on multimodality treatment, including the role of chemoradiation followed by surgery and the role of neoadjuvant and adjuvant immunotherapy and targeted therapies in combination with surgery. There are ongoing studies on response evaluation after chemoradiotherapy and immunotherapy. Another research focus is on the role of Tumor Infiltrating lymphocytes (TIL) therapy and organoids.

Colorectal – Liver – Peritoneal metastases

In both rectal cancer and liver tumors there are many ongoing intraoperative imaging studies. In rectal cancer NKI-AVL is recognized as a world leader in organ preservation. The program is continuously expanded with ongoing multicenter trials, and with a fully operational contact radiotherapy device. The concept of neoadjuvant immunotherapy is tested in an exploratory study in colon cancer, and combined with radiotherapy in a new trial for organ preservation in rectal cancer. For liver metastases the concept of adjuvant intra-arterial chemotherapy was first tested in a phase II trial, and now in a phase III trial. Advanced MR imaging studies are continued in the field of rectal cancer and peritoneal metastases. New studies on the use of liquid biopsies in primary and metastatic colorectal cancer have been explored and will be initiated.
Breast

The breast cancer group focuses their main research activities on three programs. The first is personalized breast cancer treatment with the goal to de-escalate breast cancer treatment. In close collaboration with the Department of Pathology, we work on trials investigating which patients are eligible for active surveillance instead of local treatment both in the primary surgery setting and in the neo-adjuvant systemic treatment setting. Together with the Division of Medical Oncology we work on multicenter trials to personalize (neoadjuvant) systemic treatment based on response prediction and monitoring. The second research focus is on the development of 'shared decision making' programs for breast cancer. Our third research focus is on outcome of breast cancer care; we actively participate in the NBOCA and in close collaboration with the Department of Quality of Care we invest in research focused on both the long term psychological and physical outcome of breast cancer care.

Melanoma and skin tumors

Together with the Division of Medical Oncology the melanoma unit has invested in the development of new neo-adjuvant therapies in stage III disease, allowing a reduction of the extent of surgery. Other areas of interest have been the treatment and outcome of Merkel Cell Carcinoma (MCC), and laco-regional therapies such as oncolytic viruses. In all these areas our unit has established itself as leaders in the field with high-ranking publications in NEJM, Lancet and Nat Med.

Soft tissue tumors

The sarcoma unit focuses its research activities on three programs. The first is the development of (international) neo-adjuvant trials for angiosarcoma and retroperitoneal sarcoma. The second is the development of a multi-disciplinary translational research collaboration on the prediction of response to neo-adjuvant systemic therapy, radiotherapy and isolated limb perfusion, and on exploring new therapeutic options. The third is outcome research on different surgical strategies in DFSP, angiosarcoma and retroperitoneal sarcoma.

HEAD AND NECK SURGERY AND ONCOLOGY

The department has research lines in image guided treatment. Projects on radiomics, image guided research in SN detection, morphological optimization and mandibular reconstruction are carried out. We have a 3D lab and in collaboration with the University Twente, many students do their master thesis at our department. In this lab, new techniques in mandibular and maxillary reconstruction are being developed. In the field of personalized medicine, several PhD’s work on tumor profiling using many histopathological and genetic techniques. We mainly study the relationship between (chemo)radiosensitivity and tumor characteristics, with an emphasis on DNA repair deficits. In a project of the Dutch Head and Neck Society (DESIGN project) we are combining many prognosticators from genetics, radiomics and the clinic to build a prediction model.
The department has a long-standing tradition in survivorship research. Most research focuses on rehabilitation and counseling and several PhD students are working in this field. Laryngectomy is a major topic, but also swallowing after chemoradiation and other modalities are being studied. Different aspects of rehabilitation are studied, such as cost-effectiveness, new devices, improving fitness, organization of care. Voice, swallowing, general fitness, pulmonary rehabilitation, body image and lymphedema are major topics of interest. In the field of patient counseling, we are developing decision aid tools and personalized prediction of outcome, both in terms of survival as well as functioning. In several projects, functional outcome models are being developed using computer animations of the actual patient with input from imaging, EMG and speech.

In 2019 there were several highlights:
- Michiel van den Brekel was visiting professor at the University of Toronto and program chairman of the IAOO World Conference in Rome.
- In the biomarker studies, we have recently identified several important pathways playing a role in both response as well as survival. DNA repair deficits predict a poor survival, but only when suboptimal cisplatin doses are administered. Hypoxia and EMT were also identified as possible targets for future personalized treatment. These profiles not only help in predicting outcome, but might also direct targeted therapies.
- In patient counseling we are the first to develop decision aid tools, both for advanced laryngeal and hypopharyngeal cancer as well as early oropharyngeal cancer. Involving the patients’ association is a crucial factor. These tools will become more precise when more accurate prediction models are added. We also will try to make them more personal by adding prediction of speech and swallowing.
- In the field of rehabilitation, we have shown that preventive rehabilitation as well as a structured multidisciplinary program for rehabilitation, addressing function as well as social and coping aspects is optimal for the patient. Many aspects of speech and swallowing have been clarified and long-term functional results after chemoradiation are also dependent on optimal rehabilitation.
- The phase II study on induction immunotherapy before surgery (IMCISION), led by C.L. Zuur was completed. The results are very promising with several major clinical responses and will be published shortly.
- The 3D lab was able to get funding for developing new mandibular reconstruction plates together with Mobius Industries: a 214K grant; TKI-LSH PPP allowance Health Holland: 2019

UROLOGY

In 2019 urology welcomed 3 new urologists of which 2 MD PhD and one preparing her thesis. The number of clinical and preclinical studies increased to over 15. Further subspecialisation lead to core research groups for renal, bladder and prostate cancer research, whereas joint efforts drove penile and testicular cancer research. The main focus research lines in at the department in 2019 were:
Bladder preserving strategies in patients with muscle invasive bladder cancer

Brachytherapy for bladder cancer was shown to be associated with good survival in patients with <5 cm cT1G3-T2N0M0 bladder tumor and was associated with a reduced complication rate compared to radical cystectomy in a retrospective series. (Radiother Oncol. 2019 Dec;141:130-136). Neoadjuvant immunotherapy with ipilimumab and nivolumab showed an impressive complete response rate of 46% in patients with muscle invasive bladder cancer, opening the discussion on the need of cystectomy for selected patients (ESMO 2019).

Cytoreductive nephrectomy may improve survival in metastasized renal cancer after response sunitinib

The SURTIME trial with a primary endpoint of progression-free survival found an overall survival benefit, a secondary endpoint of deferred cytoreductive nephrectomy after sunitinib (JAMA Oncol 5 (2), 164-170).

In prostate cancer staging the PSMA-PET

GYNAECOLOGY

Center for Gynecologic Oncology Amsterdam (CGOA)

The integration of the clinical groups at the NKI-AVL and Amsterdam UMC into Center for Gynecologic Oncology Amsterdam was further structured. Interdisciplinary teams with members from both locations are now established per organ. The teams aim to facilitate guideline writing, conduct clinical and translational research, contribute to teaching and collaborate on (inter)national level. In 2020 we will further focus on overarching projects we considered as pivotal in an academic clinical setting. The ultimate goal remains to install CGOA on one location in Amsterdam.

Ovarian carcinoma

Ovarian carcinoma is a disease with a high mortality due to the fact that symptoms are often only present when the disease has spread in the abdomen. In 2019, steps were made to implement HIPEC into daily clinical practice to improve overall survival for women with advanced ovarian cancer. More knowledge about the peritoneum and the mechanism of development of metastases is indispensable. Another method to improve patient outcome, is early detection of ovarian cancer. Research in molecular biomarkers can contribute to this. Ovarian carcinoma is a heterogeneous disease with different histological subtypes. Research to clinical characteristics and molecular background of ovarian cancer and the subtypes is another focus of research.

Endometrial cancer

Endometrial cancer is the most common gynecological malignancy in high-income countries. Although the overall prognosis is relatively good, high-grade endometrial cancers tend to recur. Our focus is to develop a risk stratification based on molecular and other tumor characteristics and imaging that helps us to identify patients with extra-uterine disease. Minimal invasive surgery including the studies with sentinel node biopsy are ongoing. We contribute in the development of European (ESMO) and national guidelines (oncoline)

Cervical Cancer

Cervical cancer yearly affects 700 women in the Netherlands. One third of these women are younger than 40 years and a significant amount of these women still wish to have children. Current treatment modalities to preserve fertility in early stage cervical cancer consist of an operation with poor pregnancy outcomes. In 2018, we started an observational trial for treatment with chemotherapy to reduce the size of the tumor enabling less radical surgery. We expect the number of women who will be able to carry a child after this treatment to increase 5-fold. Besides, we aim to improve the current procedure to screen for cervical cancer by introduction of molecular markers as a triage test in hrHPV positive women in urine and cervical scrapes because many women do not attend the screening program, possibly because of fear for a gynecological examination.

Vulva

Vulvar cancer is a relatively uncommon disease. Surgery is treatment of choice, causing frequently postoperative morbidity in patients with high stage disease. An alternative treatment, starting with neo-adjuvant chemotherapy, could reduce tumor size, thereby diminishing the chance for morbidity. In case of lymph node metastases, prognosis is worse. Tumor-derived factors are an important factor in these metastases and we investigate how this mechanism works and determine if immunotherapeutic strategies could be useful. Also, pre-malignant vulvar disease is investigated to determine optimal treatment.

Cancer and pregnancy

On behalf of the International Network on Cancer Infertility and Pregnancy, we reported that women with Hodgkin lymphoma did not have worse outcome. This information is important regarding maternal safety and cancer treatment during pregnancy. At the same time, we continue to follow up children who were antenatally exposed to chemotherapy. This allows us to both look into maternal and fetal safety. We further elaborate on the survey estimating maternal mental health and emotional needs when cancer is treated during pregnancy.

Gestational Trophoblastic Disease

Gestational trophoblastic disease (GTD) is a heterogeneous group of disorders characterized by abnormal proliferation of trophoblastic tissue. Since GTD is a rare disease, little evidence is available from randomized controlled trials on optimal treatment and follow up. In Amsterdam, the Amsterdam Trophoblastic Team was founded in 2018 to advise on treatment and follow-up of GTD. We cooperate with the European Organisation for Treatment of Trophoblastic diseases and International Society for the Studies on Trophoblastic Disease. In 2019, we finalized an RCT on providing digital information for these patients. We are also finetuning therapy for very rare subtypes of GTD.
PLASTIC AND RECONSTRUCTIVE SURGERY

Our research is focused on innovative reconstructive techniques after ablative surgery by other specialists. Additionally, multidisciplinary research is being executed in collaboration with the Division of Psychosocial Research and Epidemiology, as well as with the oncologic breast task force of the Erasmus University - Daniel den Hoed Clinic in Rotterdam, the Netherlands. We participated actively in the development of the Dutch Breast Implant Registry (DBIR).

A nation-wide DBIR was established in 2015 as one of the first up-and-running breast implant registries worldwide to evaluate breast implant surgery and increase our knowledge of implant performance. Initial DBIR outcomes and experiences over the first years were evaluated. DBIR show high national participation rates (95% and 78% for hospitals respectively private clinics in 2016). Between 2015 and 2017, a total of 15,049 patients and 30,541 breast implants were included. A minimum breast implant incidence rate of 1 per 1,691 women could be determined for 2017. Devices were inserted for a cosmetic (85.2%) or reconstructive (14.8%) indications. Patient, device, and surgery characteristics differed per indication group. Substantial variation was seen in the use of infection control measures (range 0-100%). These preliminary observations support further developments toward the improvement of breast implant surgery and patient safety.

The general advice against immediate implant-based breast reconstruction in women who need to undergo post-mastectomy radiotherapy (PMRT) has never been justified to date by any evidence that PMRT causes short-term complications in these women. Therefore, we compared the type and prevalence of all complications, any unscheduled surgical intervention, and implant loss occurring during the first 16 post-operative weeks after 235 combined skin-sparing mastectomy and such reconstruction in 232 women receiving PMRT, to those occurring after 656 similar combined surgical interventions in 630 women who did not undergo PMRT (control group). We found the prevalence of minor complications (p = 0.00), major complications (p = 0.04) and the fraction of total number of interventions (p = 0.02) were significantly lower after PMRT than in the control group. The fraction of breasts needing unscheduled surgery (p = 0.16) and the prevalence of implant loss (p = 0.69) was lower in the interventional group, but not significantly so. We concluded that the number of women who might need to undergo PMRT after combined skin-sparing mastectomy and immediate implant-based breast reconstruction ought to be treated as those who need not.

DERMATOLOGY

Reflectance confocal microscopy

The diagnosis and management of skin cancer has become a burden on both patients and health care systems due to the increasing incidence worldwide. Through the routine use of dermatoscopy we have seen a significant increase in diagnostic accuracy of skin malignancies compared to naked-eye examination alone. With the arrival of in vivo diagnostic devices such as reflectance confocal microscopy (RCM) and optical coherence tomography (OCT) there is now the potential for an additional non-invasive diagnostic step prior to histological examination. Reflectance confocal microscopy is a noninvasive imaging technique that allows the in vivo visualization of cutaneous structures at a cellular-level up to the level of the superficial reticular dermis. In (retrospective) studies we aim to determine the diagnostic accuracy and added value of RCM in the management of skin cancer in a clinical setting.

Skin problems in patients started with targeted and immune checkpoint inhibitors

Oncodermatology is the dermatologic field aimed at the dermatologic health in cancer patients. Due to rapid developments in cancer treatment there are now over 50 described dermatologic side effects. Traditional cytostatic treatment is aimed at inhibiting cell division (mitosis) and can result in cytotoxic side effect like toxic erythema of chemotherapy, mucositis, extravasation injuries, nail disorders, and alopecia. Following the arrival of targeted therapies, and to a lesser extend immune checkpoint inhibitors, a significant amount of new mucocutaneous side-effects have been described. These new agents block the growth of cancer cells by inhibiting specific molecules involved in tumor pathogenesis pathways. The side effects of targeted therapy are the direct result of the pharmacological drug effects, as the molecular targets are also present in the mucosal and cutaneous tissues. In the case of immune checkpoint inhibitors, most are immunological side effects secondary to immune system modulation. In both types of cancer treatments, true immunological allergic reactions are rare. A multidisciplinary approach to these dermatological side effects is important as they could potentially influence the continuation of the cancer treatment, in addition to having a significant effect on the patient’s quality of life. Due to the large number of these side effects a lot of more time is spend in treating these skin problems in the (outpatient) clinic. In 2019 we have started with retrospective studies in the group of metastatic melanoma patients who are treated with targeted and immunotherapy in our hospital.

ANESTHESIOLOGY, INTENSIVE CARE MEDICINE AND PAIN MEDICINE

The principal aim of our department is to deliver the highest standard of anesthesiological care, intensive care and pain therapy and to continually work on the development of best practices in everyday patient care.

In 2019 there has been ongoing work on a comprehensive review on the effects of anesthetics on cancer recurrence and patient outcome. A prospective study investigating an intervention to decrease hospital admissions at the end of life is currently running. Furthermore, clinical studies in the surgical field involve optimal treatment after prostatectomy and breast cancer surgery.
INTRODUCTION

Following the change of leadership, the division of Radiation Oncology has redefined his research ambitions for the coming 10 years. In 2030, we will be a leading example for large international centers because we are pushing the boundaries in our search for the best possible options for our patients. In addition to that, we are frontrunner in the area of personalized medicine, through continuous adaptation of the treatment according to the characteristics of the tumor and the patients’ preferences. These ambitions can be summarized in the following:

Mission 2030

Through the comprehensive approach of clinical care and research the department offers the most progressive treatment worldwide.

Vision 2030

We will continuously take all relevant factors into account to ensure a personal and tailored treatment for every patient.

To achieve this vision, we aim to individualize treatment through genetic profiling and biology-driven imaging for patient selection for better individualized treatment management, and 3) acquisition of information for shared decision making, data on both tumor control and toxicity profiles will be made available.

Based on this 2030 vision, the ongoing and future research addresses 1) optimization of the therapeutic window by increasing efficacy and decreasing toxicity, 2) better patient selection for better individualized treatment management, and 3) acquisition of information for shared decision making. The research activities within the division of radiation oncology are mostly clustered within one of the five institution wide...
themes: personalized treatment, immunotherapy, image guided treatment and survivorship. Most research projects have a multi-disciplinary character, combining clinical, physics, biological and/or epidemiology efforts, with a strong focus on translational research and innovation.

PERSONALIZED RADIOTHERAPY

Personalized radiotherapy aims to individualize treatment through the use of genetic profiling and biology driven imaging for patient selection and the use of targeted agents during radiotherapy. The ongoing and future research addresses 1) novel insights in the irradiation response of tumors, 2) better patient selection for better individualized treatment management, and 3) optimization of combined-modality-targeted therapeutics to increase the therapeutic window. Our research follows the bench to bedside approach with the focus on the clinical needs and opportunities in our daily clinical practice. Importantly, we initiated new and promising collaborations with other research groups to use state-of-the-art pre-clinical tools and to enable innovative translational studies contributing to the personalized radiotherapy treatment approach.

Translational research

Modulation of targeted agents to optimize the radiotherapy outcome

To further improve the success of radiotherapy treatments we develop novel strategies that enhance the local (radiation) response using targeted agents. Besides the underlying mechanism of radiosensitization, the timing of administration of targeted agents during radiotherapy is also crucial. Therefore we study also the potential of advanced MRI imaging techniques to develop MRI guided radiosensitization strategies.

For different radiosensitization strategies we have observed that the timing of administration relative to the RT is critical; 1) In collaboration with the Akkari group we observed different outcomes of the combination of RT and immunotherapy dependent on the timing of the two modalities. We are currently exploiting why this is, and the optimal sequence of this combination trial. 2) Also, for the radiosensitization strategy of increasing the number of mitotic cells during RT (“mitotic enrichment strategy”) we observed both in vitro and in vivo very promising outcome in which the timing of the agents relative to the RT was critical (and explains the failures of previous historical attempts). This work is done in collaboration with the Van Tellingen group and we are working to move this strategy into clinical trials.

Insight in the different parameters (e.g. oxygenation, cell density) that are important for the radiotherapy outcome before and during the radiotherapy treatment will support guidance of the selection and timing of agents in combination with the radiotherapy dose. In our prospective clinical trial of glioblastoma patients, we collect all these parameters to evaluate how these parameters change during treatment and what critical parameters are in correlation with tumor recurrence. This will be an important first step towards MRI guided radiosensitization strategies.

Van Diessien JNA, Kwist M, Sonke JJ, Walraven I, Stam B, de Langen AJ, Kregijsens J, Belderbos JS. Safety and efficacy of reduced dose and margins to involved lymph node metastases in locally advanced NSCLC patients. Radiother Oncol. 2019

* authors contributed equally
Identification and exploitation of DNA repair defects

DNA damage response and repair processes play a role in tumorigenesis and cellular resistance to cancer treatments. We previously identified DNA crosslink repair defects in HNSCC that can be exploited by PARP and other DNA repair inhibitors. This prompted the development of predictive models to identify such defects in tumor specimen of advanced HPV-negative HNSCC patients prior to chemoradiotherapy. We find that such repair defects are associated with poor prognosis and an increased risk for metastasis. These patients however benefit most from high cumulative cisplatin doses, revealing relevance in treatment outcome. Enabled by a multicentric study with 197 HNSCC samples, we further evaluated individual biological determinants of patient outcomes in a multifactorial context and demonstrate a differential role in distant metastasis risk or locoregional control.

Clinical research

Interaction study

High dose radiotherapy is often indicated for patients on systemic targeted agents (including immunotherapy). However, the combination of radiotherapy with a potential radiosensitizer could easily lead to normal tissue damage, while discontinuation of the drug during radiotherapy could lead to rapid disease progression. We currently face a lack of consensus about the optimal strategy in this situation. Although case reports and several phase I/II studies exist, mostly evidence-based data are missing to easily write the urgently needed guideline. Therefore, we developed a draft guideline based on an extensive literature search, combined with all available clinical, pharmacological and radiobiological knowledge. By disseminating this as a dynamic, easily accessible online guideline a standardized approach will be established, including the option to add new drugs. This guideline will be implemented in a national study using a registry of treatment-related toxicity, facilitating an iterative process of toxicity registration and protocol adaptation.

Reducing side effects in breast cancer: PAPBI study

Partial breast irradiation (PBI) instead of whole breast irradiation is a safe alternative for women with low risk breast cancer and has been shown to give less toxicity and better cosmesis. However, with standard postoperative PBI still large volumes are irradiated. When radiotherapy is given preoperatively, more accurate tumor delineation can be performed, resulting in smaller radiotherapy volumes. The results of our phase II PAPBI trial, in which all patients received preoperative PBI are very promising; low complication rates, limited fibrosis/induration in a small volume and good-excellent cosmetic results. The aim of PAPBI-2, a randomized phase III trial, is to confirm the hypothesis that preoperative PBI leads to significantly and clinically relevant less toxicity and better cosmesis compared to postoperative PBI.

Individualizing preoperative radiation for sarcoma patients

After preoperative radiotherapy, with the exception of myxoid liposarcomas, in other sarcoma subtypes the rate of treatment response (defined as less than 5% remaining viable tumor cells) is as low as 8%. Increasing the radiation dose in patients that still have to undergo definitive surgery is probably not clinically feasible. Obviously, investigations into radiation sensitizers maintaining radiation dose are warranted. For this purpose angiogenesis inhibitors seemed logic candidates. After observing the feasibility of the combination of 25 x 2 Gy preoperative radiotherapy with pazopanib, (NCT01985295), a subsequent phase II study confirmed our prior observations of a high pathological complete remission rate (NCT02575066). However, this efficacy was no longer observed after a radiation dose reduction to 18 x 2 Gy, while maintaining pazopanib dose. Further investigations, combining novel targeted drugs (e.g. interfering with the DNA Damage Response pathways) with preoperative radiotherapy are currently being designed and will start to accrue patients in 2020. Obviously, careful monitoring of the treatment response is obligatory is such new combined modality clinical trials. Especially correlating observations by bio-imaging (e.g. perfusion and diffusion weighted MRI imaging) with pathology are imperative.

Identification and exploitation of DNA repair defects

DNA damage response and repair processes play a role in tumorigenesis and cellular resistance to cancer treatments. We previously identified DNA crosslink repair defects in HNSCC that can be exploited by PARP and other DNA repair inhibitors. This prompted the development of predictive models to identify such defects in tumor specimen of advanced HPV-negative HNSCC patients prior to chemoradiotherapy. We find that such repair defects are associated with poor prognosis and an increased risk for metastasis. These patients however benefit most from high cumulative cisplatin doses, revealing relevance in treatment outcome. Enabled by a multicentric study with 197 HNSCC samples, we further evaluated individual biological determinants of patient outcomes in a multifactorial context and demonstrate a differential role in distant metastasis risk or locoregional control.

Clinical research

Interaction study

High dose radiotherapy is often indicated for patients on systemic targeted agents (including immunotherapy). However, the combination of radiotherapy with a potential radiosensitizer could easily lead to normal tissue damage, while discontinuation of the drug during radiotherapy could lead to rapid disease progression. We currently face a lack of consensus about the optimal strategy in this situation. Although case reports and several phase I/II studies exist, mostly evidence-based data are missing to easily write the urgently needed guideline. Therefore, we developed a draft guideline based on an extensive literature search, combined with all available clinical, pharmacological and radiobiological knowledge. By disseminating this as a dynamic, easily accessible online guideline a standardized approach will be established, including the option to add new drugs. This guideline will be implemented in a national study using a registry of treatment-related toxicity, facilitating an iterative process of toxicity registration and protocol adaptation.

Reducing side effects in breast cancer: PAPBI study

Partial breast irradiation (PBI) instead of whole breast irradiation is a safe alternative for women with low risk breast cancer and has been shown to give less toxicity and better cosmesis. However, with standard postoperative PBI still large volumes are irradiated. When radiotherapy is given preoperatively, more accurate tumor delineation can be performed, resulting in smaller radiotherapy volumes. The results of our phase II PAPBI trial, in which all patients received preoperative PBI are very promising; low complication rates, limited fibrosis/induration in a small volume and good-excellent cosmetic results. The aim of PAPBI-2, a randomized phase III trial, is to confirm the hypothesis that preoperative PBI leads to significantly and clinically relevant less toxicity and better cosmesis compared to postoperative PBI.

Individualizing preoperative radiation for sarcoma patients

After preoperative radiotherapy, with the exception of myxoid liposarcomas, in other sarcoma subtypes the rate of treatment response (defined as less than 5% remaining viable tumor cells) is as low as 8%. Increasing the radiation dose in patients that still have to undergo definitive surgery is probably not clinically feasible. Obviously, investigations into radiation sensitizers maintaining radiation dose are warranted. For this purpose angiogenesis inhibitors seemed logic candidates. After observing the feasibility of the combination of 25 x 2 Gy preoperative radiotherapy with pazopanib, (NCT01985295), a subsequent phase II study confirmed our prior observations of a high pathological complete remission rate (NCT02575066). However, this efficacy was no longer observed after a radiation dose reduction to 18 x 2 Gy, while maintaining pazopanib dose. Further investigations, combining novel targeted drugs (e.g. interfering with the DNA Damage Response pathways) with preoperative radiotherapy are currently being designed and will start to accrue patients in 2020. Obviously, careful monitoring of the treatment response is obligatory is such new combined modality clinical trials. Especially correlating observations by bio-imaging (e.g. perfusion and diffusion weighted MRI imaging) with pathology are imperative.

SURVIVORSHIP

In the last decades, cancer treatments have improved significantly, leading to improved cure rates. Consequently, increasing numbers of cancer survivors are at risk of developing (late) adverse effects, which in turn may affect quality of life (QOL) and long-term survival. Therefore, treatment individualization and optimization to decrease adverse event risk, as well as early detection and monitoring strategies of adverse events are warranted.

Identification of risk groups at increased risk of treatment related adverse events

In 2019 we published two studies assessing the risk of cardiovascular disease after treatment for breast cancer. We showed that myocardial infarction rate after radiation for breast cancer increased linearly with mean whole heart dose (MWHD), with an excess rate ratio (ERR) per Gray of 6.4%. In addition, we showed that heart failure risk increased linearly with increasing anthracycline dose (ERR=1.5% per mg/m²). MWHD was only associated with heart failure risk among anthracycline-treated women. The results of these studies are currently implemented in risk prediction models. In addition, we published a study assessing subclinical cardiac dysfunction after anthracycline-chemotherapy for breast cancer. We showed that a substantial proportion of young survivors treated with anthracyclines has signs of subclinical cardiotoxicity. For detailed information, please see epidemiology section. Furthermore, performed a prospective study aimed at evaluating the prevalence of colorectal neoplasia in Hodgkin lymphoma survivors at increased risk of colorectal neoplasia. We showed that Hodgkin lymphoma survivors treated with abdominal radiotherapy and/or procarbazine have a high prevalence of advanced colorectal neoplasia.

The results of these studies show that development of preventive strategies should be considered for patients at increased risk of late treatment-related effects.

Treatment optimization to reduce side effects

The results of the multicenter randomized phase III trial (NCT01780675) to investigate neuro-cognitive functioning and safety of prophylactic cranial irradiation (PCI) with or without...
hippocampus avoidance in Small Cell Lung Cancer (SCLC) were analyzed in collaboration with the PSOE department. In between April 2013 and March 2018, 168 patients were recruited in 10 centers in the Netherlands and Belgium. 84 patients were randomly assigned to receive conventional PCI and 84 to receive HA-PCI. The stage distribution was 70% limited- and 30%-extensive stage. In this randomized phase III trial of SCLC patients HA-PCI compared to conventional PCI did not affect neuro-cognitive decline. No increase in brain metastases was observed. Conventional PCI remains the standard of care.

Accurate monitoring and modeling of adverse event development
Recent trials showed that the use of patient reported outcomes (PROs) to monitor symptoms during and after cancer treatment does not only improve adverse event management but also significantly improves QOL and overall survival. These promising results emphasize the increasingly important role of the PRO symptom monitoring tools and the need to implement these tools within clinical practice. To implement patient-reported symptom monitoring, we work on implementation of PROs for all relevant tumor types in the department.

Gaining more knowledge on who develops which toxicity and when, will facilitate dynamic modeling to update toxicity risks. By both incorporating time-varying covariates and allowing for time-varying effects, more accurate and real-time toxicity risks can be generated for each patient during treatment and follow-up.

These models will enable physicians to more precisely assess a patients’ real time toxicity risk at each follow-up moment during and after treatment, allowing for direct treatment adaptation. Tailoring treatment to the individual risk of developing a specific toxicity from a specific point in time will lead to real-time personalized decision making. Therefore, we are working on developing such models by incorporating longitudinal and dynamic information of, for example, MRI scans derived from the MR-linac during treatment.

IMAGE GUIDED RADIOThERAPY

Spatiotemporal inter- and intra-tumor variability challenge optimal treatment selection and delivery. Imaging allows to quantify such variability non-invasively. Image guided radiotherapy is the process of image acquisition, image processing and treatment modification for optimal treatment selection and delivery. Our image guided research activities span a broad range of disease sites and all major imaging modalities.

Adaptive Radiotherapy
Day-to-day shape variation in the rectum CTV results in considerable geometric uncertainties during rectal cancer radiotherapy. The purpose of this study was to increase the accuracy of treatment delivery by building a population-based library of planning CTVs for rectal cancer patients and to evaluate its potential for rectum PTV margin and PTV volume reduction. We created signed distance maps from the planning rectum CTV to each of the repeat CTVs to create the library of nine planning CTVs. For each of the repeat CTVs the best fitting CTV structure in the library was automatically selected and residual distance maps were calculated from which a new PTV margin was constructed. Residual errors were found to decrease with the number of plans in the library, but adding more than five plans yields negligible further error reduction. Margin reduction of up to 50% was achieved at the upper-anterior site of the mesorectum. In conclusion, a library of plans strategy for rectal cancer based on population statistics is feasible and results in a considerably reduced average rectum PTV volume compared to conventional radiotherapy.

MRI-guided radiotherapy
To improve the precision of dose delivery in the clinic, the department of Radiation Oncology has started MRI-guided radiotherapy with the Elekta Unity system. The department participates in the MR-linac consortium to further develop the methodology and conduct joint clinical trials. The NKI leads the consortium tumor site groups on rectal cancer and oligometastases.

The first year of clinical use has focused on the development of treatment techniques and establishing strategies for daily on-line adaptation of varying complexity. As the continuous presence of a radiation oncologist and a medical physicist during adaptive radiotherapy is not sustainable, we spend considerable effort to develop more efficient workflows that can safely be executed by radiotherapy technologists. Adapt-to-rotation was introduced for prostate cancer, resulting in an accurate treatment without the need for daily contouring. Decision tools were developed to assess the quality and physical reliability of adapted treatment plans.

Clinically, these methods are now applied for prostate cancer, rectal cancer and oligometastases. For treatment of rectal cancer, we have started with daily plan adaptation based on the anatomy of a given day. For treatment of cancers in the abdomen, a 4D-MRI technique was developed from which the mid position of the tumor during breathing motion can be derived, as well as the amplitude of the motion. In 2019, we were the first to treat patients with liver cancer with this technique worldwide. While the regulatory environment has become challenging, we aim to continue to bring these novel technologies to routine clinical care.

Quantitative MRI for radiotherapy
To realize our vision of daily adaptive treatments, the development of imaging biomarkers is necessary to track changes in relevant characteristics of the cancer and healthy tissue. The work on quantitative MRI techniques has been expanded to the MR-linac, demonstrating that daily acquisition of quantitative MRI sequences is feasible without prolonging the treatment time. This makes the Unity system uniquely suitable for MRI biomarker studies for response assessment.

EPID Dosimetry
In vivo EPID dosimetry is meant to trigger relevant differences between delivered and planned dose distributions. As part of the project to develop in vivo portal dosimetry for the Unity MR-linac, we performed a study characterizing the device for EPID dosimetry in 2018. We have now demonstrated the feasibility of two-dimensional (2D) EPID dosimetric verification for the Unity
MR-linac by comparing back-projected EPID doses to ionization chamber (IC) array dose distributions.

Despite the availability and simplicity of use of EPIDs, detector arrays are regarded as gold standard for patient specific QA. The purpose of this study was to perform a direct comparison of (transit and non-transit) EPID dosimetry against absolute dose measurements in 3D, made with the Octavius 4D system (PTW Freiburg, Germany). Two detector arrays were used: the Octavius 1500 and Octavius 1000SRS. 3D dose distributions for 68 VMAT arcs, and 10 IMRT plans were reconstructed within the same phantom geometry using both methods, and compared by means of γ evaluation. The γ-pass rate values were higher than 95% in 150 of 156 cases, demonstrating that both transit and non-transit EPID dosimetry are equivalent in dosimetric terms to conventional detector arrays for patient specific QA.

Individualizing irradiation treatment for Head and Neck patients

The SPECT-guided elective unilateral nodal irradiation was completed in January 2018. In this proof-of-concept study, 50 patients with T1-3N02b head and neck squamous cell carcinoma limited to the midline were treated electively to one side of the neck instead of the current standard of care where patients with these tumors are electively treated to both sides of the neck in order to reduce the risk of contralateral recurrence. The preliminary results are very promising. After a median follow-up of 33 months, only one patient (2%) developed contralateral regional failure after unilateral elective irradiation. Furthermore, the severity, frequency and duration of different troublesome acute and late radiation-related toxicities such as the need for tube feeding and xerostomia were significantly reduced, compared to the historical cohort treated to both sides of the neck at our institute. The follow up study (SUSPECT II) has started and will investigate in 90 patients whether the contralateral draining lymph node harbor malignancy by performing sentinel node procedure in patients with contralateral hot spot on the SPECT/CT.

Dose painting for prostate cancer

The FLAME trial, a multi-center phase III randomized trial of dose escalation in prostate cancer using external-beam radiotherapy, will reach its primary endpoint of 5y biochemical failure free survival in 2020. In this study, a focal boost to the visible tumor inside the prostate to a dose of 95 Gy was given and compared to the standard treatment of 77 Gy to the gland. In total 571 patients have been randomized. Preparing for the analysis of the primary endpoint, we have validated the contouring of the tumors inside the gland, investigated the boost dose that actually was delivered to the tumors and developed methods for localization and contouring of recurrent prostate cancers. Moreover, in collaboration with Dr. Ivo Schoots, we used a cohort of patients who received multi-parametric MRI prior to prostatectomy, to investigate the histological characteristics of the cancers that were partially missed during contouring.

Artificial intelligence

Artificial intelligence in general and deep learning specifically is a rapidly developing field that is likely to impact many aspects of the radiotherapy chain. Therefore, we are expanding our AI related research where currently 9 PhD students and postdocs are focusing on AI related projects. Similarly, our high-performance computing capacity is rapidly expanding. AI related projects range from image reconstruction and image analysis to outcome prediction. More specifically, deep learning based reconstruction of under-sampled MRI acquisition using recurrent inference machines improves image quality compared to state of the art reconstruction approaches and is robust against changes in contrast and field strength. Similar approaches are evaluated for 4D MRI methods as well as in-room cone beam CT reconstruction. U-net based net-work designs are being optimized for auto-segmentation of both organs at risk and target volumes as well as for deformable image registration. Convolutional neural nets also were shown to improve portal dosimetry reconstruction accuracy in the Elekta Unity MR-linac. Finally, deep learning is being explored to predict treatment outcome based on multi-modality imaging.
102

PhD student
Nancy Loos MSc
Jonathan Knikman MSc
PhD student
Paniz Heydari MSc
PhD student
Julie Janssen MSc
PhD student
Sanne Huijberts MSc
Kimberley Heinhuis MSc
PhD student
Steffie Groenland MSc PhD student
Jill Geenen MSc PhD student
Marie-Rose Flint-Crombag MSc PhD student
David Damoisseaux MSc PhD student
Maaike Bruin MSc
Pharmacist
Karina Scheiner PhD
Pharmacist
Robbert Kapoen MSc
Academic staff
Cynthia Nijenhuis PhD
Academic staff
Bastiaan Nuijen PhD
Academic staff
Raween Kalicharan PhD
Academic staff
Alwin Huitema PhD Academic staff
Harm van Tinteren
Division head
Pharmacology
DIVISION PHARMACOLOGY
Jos Beijnen PhD Head
Joost van den Berg PhD Academic staff
Thomas Dorle PhD Academic staff
Jeroen Hendriks PhD Academic staff
Alwin Huitema PhD Academic staff
Raween Kalicharan PhD Academic staff
Bastiaan Nuijen PhD Academic staff
Cynthia Nijenhuis PhD Academic staff
Hilde Rosing PhD Academic staff
Bart Jacobs PhD Hospital pharmacist-in-training
Robbert Kapoen MSc Pharmacist
Karina Scheiner PhD Pharmacist
Hedvig Arnamo MSc PhD student
Rene Boosman MSc PhD student
Maaike Bruin MSc PhD student
David Damoisseaux MSc PhD student
Maarten van Eijk MSc PhD student
Marie-Rose Flint-Crombag MSc PhD student
Jill Geenen MSc PhD student
Steffie Groenland MSc PhD student
Kimberley Hainhuis MSc PhD student
Sanna Huijberts MSc PhD student
Julie Janssen MSc PhD student
Karen de Jong MSc PhD student
Paniz Heydari MSc PhD student
Eveline van Kampen MSc PhD student
Jonathan Knikman MSc PhD student
Nancy Loos MSc PhD student

Laura Molenaar-Kuijsten MSc PhD student
Merel van Nuland MSc PhD student
Semra Palic MSc PhD student
Jeroen Roosendaal MSc PhD student
Ignace Roseboom MSc PhD student
Hinke Siebinga MSc PhD student
Lisa van der Heijden MSc PhD student
Marit Vermunt MSc PhD student
Luka Verres MSc PhD student
Aurelia de Vries Schultink MSc PhD student
Lotte van Andel PhD Technical staff
Gitte Baweia Technical staff
Joke Beukers Technical staff
Abadi Gebretsinaa Technical staff
Michel Hillebrand Technical staff
Danielle de Jong Technical staff
Ciska Koopman Technical staff
Luc Lucas Technical staff
Diederik Mager Technical staff
Linda Nan Technical staff
Charlotte Rentenaar MSc Technical staff
Saskia Scheij Technical staff
Joke Schol Technical staff
Bas Thijsen Technical staff
Matthijs Tibben Technical staff
Nikke Venevamp Technical staff
Rianne Voogd MSc Technical staff
Niels de Vries Technical staff
Maaike van Zon Technical staff

BIOMETRICS DEPARTMENT
Harm van Tinteren PhD Head
Rob Kessels MSc Academic staff
Marta Lopez Yurda PhD Academic staff
Vincent van der Noord PhD Academic staff
Karolina Sikorska PhD Academic staff
Erik van Werkhoven MSc Academic staff
Merel Abbenhuis Technical staff
Aziza Absahlia Technical staff
Lisette Al Technical staff
Rebecca Astill PhD Technical staff
Danny Baars Technical staff
Nathalie Barbier Technical staff
Marieke van de Belt Technical staff
Fruwkje Bessels Technical staff
Lena Billte Technical staff
Karlijn Bloemmers Technical staff
Mandy Boer Technical staff
Samira van den Bogaard Technical staff
Roos van den Boomen Technical staff
Henk Botma Technical staff
Tineke Bruinsma Technical staff
Jacques Craemhier Technical staff
Antonius Daletzakis Technical staff
Marloes de Vierik Technical staff
Marloes Dillingh Technical staff
Marion Dols Technical staff
Siri Dhona Technical staff
Brigitte Dufournij Technical staff
Eva Fechner Technical staff
Renke Fles Technical staff
Lindsay Griffink Technical staff
Yvonne Groot Technical staff
Marjolein van den Haak MSc Technical staff
Patricia Hagen Technical staff
Christian Hagenbaars Technical staff
Sing-Heng Hau MSc Technical staff
Jolanda Hes Technical staff

Division of Pharmacology & Biometrics

The division of Pharmacology & Biometrics was founded in 2016. Every year, we organize a symposium to exchange information and tighten cohesion between the Pharmacology and Biometrics departments. Drug research is one of the major themes that connects us. In 2019, Immunotherapy was the theme of our annual symposium. Research programs in the Pharmacology team focus on drug manufacturing, including cellular immunotherapies, bioanalysis and pharmacokinetics - pharmacodynamics of (anticancer) drugs for both preclinical and clinical projects. In the Biometrics team, we focus on collection and analyzing of clinical data and interpretation.

A major event in 2020 will be the move of the Pharmacy department, after more than 40 years, from the old Slotervaart hospital building next door to a brand-new building (Building I) on the NKI premises. The new pharmacy building houses modern, state-of-the-art facilities for drug storage, dispensing, manufacturing, laboratory and support services. This enables us to continue our work and to provide daily pharmaceutical patient care and research in accordance with the highest international standards.

PHARMACOLOGY

Drug manufacturing

In 2019 we continued to support >20 mono- and (international) multi-center clinical trials (e.g. DRUP, POSEIDON, SIBITO, SENSOR) with drug manufacturing, packaging and distribution. In-house manufacturing of vorinostat capsules and oral dispersion tablet formulations of docetaxel (ModraDoc006) proceeded for ongoing clinical studies. The BioTherapeutics Unit (BTU, headed by pharmacist Joost van den Berg) is the biotech facility from the Antoni van Leeuwenhoek Pharmacy where biotechnological products are developed and manufactured for clinical trials. In the past year, we continued the production of Tumor Infiltrating Lymphocytes (TIL) infusions for metastatic melanoma patients treated in the first multi-center phase III trial with TIL therapy in the world. This unique and fully academic trial now includes 96 enrolled patients (30 patients were included in 2019, a two-fold increase compared to 2017 and 2018). In 2019, BTU produced 7 TIL products in-house and guided the production of another 6 productions by neighbouring blood bank Sanquin. BTU has previously produced DNA vaccines for HPV induced malignancies. The second generation of vaccines are currently tested by the Gynaecology department (prof. G. Kenter). In 2019, 4 patients have been treated in this trial. Total enrolment is now almost finalized (13/14) for this phase II/II clinical trial. No substantial toxicity has been observed and vaccine-induced T cell responses have been observed.
In parallel to current clinical production activities, BTU is preparing itself for future clinical trials. We are aiming to apply TIL therapy in other malignancies. In our collaboration with NEON therapeutics (Cambridge, MA), we develop new T cell therapies directed against patient specific neo-antigens. In this product, patient-unique, neo-antigen directed T cells are cultured from autologous peripheral blood by several rounds of peptide stimulation. For this collaboration, large scale engineering runs have been successfully executed. Submission of the Investigational Medicinal Product Dossier (IMPD) and clinical study is scheduled for end 2019. The pharmacy holds a governmental GMP (Good Manufacturing Practice) license for these manufacturing activities of pharmaceutical products.

Bioanalytical method development + implementation in pharmacokinetic studies

Therapeutic Drug Monitoring (TDM) is a useful tool to optimize the dose of orally-administered anticancer drugs if a clear relationship between the dose and exposure, exposure-response and/or exposure-toxicity has been established. According to several clinical studies, such relationships might exist for poly (ADP-ribose) polymerase (PARP) inhibitors. To support the TDM of this relatively new class of compounds, a liquid chromatography–mass spectrometry (LC–MS/MS) assay was developed and validated for the combined analysis of the five PARP inhibitors niraparib, olaparib,rucaparib, talazoparib and veliparib. A simple and fast sample pre-treatment method was applied by protein precipitating of plasma samples with acetonitrile and dilution of the supernatant with formic acid (0.1% v/v in water). This was followed by chromatographic separation on a reversed-phase UPLC BEH C18 column and detection with a triple quadrupole mass spectrometer operating in the positive mode. Beside PARP inhibitors, we supported the TDM programme of another 39 orally-administered anticancer drugs and in 2019 more than 6,000 plasma samples were analysed for this purpose.

For a proof-of-concept study to determine the absolute bioavailability of oral imatinib (Glivec®) during steady state plasma pharmacokinetics in cancer patients, we developed an LC–MS/MS assay that quantified orally-administered imatinib (400 mg once daily) and deuteron-labelled imatinib (imatinib-D₃), administered intravenously as a single 100 µg microdose. For both analytes, imatinib-¹³C,D₃, was used as an internal standard. After concomitant administration of an intravenous microdose and an oral therapeutic dose, large differences in systemic plasma concentrations of these analytes emerge. This requires adequate drug labelling of the microdose, as the unlabelled drug might interfere in higher mass transition channels because of the presence of naturally abundant isotopes. Furthermore, the labelling locations should be selected outside the metabolic hot spots to prevent a kinetic isotope effect. The studies of the results demonstrate the potential to use a stable isotopically-labelled microdose in combination with LC–MS/MS for the assessment of absolute bioavailability. By using the stable isotope labelled microdose trial design, the number of dose events and collected plasma samples can be reduced when compared to a conventional crossover design. Furthermore, it is no longer required to use ¹³C-radiolabeled drug as the microdose.
To date more than 30 anti-cancer monoclonal antibodies (mAbs) have been approved by the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA). The increasing popularity of these therapeutic proteins has led to a growing demand for accurate and reliable bioanalytical methods of these macromolecules to support clinical studies. The data generated by these methods could help in better understanding of the drug pharmacokinetics including concentration of the drug over time and distribution of the drug in different bio fluids. These data might aid in optimizing treatment and assessing appropriate dosing schedules. Quantitative LC-MS analysis of mAbs faces great analytical challenges. Plasma and serum contain an abundance of endogenous proteins and their concentrations may vary more than 10 orders of magnitude. These compounds could potentially interfere with the MS signal and complicate the analysis of relatively low levels of therapeutic mAbs. Besides, high molecular weight proteins such as mAbs are likely to distribute over many charge states in the MS, dropping the signal intensity per charge state significantly. In order to reduce interferences and improve sensitivity, sample clean-up and enzymatic digestion yielding peptide markers was selected for the quantification of nivolumab and pembrolizumab in human serum. Our newly obtained quadrupole time-of-flight accurate mass spectrometer is now used to setup a method for the quantification of these MAbs in human serum.

We continued to support pre-clinical pharmaceutical research with carboplatin, cisplatin, endoxifen and olaparib. Samples from pharmacokinetic interaction studies with multidrug efflux transporters and multidrug metabolizing enzymes in vitro transport systems and from knockout and transgenic mice were analysed (abemaciclib, ribociclib, milciclib, tivozanib, capecitabine, irinotecan, vinorelbine, morphine and ibogaine). Routine analysis to support clinical trials within and outside the Institute concerned docetaxel, capecitabine, vorinostat, doxorubicin, daunorubicin, etoposide, gemcitabine, vincristine and platinum (originating from cisplatin, carboplatin and oxaliplatin). Dihydropyrimidine dehydrogenase substrate uracil was quantified in serum of patients for a multicentre study to prevent the increased risk of developing severe fluoropyrimidine-related toxicity.

In recent years, we have been involved in designing the new pharmacy facility and we are looking forward to move into the new building in 2020.

Pharmacokinetic and Pharmacodynamics (PK/PD) modelling and simulation

The modelling and simulation group of the department of Pharmacy & Pharmacology maintains a high-performance computational server, part of the NKI Research HPC facility, dedicated to PK/PD modelling and simulation purposes. The group develops modelling methodologies to relate drug exposure to diverse measures of treatment outcome for both toxicity and efficacy. PK/PD modelling and simulation has been applied to optimize therapy of approved anticancer and novel agents used in clinical trials. This research focussed mainly on PK and PD in special patient populations typically underrepresented in clinical trials. We have developed a PK/PD model for bortezomib in children. In this model the relationship between body size and PK was studied and the relationship between PK and proteasome inhibition in PBMCs was quantified. For docetaxel further PK
and PD studies were performed: (i) showing that castration-resistant prostate cancer patients have a lower exposure to docetaxel and consequently less neutropenia and (ii) the complex pharmacokinetics of oral docetaxel in combination with ritonavir has been described in a population PK model.

Since 2010, a large-scale Therapeutic Drug Monitoring program is operational for precision dosing of oral anticancer agents. Most kinase inhibitors have a narrow therapeutic index. However, the currently approved dosing paradigm is a “one-size-fits-all” approach. We implemented TDM for these drugs in clinical practice, where plasma concentrations are routinely measured and reported to the treating physician together with a clinical pharmacological review and dosing advice. In 2019 this program has been expanded with newly introduced compounds. We have shown that exposure to abiraterone and pazopanib in patients with low exposure can be increased in a cost-neutral way by concomitant intake with food (abiraterone) or by splitting the dose (pazopanib).

In collaboration with the Department of Nuclear Medicine, a program was started to use PK/PD modelling and simulation for optimization of the use of radio-pharmaceuticals for diagnostic and therapeutic purpose. Within this program we aim to optimize 1) the selection of peptide, 2) peptide content and 3) administered radioactivity for radionuclide labelled peptides used in clinical practice.

Our program on treatment optimization of the repurposed anticancer PI3K/Akt inhibitor miltefosine for the neglected tropical parasitic disease leishmaniasis has been extended to other antibiotics, with various clinical PK/PD studies initiated and ongoing in 2019 in India, Bangladesh, Sudan and Kenya, funded partially through H2020. We showed that children with leishmaniasis require a higher mg/kg miltefosine dose to effectively treat the disease. To support the translation of preclinical drug candidates to the clinic, we have expanded our modelling expertise and activities towards physiologically-based pharmacokinetic modelling (PBPK) to enable the prediction of target site/target tissue exposure, based on physicochemical properties of compounds, as well as translation of animal to human PK.

BIOMETRICS

The Biometrics Department serves as the medical data center of the institute and provides the infrastructure for clinical research through biostatistical support, centralized patient data collection and documentation, data processing and coordinated administration and monitoring of clinical trials. The statisticians and projects managers collaborate in clinical research projects both within the institute and in national and international multicenter studies. Working procedures follow Good Clinical Practice and reporting and data sharing follow National and International laws and guidelines.

Tumor Registries

Three important types of registries are maintained by the tumor registry group. Traditionally, and since 1977 electronically, the group collects data from dossiers of patients visiting the hospital with benign tumors, pre-malignant, and malignant tumors. Depending on the clinical involvement at the hospital with respect to the diagnosis and therapy of the tumor, the number of items collected ranges from minimal to very extensive. The registry allows querying medical information for indicators, research projects and policy matters. From July 2018 until July 2019, 10,505 tumors were added to the register. A selection of cases of about 3500 tumors, who have been diagnosed and/or treated primarily in the Netherlands Cancer Institute, is sent to the National Cancer Registry at regular intervals.

A second series of registries belongs to the category of quality registers. Most of these registries are developed by the Dutch Institute for Clinical Auditing (DICA). DICA aims at creating valid monitoring systems for quality in healthcare by collecting a fixed set of items of interest per area over time. The system is set up to continuously audit quality of care through online benchmarking, taking patient- and disease characteristics into account. Between July 2018 and July 2019, 2498 patients were registered in 12 different specialized cancer registries, i.e. breast (NBCA), colorectal (DCRA), upper gastro-intestinal (DUCA), lung surgery (DLCA-S) and lung radiotherapy (DLCA-R), melanoma (DMTR), gynecologic (DGOA) and gynecologic radiotherapy, liver (DHBA) and head and neck cancer (DHNA). An implant registry (DBIR) is generated directly from the electronic sources and last year a bladder cancer registry (Blazib) was started, organized by the IKNL. A substantial amount of data in the registries is recorded in an unstructured way. In collaboration with information specialists from the department I&A, efforts are made to complete the registries more efficiently by connecting various electronic sources and writing sophisticated queries.

A third registry, starting from July 2015 is the Landelijke Basisregistratie Ziekenhuiszorg (LBZ). This is a registry of medical, administrative and financial data of patients at the outpatient clinic, the daycare department or who have been hospitalized. Key aspects are the use of ICD-10, an international coding system for diagnosis, and a standardized list of medical activities.

In 2018 the DataDesk was introduced in the institute. The DataDesk is a virtual desk for data- and information requests from anywhere in the institute; e.g. scientific research, business and management questions and clinical questions in general (quality-, diagnostics-, treatment related). The idea is to facilitate researchers, clinicians and staff by providing one single point of access for all questions. Questions can be asked by completing in a web-form. Questions and answers are recorded, stored and are thus retrievable. A team is available to answer questions either directly, by using the tumor registry or other sources from the data warehouse (DWH) or to relay the questions to the relevant subdesks, i.e. experts in particular areas with access to specific sources of data. Before answering, a request is checked for the necessary approval, which is, in case of individual personal data permission of the Institutional Review Board (IRB) or the Medical Research Ethics Committee (MREC). The department plays a central role in this process and is training new desk employees. In 2018, 500 questions were centrally recorded and in 2019 more than 600.
Clinical Trial Service Unit

The Biometrics Department provides logistic support for clinical trials performed in and by the institute. For a full investigator-initiated trial there is a line-up of people involved: Clinical Project Managers facilitate the development of protocols and submission to Medical Research-Ethics Committee (MREC) and coordinate the projects; local data managers facilitate the initiation of studies and perform the registration of pre-screening, screening and entry of patients into clinical trials. They perform drug resupplies and are the source of information with regard to clinical trials in general. Central data management designs the Case Record Forms and takes care of the quality of the central data bases of investigator-initiated studies and monitors these to ensure that the clinical trials are conducted, recorded, and reported in accordance with the protocol, Standard Operating Procedures (SOPs), Good Clinical Practice (GCP) and the applicable regulatory requirement(s). All processes follow a Quality Management System which was formally introduced in 2018 and is based on ICH-GCP(R2) and published on the internal document management system (figure 1).

The number of studies – approved according to the Medical Research Involving Human Subjects Act (WMO) – open for patient inclusion over the past 5 years is ranging between 230 and 250, while the number of patients registered still increases. In 2019 well over 3,000 patients were registered centrally in one of the WMO-approved studies (figure 2).

Methodological support to clinical trials

In October, the first results of the Drug Rediscovery Protocol Study (DRUP) were published in Nature. The study is an adaptive, precision-oncology trial that aims to identify signals of activity in cohorts of patients, with defined tumor types and molecular variants, who are being treated with anticancer drugs outside of their approved label. Currently more than 140 cohorts are opened and over 500 patients have been included. The study makes use of a novel design called a master protocol, e.g. multiple hypotheses are investigated through concurrent and adaptive sub-studies. The DRUP study is actually a combination of basket trials (targeted therapy is evaluated on multiple diseases) and umbrella trials (multiple targeted therapies for a single disease that is stratified into subgroups on the basis of specific molecular alterations). Each single cohort has a Simon-like, two-stage design in which for the first stage 8 patients need to be enrolled and at least 1 response needs to be observed to continue to the next stage, where up to 24 need to be enrolled and 5 or more patients have to experience clinical benefit to call it a successful cohort. Similar master protocols are running in North America and Canada. Together with statisticians from the other groups, we are working on solutions for the fact that due to low prevalence of many genomic variants there is a finite number of patients that can be enrolled in a specific cohort. Our aim is to provide practical guidance on how best to share or combine efficacy data across the three trials (TAPUR, DRUP and CAPTUR) and which will enable each group to achieve their objectives. A PhD student is studying unbiased estimators of (incomplete) cohorts, multiplicity of inference and methods for combining and sharing in the context of master protocols.

Figure 1. Clinical Trial Service Unit

Figure 2. Number of patients enrolled in WMO-studies in the past 5 years
Within the international pediatric renal tumour study group (SIOP-RTSG), data of both the 9301 and the 2001 study are an important source for unique analyzes. For example, the prognostic significance of age was studied in a cohort of 5631 patients with Wilms tumour (WT) and needle biopsy was studied as a potential risk factor for local recurrence in 969 biopsies out of 2971 patients. The UMBRELLA protocol was approved in the summer of 2019. This is a registration study and trial providing a detailed treatment plan for primary and recurrent WT and a randomized trial for metastatic patients. Biobanking of material is part of the standard procedure for participating. The department has created the ALEA database that makes it possible to collect detailed clinical data, but also allows uploading DICOM images. A ‘trusted-third-party’-solution guarantees the privacy and security of the data. Currently, data on the first 100 patients from 8 different countries have been entered, including for example Brazil and China. A large number of countries around the world is lined-up to be initiated.

The number of immunotherapy studies and the number of patients included in those studies is ever-increasing. In 2019, the OpACIN-neo trial was published and identified - echoing the earlier OPACIN trial - a feasible combination dosing schedule for broader clinical use in melanoma patients. Also, the results of the randomized multi-cohort TONIC trial were published. The TONIC trial aimed at identifying a treatment strategy that may be utilized as priming strategies to improve the efficacy of PD-1/PD-L1 blockade in Triple Negative Breast Cancer. The study applied a 'pick-the-winner' strategy, considering clinical responses and translational findings, with a Simon’s two-stage design to decide which cohorts would be expanded. Mostly based on the translational results of the TONIC study, the TONIC-2 study will be opened in 2020.
INTRODUCTION

The Technology Transfer Office (TTO) helps NKI-AVL researchers and clinicians in concluding contractual agreements around research collaborations and -materials, both with other academic research institutions as well as with industry. TTO is charged with advancing the application of NKI research results in healthcare. One of the major aims of the NKI is to see its scientific breakthroughs being turned into novel products and services that benefit cancer patients and their families. On occasion, NKI applies for patent protection for promising new technology developed within the institution as a means to attract investment from companies for new product development. TTO manages the patent portfolio and other intellectual property assets of the institute and actively engages with life science and healthcare companies and investors who have the commitment and resources to bring our innovations to the market. TTO also handles all consultancy agreements for the institute and has a sizeable portfolio of research materials which it licenses to industry.

COLLABORATIONS ON KNOWLEDGE TRANSFER

Since 2014, NKI-AVL has supported Maastro Clinic – a radiotherapy clinic and research centre – in Maastricht with both legal and business development support for Maastro’s clinical and pre-clinical research programmes. While the support provided by the NKI-AVL TTO was initially underpinned by temporary contracts, Maastro and NKI-AVL signed a long-term support agreement in 2019. Also in 2019, NKI-AVL and the Prinses Máxima Centrum (PMC; the dedicated pediatric cancer hospital in the Netherlands) signed a multi-year collaboration on tech transfer, under which PMC and NKI-AVL jointly selected and appointed three legal FTE to work at PMC, supported by further legal and business development expertise from the TTO of NKI-AVL. And NKI-AVL formalized a support agreement with Oncode Institute, under which a number of staff members of NKI-AVL are seconded part-time to Oncode and legal support for the Valorization Team at Oncode is provided by the NKI-AVL TTO.

SELECTED ACHIEVEMENTS

Pyrophosphate drug development for calcification disorders and Pseudoxanthoma elasticum (PXE)

Pyrophosphate (PPi) treatment has potential to treat calcification disorders including the rare genetic disorder PXE, and the research group of Piet Borst played a role in discovering that PPi drugs could be given orally for reduced patient burden and improved treatment. This discovery nonetheless requires further elaboration to be turned into a drug. In late 2019, NKI-AVL entered into an option agreement with Panorama Research Inc. to evaluate PPi drug development. In lieu of a full license, we agreed that a lower-risk option evaluation period would allow Panorama to pursue development of improved formulation and dosing of new PPi treatments, as well as to determine the requirements for clinical trials to measure safety and efficacy of these treatments. This option ensured that they would provide best efforts and also established eventual licensing terms. If further development is deemed feasible, Panorama will convert the option agreement to a license, establish a new company, and obtain adequate funding to cover development through clinical proof-of-concept (Phase 2a/b). The eventual license will include socially responsible licensing milestone payments as further development stages are achieved, as well as eventual royalties if the drug reaches the market.
Magnetic localization for improved navigation to biopsied tumors

The research group of Theo Ruers had developed tiny, implantable localization magnets which allow surgeons to return to previously biopsied breast cancer tissue in the event that the biopsy identified malignancy. This technology was the subject of a shared NKI-AVL & University of Twente patent application and was subsequently the basis for a spinoff company – Sirius Medical – to be founded. In 2019, NKI-AVL TTO, in conjunction with University of Twente, negotiated a license agreement with Sirius to enable them to use this IP, and if Sirius acquires sufficient funding capital for further investment, the company takes legal ownership of the IP. NKI-AVL is a minority shareholder in Sirius, which expects to achieve CE-marking of its combination beacon-sensor system by mid-2020, and for commercialization immediately thereafter.

HEALTHY IDEAS, HEALTHY RETURNS VENTURE PLATFORM

In 2016, the TTO of NKI-AVL initiated and organized the first joint meeting of venture teams from all Dutch academic hospitals, the Hubrecht Institute and NKI-AVL where these teams pitched their investment proposals to specialized, early-stage life science venture capital investors. Since then, the platform has grown very rapidly and in 2019 crossed international borders when first the Flemish academic research organizations and subsequently the Walloon and Luxemburg life science research centres joined the platform as well. ‘Healthy Ideas, Healthy Returns’, as the platform is called, is now supported by 28 public research organizations in the Benelux and 38 investment funds and is expanding its activities to become a network organization for early-stage health ventures (www.hihr.eu). The platform receives further support from J&J Innovation through sponsoring and training of venture teams.

TTO 2019 IN NUMBERS∗

License income: € 5.041.253
Freely disposable income from commercial research and consulting: € 985.230
In total, 1327 contracts were negotiated and executed in 2019, of which 22 were license agreements.

TTO received 25 invention disclosures and filed 10 priority patent applications in 2019.

Number of research & KT contracts concluded

* some numbers are still provisional at this stage as financial records for 2019 are still to be finalized.
Modern day biomedical research depends on expensive equipment and extensive experience with very specialized techniques. Individual researchers need to use a wide range of techniques for their work. It is impossible for anyone to master them all or to be given the budget to buy all the equipment they are likely to need. The NKI has resolved this problem, and used its funding in the most efficient way, by creating dedicated, centralized technology (core) facilities that serve the whole institute. These research facilities play an essential role in almost all research performed at the NKI. All NKI scientists have direct access to these facilities. Involvement of user committees and periodic review of the facilities ensure that the facilities maintain a high standard and cater to the needs of the researchers.

The facilities of the NKI are offered free of charge to NKI-researchers. In some cases, the costs of consumables are charged to the budget of the research group. There is in principle no restriction on the amount of time one can utilize a certain facility. When extensive support from a facility is required, this is discussed beforehand and in some cases group leaders transfer some of their budget to the facility in order to finance extra support (e.g. for recruitment of extra staff).

Most facilities of the NKI are supervised by a user committee. The Research Council installs these user committees. The user committees consist of faculty members and postdocs, PhD students and/or technicians. They meet at least once a year and they see to the quality of the service provided by the facility and make sure that the facility caters to the need of the researchers. They also review requests for new equipment for the facility and discuss implementing new technologies. The head of the facility and the director of operations are invited to the user committee meetings.

The research facilities of the NKI are presented on the next pages. In addition, the institute has a biometrics facility and a clinical trial unit that both support clinical research (see description under Division of Pharmacology & Biometrics and under Division of Medical Oncology) and a pharmacy which is licensed to manufacture drugs and cell therapies for use in humans (see description under the Division of Pharmacology & Biometrics). In addition to these facilities we also provide the researchers with the following facilities:

- the Biostatistics Center provides statistical expertise to researchers and doctors on diverse topics from all areas of observational and experimental biomedical cancer research. This involves developing and implementing statistical approaches to cover a wide range of subjects including the design and analysis of epidemiologic studies and clinical trials, the identification of prognostic and predictive biomarkers, sample size calculations, risk prediction, as well as animal and in vitro experiments. Members of the Biostatistics Center routinely employ the following statistical methods: parametric and non-parametric hypothesis testing, linear and non-linear regression models for binary responses, continuous and time-to-event outcomes, mixed models for longitudinal data, propensity scores, missing data imputation techniques, competing risk modelling, weighting, exact methods for small sample sizes, simulation studies, cross-validation, and receiver operating characteristic methodology;

- the Data Desk provides access to the fast amount of data collected at our institute over the years: data about diagnosis, treatment, treatment outcome, patient characteristics, etc. All these data are collected via different systems, such as the electronic patient records (HiX), pathology databases, clinical laboratory systems. These systems are mined via a data warehouse that brings together the data from a patient or tumor for the different applications. Researchers can ask for a dataset to be retrieved via the data warehouse through the data desk. First, they fill out a brief request form and then a data steward will discuss what they precisely need. This leads to retrieval of the actual information needed to answer their research question and also supports data-minimization (a requirement of the General Data Protection Regulation). The dataset is handed out after being registered and after a check.
has been performed on consent of the patients for use of their data (General Data Protection Regulation requirements). Afterwards, enriched data can be fed into the data warehouse for later use;

- the Sequencing Facility performs DNA sequence and fragment analysis for users in the research divisions and the DNA-diagnostics laboratory of the Department of Human Pathology. The Sequencing Facility has an important role in the diagnostic analysis of patient samples. Its procedures and protocols are therefore accredited by the Accreditation Council (RvA). Researchers from all divisions make use of the service provided by the facility. The facility is equipped with a 3730 DNA analyzer capillary sequence machine, which can handle up to 96 samples simultaneously, and a 3500xL Genetic Analyzer capillary sequence machine. The sequence facility handled approximately 35,000 samples. This type of sequencing can now be done as good, as efficient and for a lower price outside the institute and therefore we will close this facility early 2020;

- in 2019 the NKI got its own Electron Microscope (EM) again. From June until August this system was assembled in the basement. When the built-up was finished people were trained. We now have a 200 kV JEOL F200 EM mounted with a refurbished K2 high resolution camera and software for doing cryoEM on protein complexes. We also have access to EM’s at the Amsterdam University Medical Center for morphology in plastic embedded material and quality checking of cryoEM grids that needed to be imaged at NECEN (Leiden) on the 300 kV Titans;

- IT support for the development of software and databases and access to high performance computing facilities. This support is provided through the general IT department of the institute but also through a dedicated group of IT specialists;

- library with dedicated support for data management and literature searches and providing access to a large collection of electronic journals and books;

- cryogenic storage of cells and tissues in a centralized liquid nitrogen storage facility;

- culture labs at different containment levels;

- dedicated labs for working with radionuclides or carcinogens;

- technical workshop that can make modifications to existing equipment or develop new tools;

- glassware cleaning.

Furthermore, researchers are supported by the finance, HR, training, IT, communication and general services departments.
The NKI Proteomics Facility supports users from all over the institute to address proteomics questions within their research projects. The facility provides advice, performs proteomics sample preparation, runs the LC-MS/MS systems and performs data analysis. The facility is involved in many research projects and reports on these subjects in scientific publications with NKI investigators.

Equipment and Workflow

Our Facility operates a Thermo Orbitrap Fusion hybrid mass spectrometer equipped with a Proxeon nLC1000 nano-LC system for LC-MS/MS-based peptide/protein identification and quantification. Aided by funding from the NWO X-Omics Initiative, a second, state-of-the-art Thermo Q Exactive HF-X hybrid Quadrupole-Orbitrap mass spectrometer with a Proxeon nLC1200 nano-LC system was installed early 2019.

Researchers contact our facility with their proteomics question(s) and we discuss the optimal experimental design with them. Samples are then typically delivered as either gel (bands), immunoprecipitation beads, cell pellets or lysates. In all cases, the facility then performs sample preparation which involves enzymatic digestion of proteins to peptides for bottom-up proteomics. Depending on sample complexity or the specific research question, samples are pre-fractionated at the protein level by SDS-PAGE, or at the peptide level using a dedicated offline High-pH HPLC fractionation system (Agilent 1200) in order to increase depth of proteome coverage. Peptide samples are run on one of the LC-MS/MS systems, after which data analysis is performed using dedicated software. Finally, data sheets containing identified and/or quantified proteins, protein modification sites, identified protein interactors, regulated proteins/modification sites or pathways are communicated with the researcher.

Over 50 experiments

Projects to which the facility has provided their services include mostly immunoprecipitation experiments aimed at unraveling protein-protein interactions, global proteome profiling of cell lines and post-translational modification-focused profiling such as protein phosphorylation and ubiquitination. In 2019 we have performed over 50 experiments for researchers from 20 research groups within the institute. We saw a clear increase in the number of larger-scale discovery projects employing both whole proteome and phosphoproteome profiling and we expect this trend to continue.
The NKI Robotics and Screening Center (NRSC) accelerates research by providing integrated services ranging from functional genomic screening, small molecule screening, high-throughput liquid handling and robotics to data analysis and integration. A major focus of the NRSC is to develop technology platforms for the discovery of gene function, the unraveling of molecular pathways, the identification of novel drug targets and to support small molecule screening. In addition, the NRSC is a resource center that provides automated technologies for medium to high throughput applications, provides support and expertise for automated cell and biochemical assays and is used for the development, production and maintenance of large functional genomic screening reagent collections.

Since the generation of the first NKI human shRNA library in 2002, we have extended our RNAi platform with several large (genome-wide) collections for human and mouse. These collections are available as individual reagents and can be used to generate smaller sub-collections for specific screening projects. We have generated several sub-collections representing gene-sets of interest. In addition to our RNAi platforms we also provide access to CRISPR/CAS9 technologies. We have a pipeline for the production of custom libraries for subsets of genes for specific applications using custom vector designs. We have also acquired different genome-wide sgRNA libraries for human and mouse. In addition, we have incorporated technologies that allow for the (inducible) inhibition (CRISPRi) or activation (CRISPRa) of gene expression in mammalian cells.

In 2019, we have assisted more than 30 researchers with their screening projects. The majority of these projects involved our pooled CRISPR screening platforms and support was given in the design of the screens, providing screening reagents and protocols, the generation of custom sgRNA libraries and data-analysis and interpretation of the screening results. We have also provided individual reagents for validation and follow-up.

We have supported seven small molecule screening projects in 2019. The majority of compound screening projects made use of our compound screening library of ~2500 compounds including those present in the LOPAC collection (1,250 pharmacological active compounds), the NCI diversity and oncology sets, the John Hopkins FDA and foreign approved drugs and bioactive compounds (1,450 compounds) and several enzyme specific collections including kinase, apoptosis, epigenetic modifiers and a collection of protease inhibitors. Recently, we have extended our platform with a drug repurposing collection of more than 5500 compounds that are either approved or in clinical testing. The small molecule collections have been used for cell-based screening for the discovery of synergistic combinations, synthetic lethal interactions, drug-sensitizers, senescence inducers, stress-inducers and drugs affecting cross-presentation.

During 2019, we continued to improve and extend our technology platforms. We have improved our data analysis pipeline for screening results. Originally, pooled screens were largely based on cell proliferation and survival but recently we have extended our pooled screening platforms using other types of read-outs based on single cell markers, protein expression or make use of cellular reporters that reflect cellular processes such as DNA damage and repair. The NRSC is further extending its genome editing capabilities with improved generation of (conditional) knock-out cell lines, single well screens with sequencing-based read-outs using multiplexing and barcoding and single cell technologies.
The NKI aims to make a significant contribution to solving the cancer problem by conducting excellent research. An essential part of this research involves preclinical experiments with the help of laboratory animals. Thanks to the unique knowledge and expertise, the state-of-the-art facilities, the development and implementation of innovations, and the support of excellent research, the NKI Laboratory Animal Center (LAC) plays an (inter)national leading role in preclinical cancer research with laboratory animals; all this with specific attention to hygiene and safety and respect for our employees and the animals.

Activities

The LAC is a state-of-the-art animal facility housed in a new 8,000 m² building that was established in 2013 and became fully operational in 2016. The LAC has a maximum capacity of 21,000 individually ventilated cages (IVCs) for holding wild-type and genetically engineered mice and rats. All animals are housed in disposable IVC systems, which minimizes the risk of cross-infection and obviates the need for a robotics infrastructure for cage-washing.

The LAC provides services to approximately 200 NKI researchers working with mouse and rat models of human cancer. The LAC also provides cancer research services to a growing number of external academic customers and several small pharmaceutical companies in the Netherlands.

The LAC consists of five independent microbiological units:
- The T3 breeding unit is dedicated to nucleus- and production breeding of mice under specific and opportunistic pathogen free (SOPF) conditions. This unit is only accessible for authorized staff of the animal facility. All mouse lines that are rederived via caesarian section or embryo transfer, or recovered from frozen sperm or embryos, are imported into this unit.
- The T3 BSL2 unit is a negative barrier area for BSL2 experiments and infection studies. Depending on the infectious agent, mice are housed in IVCs or isolators.
- The T2 unit is a combined experimental and breeding unit where mice are kept under specific pathogen free (SPF) conditions. T2 supports the Animal Model facility that creates custom-made genetically engineered mouse strains for researchers and performs cryopreservation of mouse strains by freezing sperm or embryos.
- The T1 unit is a negative barrier area that houses the Mouse Cancer Clinic for preclinical imaging and intervention studies with mice and rats. This unit is equipped with small-animal systems for image-guided radiation therapy (IGRT), bioluminescence and fluorescence imaging, MRI, PET-CT, SPECT-CT, and intravital imaging.
- The T0 quarantine and sanitation unit is dedicated to importing mice from non-approved vendors or other research facilities. All mice are sanitized either via embryo transfer or caesarian section.

A team of 25 animal caretakers and 2 team leaders are responsible for the day-to-day care of the animals and biotechnical support on T0, T2 and T3. General support is provided by a dedicated logistics team and two office managers. An information manager is responsible for various laboratory animal related IT systems and its output towards end users. Three veterinarians supervise the health and welfare of the laboratory animals. They also support the researchers by contributing to the responsible design and implementation of animal experiments and by proposing possible alternatives.
The BioImaging Facility provides scientific and technical support in basic and advanced light microscopy and image processing and analysis. We manage a diverse collection of light microscopes systems for brightfield and fluorescence applications, including widefield, confocal, and superresolution systems. We provide dedicated application trainings to microscope users of the institute and offer courses in light microscopy and image analysis. The BioImaging Facility is part of LCAM (van Leeuwenhoek Centre for Advanced Microscopy, Amsterdam), a formal collaboration between three innovative microscopy centres, located at the University of Amsterdam (UvA), the Academic Medical Centre (AMC) and the Netherlands Cancer Institute (NKI). The BioImaging Facility, together with the Jalink lab and Van Rheenen lab constitute the NKI part of LCAM.

The Bioimaging staff provide the following services:
- Setup daily maintenance and regular quality checks of the microscopes
- Expert advice on experimental design and sample preparation
- Microscopy and image analysis training (introductions, workshops, courses)
- Custom solutions for image processing and quantification
- Data storage and backup on a central server
- Small maintenance of microscopes in other departments
- Technical advice for grant applications and microscopy purchases
- Access to and assistance with functional and/or advanced imaging techniques (FRET, FLIM, FCS, SuperResolution, Multiphoton, Intravital Imaging)

Training and courses
- Introduction to microscopy (1.5-day course; eight to ten times a year)
- In the footsteps of Antoni van Leeuwenhoek (5-day graduate school basic microscopy course; twice a year)
- ImageJ/Fiji (image processing & Analyses course; two to three times a year)
- We regularly (~annually) participate in FEBS- and EMBO-sponsord advanced imaging courses (organized via LCAM)

Equipment list
- A Spinning Disk Confocal (Andor Dragonfly)
- Four Confocal Microscopes: Leica SP5 (2x), Leica SP8, Zeiss Airyscan LSM 980
- A TIRF microscope (Leica)
- Three (live imaging) widefield microscopes (Zeiss Axio Observer Z1)
- A color widefield microscope (Zeiss Axiovert 200M)
- AxioScan slide scanner (Brightfield and Fluorescence) (Zeiss)
- A Macroscope (Zeiss AxioZoom V16 Stereo microscope)
- Three high-end workstations with image processing & analysis software (Huygens, Imaris, Matlab, Leica en Zeiss Zen)
- HIVE: High Speed Centralized Data Repository

Publications
Activities

The Core Facility Molecular Pathology & Biobanking (CFMPB) registers, coordinates, supports and facilitates (translational) research involving human biospecimens (serum, blood, circulating DNA, FFPE and fresh frozen biopsies, DNA, RNA etc.) in the context of optimally controlled medical-ethical issues using the Application & Request tool (ART-IRB for registration and review of studies with human biospecimens & data and new Biobanks).

The CFMPB has fully equipped and dedicated Molecular and a Histology/Immunohistochemistry (IHC) labs. All routine IHC and newly developed IHC protocols (single & multiplex, brightfield and fluorescent), RNA scope and FISH are performed using the BenchMark & Discovery (Ventana) automated stainers (320 protocols; 227 in research setting), all in close collaboration with the Pathology department and the pathologists. The new 3D Histech P1000 & Vectra-3 scanners in combination with slidescore and HALO software tools enable digital pathology and multi-spectral image analysis. In 2020 we will explore new potential high throughput biomarker discovery immune profiling techniques (e.g. MACsima and TissueCytoff). All DNA and RNA isolations from human biospecimens are performed by the CFMPB technicians and in collaboration with clinical chemistry, using the Qiacube or Qiasymphony, according to standard protocols and QC. Molecular analysis techniques like e.g. (RT)-PCR, MLPA, HPV, Sequenom, nCounter Nanostring FLEX are offered. In 2019 we have registered 87 new studies (421 studies up and running) and handled 917 lab requests (including e.g. 30.767 FFPE & 1736 FF numbers, 7831 DNA/RNA isolations and 10.695 IHC & 8570 HE stains).

Selected publications

The genes within the DNA encode all the proteins that a cell requires to stay vital and function properly within a living organism. Proteins are essential molecules involved in almost all biological processes. DNA damage – as occurs in cancer – may cause mutations within genes and hence can lead to generation of dysfunctional proteins. These mutated proteins could become inactive or even hyper-active and cause deregulation of cellular function and -growth. To understand the (dys)function of proteins, recombinant proteins can be designed, produced, purified and subsequently be characterized by a variety of functional and structural methods in vitro. The Protein Facility provides dedicated equipment, knowledge and experienced personnel to support all these experiments. Access is offered to both internal and external academic researchers.

Equipment

The facility houses multiple shakers and incubators for protein expression in E. coli, Sf9 insect cells and mammalian cells. Automated chromatography systems are available for purification of proteins at analytical- or preparative scale. Access to a selection of biophysical instruments is offered for protein characterization, including: A Prometheus thermal analysis system (Nanotemper); Biacore T200 SPR (GE Healthcare), VP-ITC (Microcal) and MST (Nanotemper) for protein interaction studies; PHERAstar and CLARIOstar (BMG Labtech) plate readers for fluorescent experiments; SEC-MALLS (GE Healthcare and Wyatt) for determination of molecular weight and composition of protein complexes. The facility also supports high throughput protein crystallization screening and optimization using a CyBi-SELMa (CyBio) liquid dispenser, a Mosquito (TTP Labtech) nanoliter drop setter, a Formulator (Formulatrix) for liquid preparation and two RockImager systems (Formulatrix) for storage and automated imaging of crystallization trials at 4 °C and 20 °C.

Projects

Within the past year, the facility has provided support to multiple projects filed by more than 10 research groups within the NKI-AVL. Together these projects covered all facets of the facility, from protein- and antibody production to biophysical characterization and crystallization. The facility also maintains a repository of reagents that are of common use to many researchers. These include generally used proteins (enzymes, proteases, antibodies), cloning utilities (expression vectors, cloning reagents) and stock cell cultures. About 20% of annual facility time has been spent on external projects. These were either initiated through direct collaboration or via access through Instruct-ERIC (https://instruct-eric.eu/), a European infrastructure in structural biology which provides access to high-end technology, and through iNEXT (Infrastructure for NMR, EM and X-rays for Translational Research; www.inext-eu.org/), funded by the Horizon2020 program.

EU Networks

Implementation of new methods and technologies is essential to keep up-to-date with the latest developments in protein research. A useful source has been provided by two EU networks in which the facility participates as an active member: P4EU, a consortium of protein expression facilities in Europe and the biophysical network ARBRE MOBIEU. Both networks organize courses, meetings, benchmarking experiments, sharing of reagents/protocols and discussion of new methods. This year, the facility hosted the first P4EU workshop together with the 15th (bi)annual P4EU meeting here at NKI.
Activities

During 2019, the organizational structure of the NKI Animal Facility has been modified, leading to a change in position of the Transgenic Facility within the organization. This has been a challenging operation asking flexibility and full commitment from all the people involved. While the Transgenic Facility remains a key user at the T2 unit for animal-related procedures, it is no longer an integral part of the Laboratory Animal Center. The decision for this change was based on the fact that a large part of the activities of the Transgenic Facility are executed in the NKI research laboratories. Animal-related procedures are still carried out in close collaboration with the team of animal care takers on T2. In addition, the Transgenic Facility has been renamed Animal Model Facility because its activities also include cryopreservation and revitalization of genetically engineered mouse (GEM) strains, congenic gene mapping and somatic cancer modelling.

In 2019, the activities of Animal Model Facility continue to show an increase of the application of CRISPR/Cas technology in the generation of GEM strains together with a decline of ES cell-based strategies. CRISPR/Cas9-based procedures have now become a routine to generate genetic modifications initially only possible by ES cell manipulation, such as introduction of loxP sites to produce conditional knockout alleles and targeted knock-in of reporter alleles. Consequently, creating mouse strains carrying a wide range of different types of genetic alterations has become much more efficient in terms of generation time and number of mice involved. Nearly all GEM strains are made under full-service conditions covering all steps from vector design to screening of the founder mice and their respective offspring.

During 2019, the Animal Model Facility finalized 22 projects by delivering the modified mouse strains to the client, while it is involved in 35 ongoing projects. The total number of projects run by the Facility did not change significantly when compared to the previous year. However, there is a shift in customer origin: the number of projects for NKI researchers has declined, whereas the number of projects for researchers from outside the NKI, both from national and international academia, is steadily increasing.

Selected publications

Our facility deploys, maintains, and secures High-Performance Computing solutions for eighteen research groups in the NKI and two research facilities. The facility takes care of the backbone infrastructure and the group-owned computing platforms, so the research groups have the freedom to focus on the science of their computational work.

2019 was a year of consolidation and growth for the facility. The addition of the new electron microscopy facility as a stakeholder required the opening of a second server room in the basement with hardware to process the large amount of microscope data. A fast direct network connection between the server rooms ensures rapid data exchange. This also allowed moving all GPU-computing machines to the downstairs server room. A new 8-way GPU server was deployed for the radiology department, tripling radiology’s GPU capacity. This server is the first of its kind at the NKI and can be used as a reference model for further expansion of GPU-computing within the institute. Another new server was added for the pharmacy which, in terms of CPU power, is the largest system in RHPC thus far. More efficient use of existing (and new) hardware was achieved by the setup of queueing systems for GPU and CPU computing.

The facility now has 220 users of 19 machines with in total 1250 CPUs, 3 TB of RAM, and 990 TB of storage. Next to the compute nodes, the facility features 5 high-end GPU-computing workstations, two code repositories, and a lab equipment booking system.

The growth in scale of the facility is more than matched by the growth in scientific output by the facility’s users, with a selection of papers highlighted here. In addition to the output in scientific papers, there are several scientific web servers and services plus a large scientific databank hosted by RHPC, see for instance https://phenosaurus.nki.nl and https://pdb-redo.eu. The increasing importance of computing in the NKI’s research is apparent in the broadening of our user base and its requirements. To continue to meet the needs and demands of our stakeholders, the RHPC facility will be reorganised over the course of 2020.
The Genomics Core Facility (GCF) supports users in all aspects of Next Generation Sequencing experiments in their research projects. The facility is equipped with two Illumina HiSeq2500, a NextSeq550Dx and a MiSeq machine. Support comes from the NKI, the AVL foundation and from the Oncode Institute. We aim to maintain high data quality at lower sequencing costs per base. The facility provides advice, performs library preparation at consumable cost prices, runs the sequencing machines, manages the data storage and performs data analysis. The facility is involved in research projects and reports on these subjects in lectures, scientific publications and conference presentations. The facility makes new technologies and innovative sequencing applications available. Education of students and post-docs is supported by the core. This year we performed the 1000th HiSeq run.

Experiment types

The facility aims to be flexible regarding the types of samples that can be delivered as well as the workflows that are available. A user can hand in tissue, cells, extracted nucleic acids or libraries ready for sequencing. The facility has acquired a lot of expertise in library preparation both from fresh samples as well as from formalin fixed (FFPE) samples. Users receive gene expression profiles, functional synthetic lethal screens, chromatin binding profiles, full genome copy number plots, tumor mutational load (TMB) scores and detected mutation events in tumor-normal whole exome data sets. Common experiment types are RNAseq, miRNAseq, ChIPseq, CNVseq, PCRseq, Methyl-seq and Target Enrichment strategies (exomes, kinomes). We have seen an increase in the TruSeq RNA Exome prep (human FFPE-RNAseq). Besides preparing sequence libraries in house, the facility also performs sequencing on custom prepared libraries (TRC short hairpin screens, functional screens, CRISPR/Cas9 screens and screens for nuclear organization and epigenetics). The knowledge to fine-tune sequencing strategies like sequencing with “dark cycles”, multiple primers, barcodes, indices with minimal use of chemistry is much appreciated by users. The facility now also works with smaller inputs (1-10 ng RNA in Smart-seq2) and separate cells are studied in the 10X Single Cell Sequencing.

Workflows, sample database, primary analysis

Standard routine is that users register new samples from their own PC in the sample tracking database GCFdb using a web-based portal. Sample tracking, sequencing monitoring, billing administration, reporting and data maintenance are the main features of this in-house designed software package.

During the actual sample delivery to the core, sequencing setup, settings and expected results are discussed with the user. Projects are assigned to lab technicians keeping users informed of subsequent steps like sample preparation, pooling, sequencing and analysis. We rely on the 8 tube Covaris machine for fragmentation of nucleic acids and are looking into enzymatic fragmentation. User prepared libraries are quantified by qPCR. Data generated by the sequencing machines is stored centrally and secured at the NKI-IT department. Users receive links to primary data files (FASTQ) and have the choice to perform data analysis on their own or to collaborate with the facility for more in-depth analysis. In the last year, new features for data sharing and for easy data transport to in-house network systems were added. Upon finalization of the work, the system calculates the costs for the work done, and a money transfer order is sent out.
The Experimental Animal Pathology facility provides broad pathology support for research projects involving the use of animals. Our activities include consultancy and collaboration with scientists in all phases of a project, from study design to publication. We help with the dissection of animals and tissue sampling, our technicians process and embed tissues, cut slides and perform a wide range of histochemistry and immunohistochemistry stains. We develop and optimize methods such as immunohistochemistry protocols. We can also process organoids or cells, and provide support for other institutes as well.

Our pathologists partner with researchers in their projects, train and educate personnel, help to perform dissections, and provide detailed microscopic analysis of pathologic changes. Through these activities, we provide content for scientific presentations and publications. In addition, the pathologists perform diagnostic pathology analysis of sick animals, for the benefit of the health and welfare of animals in the institute.

Our pathologic findings play a pivotal role in several projects, revealing temporal and spatial events in the process of tumorigenesis, which leads to a better understanding of tumor heterogeneity and its relationship with therapeutic outcome. For example, it has been shown that different subpopulations of tumor cells in a mouse model of small cell lung cancer (SCLC) responded differently to cytostatic treatment. The re-populating/re-seeding tumor cells in the lung and its surroundings, which were identified by their distribution patterns as well as by immunohistochemistry (negative for E-cadherin, left photograph), were sensitive to the initial chemotherapy by cisplatin. In contrast, the primary lesions of SCLC (positive for E-cadherin) were not sensitive to cisplatin treatment (right photograph). This study was published in Cell Reports in 2019.

Vehicle treatment of SCLC

After cisplatin treatment of SCLC
The Flow Cytometry Facility provides access to high-end flow cytometers and state-of-the-art cell sorting equipment. We actively support investigators of the NKI with tailored advice and practical assistance in all phases of their experiments with regard to analytical flow cytometry and cell sorting.

The Flow Cytometry Facility maintains six analytical flow cytometers for basic and high-parameter interrogation of biological samples on a single cell level, and five high-end cell sorters for isolation of the cells of interest with high purity. All instruments are housed in BSL 2 lab environment. We are responsible for interactions with instrument manufacturers to schedule routine maintenance and unexpected repairs. Furthermore, routine Quality Assurance and Quality Control is performed to ensure consistent and robust performance. The available equipment provides flexibility and allows for tailored approaches to address a wide range of scientific problems and biological questions.

Our full cell sorting service by expert sort operators allows for bulk isolation and (indexed) single cell sorting of specific cell subsets from heterogeneous samples, based on scatter parameters up to complex immunological panels with 18 fluorescent labels, for a wide range of post-isolation applications. Some examples of post bulk sorting applications are: *in vitro* expansion and functional assays; *in vivo* transplantation; protein, DNA and RNA extraction for applications such as mass spectrometry, sequencing for genetic screens and mRNA expression respectively. Common post-sort single cell applications include: cloning; DamID assays; qPCR; and sequencing.

We strive to meet the investigators’ specific needs by providing tailored assistance with experimental design, sample preparation, data acquisition and analysis, enabling the highest possible resolution, data quality and reproducibility. We provide introductory courses to allow independent use of the available analytical instruments and to ensure a high level of theoretical knowledge, optimal instrument use, and data quality. Additionally, we provide introductory and advanced training sessions on theoretical and technical topics related to flow cytometry, and independent operation of cell sorting instruments. We also organize specialized workshops and seminars on topics such as tumor dissociation and other sample preparation methods, optimizing protocols for staining of intracellular targets, and data analysis methods.

Finally, we are actively involved in (inter)national and virtual cytometry networks and instrument user groups to exchange knowledge with colleagues from the wider community, allowing investigators of the NKI to benefit from the latest developments and insights in the field of cytometry.

Selected publications

Activities

The Mouse Cancer Clinic / T1 is a facility where advanced mouse models are used as surrogate for cancer patients to identify and validate targets that can be exploited by anti-cancer therapy. The Mouse Cancer Clinic is composed of an intervention unit, a preclinical imaging facility and a Bio-Pharmacy Unit working together in close collaboration with research groups at the NKI, other academic partners and pharmaceutical companies. The main objective is to find and test novel anti-cancer treatments, using the advanced cancer models, such as transgenic (spontaneous) mouse models, orthotopic transplantation models, human xenograft models that have been developed/established at the NKI.

The knowledge of the molecular pathology of cancer cells is rapidly expanding and this now helps to design interventions that specifically interfere in the critical steps that drive cancer cells. This holds the promise of generating more efficacious therapies with fewer side effects. In order to more accurately translate preclinical studies to clinical outcome, it is essential to use cancer models that faithfully recapitulate the human disease. Moreover, when the treatment involves testing of new agents, it is necessary to consider the pharmacokinetic behavior of the experimental drugs in relation to their pharmacodynamics effects (target inhibition), especially since species-differences in pharmacokinetics of drugs is a potentially confounding factor. Obviously, it is not very useful when a drug demonstrates pre-clinical efficacy only at a dose level that results in plasma concentrations that cannot be achieved in patients. Therefore, we include the collection of data on plasma exposure (C_{max} and AUC, half-life) of test compounds in these intervention studies.

With the knowledge on pharmacokinetic behavior being established, an intervention study using one of our advanced mouse models can be designed guided by novel insights from basic research and clinical demands. Various approaches to treat cancer with classical chemotherapy, molecularly targeted agents, immuno-modulators, radiotherapy or combinations thereof are currently ongoing. In addition to systemically administered agents, we are also investigating loco-regional applications of drugs, surgery and radiation. The pre-clinical Intervention Unit can take care of the whole trajectory of preclinical trial design and execution, including support in the design/setup of the study, design suitable drug formulations, planning and execution of treatments, follow-up of tumor growth and/or metastasis formation, assessment of therapy response, collection of tissues and reporting of data. The longitudinal follow-up of tumors is greatly facilitated by dedicated state-of-the-art small animal imaging systems, including SPECT/CT, PET/CT and 7T MRI. Local and precise radiation beams can be delivered using the image-guided radiation therapy system for small animals. The lab of the bio-pharmacy unit is equipped with analytical instruments (LC-MS/MS, LC-UV/PDA, LC-FD and GFAAS) to execute bioanalytical assays.

This year the Mouse Cancer Clinic carried out more than 120 projects for more than 20 groups inside the NKI. 22 of the projects were for external academic customers and 15 for small pharmaceutical companies.

Next to that the Imaging Facility made 3944 scans in 2019. (Counting one time point per mouse as one scan, not counting the different sequences.) Approximately 70% of these scans were made by the personnel of the Imaging Unit, the remaining 30% was made by technicians or researchers themselves.

Selected publications

Sun J, Nagel R, et al. SLC1A3 contributes to L-asparaginase resistance in solid tumors. EMBO J. 2019;38(21)
Education in oncology

The Netherlands Cancer Institute offers a variety of opportunities for practical and theoretical training to (trainee) technicians, University Master students, PhD students and post-doctoral fellows. Research and clinical staff and their group members are involved in theoretical and practical training. Many staff members have joint appointments as professors at Dutch universities and even more contribute to the regular curriculum at various universities. The research divisions attract students from universities throughout the The Netherlands. The NKI has a formal affiliation with the Science faculty of the University of Amsterdam (UvA) and is committed to make a contribution to Master student teaching. The institute participates in the Oncology Graduate School Amsterdam, together with the medical faculties of the UvA and the VU University (VU), referred to as Academic Medical Center (AMC) and VU medical center (VUmc), respectively. All educational activities are supervised by the Teaching Committee, which consists of Roderick Beijersbergen (chair and dean Master students), Hein te Riele (general affairs and dean PhD students), Fred van Leeuwen (dean post-docs), Wilbert Zwart (HLO students and publicity), and Fons Balm (clinical teaching).

MASTER STUDENTS

The program in Experimental Oncology attracts Master students of all national universities (see www.nki.nl/topmenu/master-students/). Students generally have a background in (Medical) Biology, Health Sciences, Chemistry, Pharmacology, Medicine, or Psychology. The program offers combined practical and theoretical training in various aspects of experimental oncology. Practical training includes participation in ongoing research projects for a minimum of 4 months.

In 2019, 73 Dutch university Master students completed a placement of 6-10 months at the biomedical research divisions. The students came primarily from the University of Amsterdam (UvA) (16) and the VU University Amsterdam (VU) (25), but also from the universities of Utrecht (6), Leiden (17), Amsterdam University College (1), Wageningen (1), TU Delft (1), Groningen (1) and Universities outside The Netherlands (5). The institute also provides practical training opportunities for Bachelor students of the HLO (Universities of Applied Science), who stay for similar periods of time as the university students and like these, often make significant contributions to research progress of the PhD students and post-docs who supervise them.

The core element of theoretical training is the course in Experimental Oncology (Table 1). This master course is a compulsory course for UvA Master students in Biomedicine, track Oncology. It is also offered as an elective to master students who do an internship at the NKI or follow a masterprogram in a biomedical area at a Dutch university. Other interested parties such as PhD students are welcome to attend the lectures as listener upon enrollment as attendee. The master course has a interactive program consisting of tutorials, student presentations and discussion and assignments. In addition, the students have to pass four exams in order to get study points. The course evolved around four main themes for which assignments and exams were organized, in addition to lectures covering the latest developments in the respective fields.
PHD STUDENTS

PhD students at the NKI-AVL participate in the Oncology Graduate School Amsterdam (OOA), an alliance of the oncology research divisions of the NKI-AVL and the Amsterdam University Medical Centers. The number of PhD students has been rising rapidly in the past years. In 2019, the institute had 329 PhD students registered at the OOA. 40 students defended a PhD thesis at a Dutch university.

Besides joining interdepartmental work discussions, the students follow the OOA training program that offers courses, meet-the-expert sessions and an annual retreat (Table 2). The OOA course program includes in-depth courses on different topics in cancer research, but also technical courses in English writing, biostatistics and -informatics, microscopy and animal handling. Students with an insufficient background in cancer research can attend the Experimental Oncology course for Master students. PhD students also have the opportunity to meet with experts in the field of oncology: the Friday morning seminar speakers are invited to a lunch meeting with a delegation of PhD students. Each PhD student can participate several times a year.

The annual PhD student retreat is entirely focused on the research of the PhD students themselves. First year students present their work in the form of a poster, advanced students give oral presentations. Importantly, students are in charge of chairing sessions, monitoring discussions and selecting prizewinners for the best posters and presentations. In this way, the retreat not only provides an overview of the research in the OOA at an early stage of the student’s career, but also training in presentation and interaction skills. We hope to stimulate translational interactions and bottom-up research, in which PhD students actively establish collaborations with other research groups, strengthening scientific exchange between the Amsterdam oncology centers.
<table>
<thead>
<tr>
<th>DATE</th>
<th>COURSE</th>
<th>ECTS</th>
<th>ORGANIZERS</th>
<th># STUDENTS</th>
<th>RATING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 17</td>
<td>InDesign Thesis printing</td>
<td>0.1</td>
<td>N Nijhuis (Gildeprint)</td>
<td>21</td>
<td>4.1</td>
</tr>
<tr>
<td>March 25-29</td>
<td>Radiation Oncology</td>
<td>1.5</td>
<td>P Smirina, L Stalpers, (Amsterdam UMC) JJ Sonke (NKI-AVL)</td>
<td>29</td>
<td>4.2</td>
</tr>
<tr>
<td>April 8-12</td>
<td>Mouse morphology, genetics and function</td>
<td>1.5</td>
<td>J Seppen, V Christoffels, (Amsterdam UMC)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>May 6-10</td>
<td>In the footsteps of Antoni van Leeuwenhoek</td>
<td>1.5</td>
<td>E Reits, N van der Wel, (Amsterdam UMC), M Mertz, H Janssen, L Brocks (NKI-AVL)</td>
<td>16</td>
<td>4.3</td>
</tr>
<tr>
<td>May 13-17</td>
<td>O2Flow Cytometry</td>
<td>1.5</td>
<td>J Garcia Vallejo (Amsterdam UMC)</td>
<td>14</td>
<td>4.6</td>
</tr>
<tr>
<td>May 20-24</td>
<td>Epigenetics and epitranscriptomics</td>
<td>1.5</td>
<td>Fred van Leeuwen, R Agami (NKI-AVL)</td>
<td>35</td>
<td>4.5</td>
</tr>
<tr>
<td>June 17-21</td>
<td>Genetic engineering in model organisms</td>
<td>1.5</td>
<td>E Robanus Maandag, P Hohenstein, L Clemens-Daxinger (LUMC), H te Riele (NKI-AVL)</td>
<td>9</td>
<td>4.1</td>
</tr>
<tr>
<td>Sept 12-13</td>
<td>Histopathology of human tumors</td>
<td>0.6</td>
<td>N Donner (Amsterdam UMC)</td>
<td>29</td>
<td>4.0</td>
</tr>
<tr>
<td>Sept 6 Oct</td>
<td>Ethics and Integrity in Science</td>
<td>0.15</td>
<td>P Borst, M Schmidt, B van Steensel (NKI-AVL)</td>
<td>30</td>
<td>4.3</td>
</tr>
<tr>
<td>Oct 10-12</td>
<td>Annual Graduate Student Retreat</td>
<td>2.0</td>
<td>P Lagerweij, K van der Heijden, H te Riele (NKI-AVL)</td>
<td>145</td>
<td>4.2</td>
</tr>
<tr>
<td>Oct 28-Nov 8</td>
<td>BioBusiness</td>
<td>3.0</td>
<td>A Griffioen, E Huijber, J van Beijnum (Amsterdam UMC), Zuhir Elkarghali (NKI-AVL)</td>
<td>10</td>
<td>4.0</td>
</tr>
<tr>
<td>Nov 7-May 20</td>
<td>Intervision group</td>
<td>0.4</td>
<td>E. Ruhé (Amsterdam UMC), H te Riele (NKI-AVL)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Nov 11-15</td>
<td>O2Flow Cytometry</td>
<td>1.5</td>
<td>J Garcia Vallejo (Amsterdam UMC)</td>
<td>14</td>
<td>4.2</td>
</tr>
<tr>
<td>Nov 25-29</td>
<td>In the footsteps of Antoni van Leeuwenhoek</td>
<td>1.5</td>
<td>E Reits, N van der Wel, (Amsterdam UMC), M Mertz, H Janssen, L Brocks (NKI-AVL)</td>
<td>14</td>
<td>4.8</td>
</tr>
<tr>
<td>Nov 25-29</td>
<td>How to write research papers and grant proposals – a guide to successful scientific writing</td>
<td>1.5</td>
<td>E. Ruhé, A Griffioen (Amsterdam UMC), H te Riele (NKI-AVL)</td>
<td>20</td>
<td>4.4</td>
</tr>
<tr>
<td>Dec 2-6</td>
<td>Basic Medical Statistics / SPSS</td>
<td>1.5</td>
<td>M Hauptmann, K. Jozwiak, S Roberti, A Morra, D Giardiello (NKI-AVL)</td>
<td>95</td>
<td>4.1</td>
</tr>
<tr>
<td>Throughout the year</td>
<td>Lunch meetings with NKI-AVL seminar speakers</td>
<td>-</td>
<td>NKI seminar committee</td>
<td>150</td>
<td>NO</td>
</tr>
</tbody>
</table>
Senior graduate students can participate in a joint retreat with other cancer institutes in Europe. In 2019, this event was held in Amsterdam, organized by the students from the Netherlands Cancer Institute, with participants from:

- The CRUK Institutes (Cambridge, Glasgow, London, Manchester and Oxford)
- The Institute of Cancer Research (ICR)
- German Cancer Research Center (DKFZ)
- The Max Delbruck Center for Molecular Medicine (MDC)
- The Netherlands Cancer Institute (NKI, 7 participants)
- The European School of Molecular Medicine (SEMM: IFOM-IEO)

who attended and contributed to a program of scientific lectures and posters as well as an enthusiastic social session. This retreat gives students the opportunity to become acquainted with oncology centers of excellence throughout Europe.

Once a year, the PhD student meets with a supervisory committee to evaluate the progress of research. Each committee has independent members from within and outside the division. The committee discusses progress with the supervisor and the student jointly and separately. Two years after the appointment of the PhD student, a midterm review takes place. At this more elaborate meeting the likelihood of achieving a PhD within a reasonable time frame is discussed. This meeting can be used to redefine goals if necessary.

Each research division of the NKI-AVL has a delegate in the PhD student council that meets with the Dean of graduate students on a regular basis, as well as upon request. They also mediate communication between the graduate students and the board of directors. In addition, an ODA PhD council has been installed consisting of representatives of the Amsterdam oncology centers, which organizes events specifically focused on career development of graduate students.
POSTDOCS

In 2019 the NKI-AVL hosted approximately 150 postdoctoral fellows, almost half of which are from abroad and with equal gender representation. The postdocs at the NKI are represented by a very active postdoc committee (postdocs@nki). They organize workshops and special events such as (alumni) career development seminars and workshops about intellectual property and entrepreneurship. In addition, they regularly bring issues that matter to postdocs and others to the attention of NKI management.

The postdoc committee is also actively involved in the NKI Postdoc Career Development Program that is offered by the NKI to all its postdocs. This program has been developed together with AVL Academy and the postdoc dean. During their first year at the NKI, postdocs participate in a basic program, which consists of three one-day workshops. The basic program is mandatory for new NKI postdocs. In 2019, 41 postdocs started in the basic program.

Basic Postdoc Career Development Program 2019
Day 1. Personal effectiveness: time and project management
Day 2. Communication & cooperation
Day 3. Creating your future, take ownership

All postdocs that have completed the basic program are invited in subsequent years to follow one of the one-day workshops as part of the Advanced Postdoc Career Development Program. In 2019, 67 postdocs registered for a workshop of the advanced program.

Advanced Postdoc Career Development Program 2019
1. Shaping your career
2. Influence & impact
3. Uncovering your professional value
4. Scientific project management
5. Energy and balance as powerful tools to increase your impact at work
6. Scientific Grant Writing

The goals of the program are to provide postdocs with the tools to take charge of their professional and personal development at the NKI, to promote maximum achievement of postdocs at the NKI, and to prepare postdocs for the next steps in their careers. The program, which is tailored to NKI postdocs, consists of special workshops of about 12 participants given by professional trainers but with input and active participation of NKI group leaders. The trainers all have a background in science and are fluent in English. The program is flexible and adjusted every year based on the evaluations of the workshops and suggestions from the postdocs.
Clinical trials
<table>
<thead>
<tr>
<th>Type of cancer study (nick name)</th>
<th>Title</th>
<th>Study coordinator in NKI-AVL</th>
<th>Phase</th>
<th>Activated (closed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M09NIB</td>
<td>The NIB-Cohort study, therapeutic drug monitoring of tyrosine kinase inhibitors</td>
<td>Neeltje Steeghs</td>
<td>other</td>
<td>09/08/2009</td>
</tr>
<tr>
<td>M11PCT (CPCT-02)</td>
<td>Development of a platform for next-generation DNA sequencing based personalized treatment for cancer patients: protocol to obtain biopsies from patients with metastatic cancer (CPCT-02 biopsy protocol)</td>
<td>Neeltje Steeghs</td>
<td>other</td>
<td>24/01/2012</td>
</tr>
<tr>
<td>M12SEN (senior)</td>
<td>Observational study to evaluate pharmacokinetics and pharmacodynamics of docetaxel, paclitaxel, doxorubicin, gemcitabine, vinorelbine and capecitabine in elderly patients</td>
<td>Neeltje Steeghs</td>
<td>other</td>
<td>13/09/2012</td>
</tr>
<tr>
<td>M14CDP (BP29392)</td>
<td>An open-label, multicenter, dose-escalation phase Ib study to investigate the safety, pharmacokinetics, pharmacodynamics, and therapeutic activity of RO7009789 (CD40 agonist) in combination with MPDL3280a (anti-PD-L1) in patients with locally advanced and/or metastatic solid tumors</td>
<td>Neeltje Steeghs</td>
<td>I</td>
<td>23/1/2015 7/12/2018</td>
</tr>
<tr>
<td>M14CIP (CIP-study)</td>
<td>Cancer in Pregnancy (CIP-study)</td>
<td>Christianne Lok</td>
<td>other</td>
<td>17/02/2015</td>
</tr>
<tr>
<td>M14HUP</td>
<td>Biobank Hubrecht Institute, a resource for functional studies on drug development for cancer treatment</td>
<td>Emile Voest</td>
<td>other</td>
<td>11/8/2014 (31/10/2019)</td>
</tr>
<tr>
<td>M14MCL</td>
<td>A Phase I Study of MCLA-128, a Human IgG1 Bispecific Antibody Targeting HER2 and HER3, in Patients with Solid Tumours</td>
<td>Frans Opdam</td>
<td>I/II</td>
<td>11/03/2015</td>
</tr>
<tr>
<td>M15CEG</td>
<td>A phase I/II, multicenter, open-label study of EGFRI mutant-TKI EGF816, administered orally in adult patients with GFRmut solid malignancies</td>
<td>Egbert Smit</td>
<td>I/II</td>
<td>28/6/2016 (30/10/2019)</td>
</tr>
<tr>
<td>M15DRU (GRUP)</td>
<td>A National Study to Facilitate Patient Access to Commercially Available, Targeted Anti-cancer Drugs to determine the Potential Efficacy in Treatment of Advanced Cancers with a Known Molecular Profile; The Drug Rediscovery Protocol</td>
<td>Emile Voest</td>
<td>I</td>
<td>25/07/2016</td>
</tr>
<tr>
<td>M15FAP (BP29842)</td>
<td>An open-label, multicenter, dose-escalation, Phase I study to evaluate safety, pharmacokinetics, and therapeutic activity of RO6874281, an immunocytokine consisting of interleukin 2 variant (IL-2v) targeting fibroblast activation protein (FAP), in patients with advanced and/or metastatic solid tumors</td>
<td>Neeltje Steeghs</td>
<td>I</td>
<td>18/12/2015</td>
</tr>
<tr>
<td>M15KEY (KEYNOTE 158)</td>
<td>A clinical trial of Pembrolizumab (MK-3475) evaluating predictive biomarkers in subjects with advanced solid tumors</td>
<td>Markoes</td>
<td>II</td>
<td>29/02/2016</td>
</tr>
<tr>
<td>M15MBG</td>
<td>A phase I-Ib/II, open-label, multi-center study of the safety and efficacy of MBG453 as single agent and in combination with PDRD01 in adult patients with advanced malignancies</td>
<td>Sofie Wilgenhof</td>
<td>I/II</td>
<td>28/07/2017</td>
</tr>
<tr>
<td>M15MSR</td>
<td>An Open Label, Phase Trial of the DNA-PK Inhibitor MSC2495484A in Combination with Radiotherapy in Patients with Advanced Solid Tumors</td>
<td>Baukelin</td>
<td>I</td>
<td>17/07/2015</td>
</tr>
<tr>
<td>M15PEM (ENGAGE-1)</td>
<td>A Phase I, open-label study of GSK3174998 administered alone and in combination with anticancer agents including Pembrolizumab in subjects with selected advanced solid tumors</td>
<td>Frans Opdam</td>
<td>I</td>
<td>4/5/2016 18/4/2019</td>
</tr>
<tr>
<td>M15PRM (PRMT5i)</td>
<td>A phase I, open-label, dose escalation study to investigate the safety, pharmacokinetics, pharmacodynamics and clinical activity of GSK3326595 in subjects with solid tumors and non-Hodgkin’s lymphoma</td>
<td>Frans Opdam</td>
<td>I</td>
<td>27/10/2016</td>
</tr>
<tr>
<td>Type of cancer study (nick name)</td>
<td>Title</td>
<td>Study coordinator in NKI-AVL</td>
<td>Phase</td>
<td>Activated (closed)</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------</td>
<td>-----------------------------</td>
<td>-------</td>
<td>-------------------</td>
</tr>
<tr>
<td>M15RVA (BP29889)</td>
<td>An open-label, multicenter, dose escalation phase 1b study with expansion cohorts to evaluate the safety, pharmacokinetics, pharmacodynamics and therapeutic activity of RO7009789 (CD40 agonistic monoclonal antibody) in combination with Vanucizumab (anti-ANG2 and anti-VEGF bi-specific monoclonal antibody) in patients with metastatic solid tumors</td>
<td>Neeltje Steeghs</td>
<td>I</td>
<td>26/02/2016</td>
</tr>
<tr>
<td>M16GAN</td>
<td>A Phase 1/2a Study of BMS-986179 Administered in Combination with Nivolumab (BMS-936558, anti-PD-1 Monoclonal Antibody) in Advanced Solid Tumors</td>
<td>Neeltje Steeghs</td>
<td>I/II</td>
<td>02/09/2016</td>
</tr>
<tr>
<td>M16GAC</td>
<td>A Phase I Open-Label study of GSX3359609 administered alone and in combination with anticancer agents in subjects with selected advanced solid tumors</td>
<td>Frans Opdam</td>
<td>I</td>
<td>30/05/2017</td>
</tr>
<tr>
<td>M16LAG</td>
<td>A phase 1/2a dose escalation and cohort expansion study of the safety, tolerability, and efficacy of anti-LAG-3 monoclonal antibody (BMS-986016) administered alone and in combination with anti-PD-1 monoclonal antibody (Nivolumab, BMS-936558) in advanced solid tumors</td>
<td>Sofie Wilgenhof</td>
<td>I/II</td>
<td>06/12/2016</td>
</tr>
<tr>
<td>M18NFC</td>
<td>Multicenter study evaluating the hybrid approach using a novel fluorescence camera – identifying the value of intraoperative fluorescence imaging during sentinel node biopsy procedures</td>
<td>Simon</td>
<td>other</td>
<td>09/11/2017</td>
</tr>
<tr>
<td>M16STT (STARTRK-2)</td>
<td>An open-label, multicenter, global phase 2 basket study of Entrectinib for the treatment of patients with locally advanced or metastatic solid tumors that harbour NTRK1/2/3, ROS1 or ALK gene rearrangements</td>
<td>Egbert Smits</td>
<td>II</td>
<td>24/08/2016</td>
</tr>
<tr>
<td>M16TEM (Kameleon)</td>
<td>Phase II, exploratory, multicenter, non-randomized, single agent study to determine best tumor response with Trastuzumab Emtansine in HER2 overexpressing solid tumors</td>
<td>Michiel van der Heijden</td>
<td>II</td>
<td>26/1/2017 (12/12/2019)</td>
</tr>
<tr>
<td>M17AFE</td>
<td>A randomised, open-label, phase I study to determine the effect of food on the pharmacokinetics of AZD1775 after oral dosing of a capsule formulation in patients with advanced solid tumours</td>
<td>Frans Opdam</td>
<td>I</td>
<td>27/9/2017 (30/10/2019)</td>
</tr>
<tr>
<td>M17AVM</td>
<td>A phase Ib open-Label, dose-finding trial to evaluate the safety, tolerability, and pharmacokinetics of Avelumab in combination with M9241 (NHS-IL12) in subjects with locally advanced, unsectectable, or metastatic solid tumors</td>
<td>Frans Opdam</td>
<td>I</td>
<td>25/07/2019</td>
</tr>
<tr>
<td>M17AZD</td>
<td>An open-label, non-randomised, multicentre study to allow continued access to and assess the safety and tolerability of AZD1775 for patients enrolled in AZD1775 clinical pharmacology studies</td>
<td>Frans Opdam</td>
<td>other</td>
<td>02/10/2017 (30/10/2019)</td>
</tr>
<tr>
<td>M17CAN (CANFOUR)</td>
<td>An open label, dose escalation followed by dose expansion, safety and tolerability trial of CAN04, a fully humanized monoclonal antibody against L1RAP, in subjects with solid malignant tumors</td>
<td>Neeltje Steeghs</td>
<td>I/II</td>
<td>14/11/2017</td>
</tr>
<tr>
<td>M17CIP</td>
<td>INCIP fertility substudy</td>
<td>Christianne Lok</td>
<td>other</td>
<td>25/04/2019</td>
</tr>
<tr>
<td>M17ITR</td>
<td>An open-label, Phase I study to assess the effect of Itraconazole (CYP3A4 and P-gp inhibitor) on the pharmacokinetics of anetumab rautansine and to assess the ECG effects, safety and immunogenicity of anetumab rautansine given as a single agent and together with Itraconazole in subjects with mesothelin-expressing advanced solid cancers</td>
<td>Neeltje Steeghs</td>
<td>I</td>
<td>6/10/2017 (30/10/2019)</td>
</tr>
<tr>
<td>M17LET</td>
<td>An open-label, multi-center, roll-over study to assess long term safety of lenvatinib monotherapy or lenvatinib combination regimen or comparator treatment arm to cancer patients in Eisai sponsored lenvatinib trials</td>
<td>Marloes van Dongen</td>
<td>II</td>
<td>15/08/2018</td>
</tr>
<tr>
<td>M17MIW</td>
<td>A Phase Ib, open label, multicenter study of the safety and efficacy of MIW015 (ADU-S100) administered by intratumoral injection with PDR001 to patients with advanced/metastatic solid tumors or (CheckMate 592) lymphomas</td>
<td>Neeltje Steeghs</td>
<td>I</td>
<td>2/2/2018 (11/12/2019)</td>
</tr>
<tr>
<td>Type of cancer study (nick name)</td>
<td>Title</td>
<td>Study coordinator in NKI-AVL</td>
<td>Phase</td>
<td>Activated (closed)</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---</td>
<td>----------------------------------</td>
<td>------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>M17MPE</td>
<td>A Phase 1 Study of MK-5890 as Monotherapy and in Combination with Pembrolizumab in Participants with Advanced Solid Tumors</td>
<td>Marlies van Dongen</td>
<td>I</td>
<td>15/05/2018</td>
</tr>
<tr>
<td>M17PCV</td>
<td>A phase la/b open-label, dose-escalation study of the safety and pharmacokinetics of RO77198457 as a single agent and in Combination with Atezolizumab in patients with locally advanced or metastatic tumors</td>
<td>Neeltje Steeghs</td>
<td>I</td>
<td>04/10/2018</td>
</tr>
<tr>
<td>M17QLQ</td>
<td>Validation of the EDRT computerized adaptive testing (CAT) instrument - Feasibility and field study</td>
<td>Neil Aaronsen</td>
<td>other</td>
<td>28/11/2017</td>
</tr>
<tr>
<td>M17QLL</td>
<td>Phase III development of an EDRT QoL cancer survivorship questionnaire</td>
<td>Lonneke van de Poll - Franse</td>
<td>III</td>
<td>12/06/2018</td>
</tr>
<tr>
<td>M17RIT</td>
<td>A phase I/II study of safety and efficacy of ralituximab (LEE011) in combination with trametinib (TMT212) in patients with metastatic or advanced solid tumors</td>
<td>Neeltje Steeghs</td>
<td>I/II</td>
<td>23/5/2017 (8/5/2019)</td>
</tr>
<tr>
<td>M17TDM</td>
<td>Therapeutic drug monitoring for oral anti-cancer drugs</td>
<td>Neeltje Steeghs</td>
<td>other</td>
<td>09/08/2017</td>
</tr>
<tr>
<td>M18AXL</td>
<td>First-in-human, open-label, dose-escalation trial with expansion cohorts to evaluate safety of Anti-specific antibody-drug conjugate (HLMax®-AXL-ADC) in patients with solid tumors</td>
<td>Christian Blank</td>
<td>I</td>
<td>21/01/2019</td>
</tr>
<tr>
<td>M18B0B</td>
<td>Basket of Baskets: A modular, open-label, phase II, multicentre study to evaluate targeted agents in molecularly selected populations with advanced solid tumors</td>
<td>Frans Opdam</td>
<td>II</td>
<td>08/02/2019</td>
</tr>
<tr>
<td>M18BRM</td>
<td>A phase I drug-drug interactions study between Brigatinib and the CYFRA substrate Madazilam in patients with ALK-positive or ROS1-positive solid tumors</td>
<td>Egbert Smit</td>
<td>I</td>
<td>13/08/2019</td>
</tr>
<tr>
<td>M18COP</td>
<td>Prospective, multi-centre trial to evaluate effectiveness of 45-min and 20-min postinfusion cooling time for patients treated with scalp cooling to prevent Paclitaxel-induced alopecia</td>
<td>Carolien Smorenburg</td>
<td>other</td>
<td>19/08/2018</td>
</tr>
<tr>
<td>M18FLH</td>
<td>Fluid Hydration to prevent Post-ERCP Pancreatitis. A randomized, superiority multicenter trial</td>
<td>Thomas de Wijkerslooth</td>
<td>III</td>
<td>04/02/2019</td>
</tr>
<tr>
<td>M18G5K</td>
<td>A Phase I First Time in Human Open Label Study of GSK3745417 administered with and without Anticancer Agents in Participants with Selected Advanced Solid Tumors</td>
<td>Neeltje Steeghs</td>
<td>I</td>
<td>31/10/2019</td>
</tr>
<tr>
<td>M18INB</td>
<td>Safety, Pharmacokinetics, and Pharmacodynamics of Escalating Oral Doses of the Arginase Inhibitor INCB01158 (formerly known as CB01158) as a Single Agent and in Combination with Immune Checkpoint Therapy in Patients with Advanced/Metastatic Solid Tumors</td>
<td>Christian Blank</td>
<td>I</td>
<td>07/03/2019</td>
</tr>
<tr>
<td>M18IWO</td>
<td>Internet-based Work-related cognitive Rehabilitation for Cancer survivors: a randomised controlled trial</td>
<td>Sanne Schagen</td>
<td>III</td>
<td>08/03/2019</td>
</tr>
<tr>
<td>M18SPX</td>
<td>Endoscopic sphincterotomy before fully covered self-expandable metal stent placement for malignant extrahepatic biliary obstruction to prevent pancreatitis: a randomised controlled trial</td>
<td>Thomas de Wijkerslooth</td>
<td>nvt</td>
<td>28/02/2019</td>
</tr>
<tr>
<td>M18TAK</td>
<td>A Phase 1, Open-Label Study to Assess the Relative Bioavailability, Effect of Food, and Gastric pH Modification on the Pharmacokinetics of TAK-931 in Patients With Advanced Solid Tumors</td>
<td>Neeltje Steeghs</td>
<td>I</td>
<td>9/5/2019 (28/6/2019)</td>
</tr>
<tr>
<td>M18TLO</td>
<td>A Phase I, Open-Label Study of GSK1795091 Administered in Combination with Immunotherapies in Participants with Advanced Solid Tumors</td>
<td>Neeltje Steeghs</td>
<td>I</td>
<td>25/09/2018</td>
</tr>
<tr>
<td>M18TMB</td>
<td>A Randomized, Open-Label, Phase Z Study of Nivolumab in Combination with Ipilimumab or Nivolumab Monotherapy in Participants with Advanced or Metastatic Solid Tumors of High Tumor Mutational Burden</td>
<td>Neeltje Steeghs</td>
<td>II</td>
<td>14/01/2019</td>
</tr>
<tr>
<td>Type of study (nick name)</td>
<td>Title</td>
<td>Study coordinator in NKI-AVL</td>
<td>Phase</td>
<td>Activated (closed)</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
<td>------------------------------</td>
<td>-------</td>
<td>-------------------</td>
</tr>
<tr>
<td>M18TNQ</td>
<td>An open-label, multi-center, phase I, dose finding study of oral TNO155 in adult patients with advanced solid tumors</td>
<td>Neeltje Steeghs</td>
<td>I</td>
<td>13/02/2019</td>
</tr>
<tr>
<td>M15ALP</td>
<td>Improving the safety of fluoropyrimidine-based chemotherapy by combined DPD genotype-guided and DPD phenotype-guided dose-individualization</td>
<td>Annemieke Cats</td>
<td>other</td>
<td>14/08/2019</td>
</tr>
<tr>
<td>M19EQP</td>
<td>Experienced Quality of Care and Life in advanced oncological patients and their relatives, a prospective observational cohort study</td>
<td>Lonneke van de Poll - Franse</td>
<td>other</td>
<td>07/11/2019</td>
</tr>
<tr>
<td>M19MOM</td>
<td>The Multiple Outcome Evaluation of Radiation Therapy using the MR-Linac</td>
<td>Marlies Nowee</td>
<td>other</td>
<td>27/03/2019</td>
</tr>
<tr>
<td>M19OVC</td>
<td>Realizing better doctor-patient dialogue about choices in palliative care and early phase clinical trial participation</td>
<td>Neeltje Steeghs</td>
<td>other</td>
<td>10/07/2019</td>
</tr>
<tr>
<td>M19PCC</td>
<td>Hope for the best, prepare for the worst: Towards a better understanding of unawareness of prognosis in advanced cancer patients</td>
<td>Sjaak Burgers</td>
<td>other</td>
<td>23/07/2019</td>
</tr>
<tr>
<td>M19SFV</td>
<td>Phase I/II pharmacokinetic multi-tumor study of subcutaneous formulation of nivolumab monotherapy</td>
<td>Marloos van Dongen</td>
<td>I/II</td>
<td>01/05/2019</td>
</tr>
<tr>
<td>M19STR</td>
<td>CYP3A4*22 genotype-guided dosing of TKI’s in cancer patients: a new way of personalized therapy</td>
<td>Neeltje Steeghs</td>
<td>IV</td>
<td>07/08/2019</td>
</tr>
<tr>
<td>N12MTG</td>
<td>Middle ear thiosulfate-gel protection against cisplatin-induced hearing loss in patients carrying a single nucleotide polymorphism in the TPMT, COMT or LRP2 gene</td>
<td>Serena Marchetti</td>
<td>other</td>
<td>11/4/2013</td>
</tr>
<tr>
<td>N14CLT</td>
<td>The use of fecal calprotectin in detecting immunotherapy induced colitis and feasibility for the use of immunohistochemical markers in patients receiving checkpoint inhibitors’</td>
<td>Jolanda van Dieren</td>
<td>other</td>
<td>23/5/2016</td>
</tr>
<tr>
<td>N15LDC</td>
<td>The effect of prehydration on the pharmacokinetics of low-dose Cisplatin</td>
<td>Wouter Vogel</td>
<td>other</td>
<td>06/11/2015</td>
</tr>
<tr>
<td>N16CLT</td>
<td>The effect of Cryotherapy in preventing oral mucositis associated with doxorubicin treatment</td>
<td>Carolien Smorenburg</td>
<td>other</td>
<td>09/05/2016</td>
</tr>
<tr>
<td>N17MRB</td>
<td>Monitoring MRI changes before and during Radiotherapy Treatment of Brain Tumors</td>
<td>Gerben Borst</td>
<td>other</td>
<td>31/08/2017</td>
</tr>
<tr>
<td>N17ROW</td>
<td>Rei ni ging van gecontamineerde postoperatieve oncologische wonden met kraanwater of antiseptische spoelvloeistof - een gerandomiseerde klinische studie</td>
<td>Rob Kuin</td>
<td>other</td>
<td>5/2/2018</td>
</tr>
<tr>
<td>Type of cancer study (nick name)</td>
<td>Title</td>
<td>Study coordinator in NKI-AVL</td>
<td>Phase</td>
<td>Activated (closed)</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--</td>
<td>------------------------------</td>
<td>-------</td>
<td>--------------------</td>
</tr>
<tr>
<td>N18MRC</td>
<td>Development of MRCAT: electron density maps for radiotherapy dose calculations from MR images as alternative for planning CT scans</td>
<td>Abraham Al-Mamgani</td>
<td>other</td>
<td>21/03/2018</td>
</tr>
<tr>
<td>N18POR</td>
<td>Comparison of preoperative and intraoperative image registration using an ultrasound-based navigation system during liver surgery</td>
<td>Theo Ruers</td>
<td>other</td>
<td>28/06/2019</td>
</tr>
<tr>
<td>N18TIME</td>
<td>Idle time scanning on the MR-linac</td>
<td>Marlies Nowee</td>
<td>other</td>
<td>7/3/2019</td>
</tr>
<tr>
<td>N18ULN</td>
<td>Ultrasound-based navigation during liver surgery</td>
<td>Theo Ruers</td>
<td>other</td>
<td>10/08/2018</td>
</tr>
<tr>
<td>N18WGS</td>
<td>WGS implementation in standard care Diagnostics for Each cancer patient</td>
<td>Geerard Beets</td>
<td>other</td>
<td>10/04/2019</td>
</tr>
</tbody>
</table>

BIOBANK

<table>
<thead>
<tr>
<th>Type of cancer study (nick name)</th>
<th>Title</th>
<th>Study coordinator</th>
<th>Phase</th>
<th>Activated (closed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B09BIO</td>
<td>NKI-AVL biobank - patienten</td>
<td>Daan van den Broek</td>
<td>biobank</td>
<td>22/01/2020</td>
</tr>
<tr>
<td>B15CTD</td>
<td>Circulating tumor DNA in cancer patients: development of a clinical diagnostic tests and establishment of a biobank</td>
<td>Michiel van der Heijden</td>
<td>biobank</td>
<td>07/10/2015</td>
</tr>
<tr>
<td>B15HHC</td>
<td>Analyse van weefsel van patienten met een tumor in het hoofd-halsgebied</td>
<td>Lotje Zuur</td>
<td>biobank</td>
<td>03/09/2015</td>
</tr>
<tr>
<td>B15IMM</td>
<td>Longitudinal tumor and blood sampling in patients with advanced stage urothelial cancer of the bladder for the analysis of mechanisms of response to immunotherapy</td>
<td>Michiel van der Heijden</td>
<td>biobank</td>
<td>07/10/2015</td>
</tr>
<tr>
<td>B15UES</td>
<td>Tissue sampling of oesophagogastric cancer to enable tailored therapies</td>
<td>Johanna van Sandick</td>
<td>biobank</td>
<td>17/06/2015</td>
</tr>
<tr>
<td>B16BBC</td>
<td>Melanoma transcriptome protocol; Blood collection NETest</td>
<td>Margot Tessler</td>
<td>biobank</td>
<td>14/04/2016</td>
</tr>
<tr>
<td>B16BHW</td>
<td>Blood sampling of healthy women and early stage breast cancer patients</td>
<td>Jelle Wesseling</td>
<td>biobank</td>
<td>11/07/2016</td>
</tr>
<tr>
<td>B16CIT</td>
<td>Antigenic specificity and functional properties of colorectal cancer infiltrating human T cells, biobank protocol</td>
<td>Ton Schumacher</td>
<td>biobank</td>
<td>23/1/2017</td>
</tr>
<tr>
<td>B16CLM</td>
<td>Determining the sensitivity and specificity of circulating tumor cells and cytology in cerebrospinal fluid of patients with suspicion of leptomeningual metastases</td>
<td>Dieta Brandsma</td>
<td>biobank</td>
<td>19/09/2017</td>
</tr>
<tr>
<td>B16IMM</td>
<td>Biobank Immunotherapy baseline samples</td>
<td>Huub van Rossum</td>
<td>biobank</td>
<td>03/10/2016</td>
</tr>
<tr>
<td>B16MEL</td>
<td>Understanding tumor immune escape in patients with stage III melanoma</td>
<td>Alexander van Akkoi</td>
<td>biobank</td>
<td>28/08/2017</td>
</tr>
<tr>
<td>B16NBC</td>
<td>Tissue and blood sampling to find predictive markers for neoadjuvant chemotherapy benefit in breast cancer – Neoadjuvant Therapy Breast Cancer Biobank</td>
<td>Gabe Sonke</td>
<td>biobank</td>
<td>27/06/2016</td>
</tr>
<tr>
<td>B16PON</td>
<td>Paired healthy E tumor organoid Biobank (adenomas)</td>
<td>Emilo Voest</td>
<td>biobank</td>
<td>14/7/2016</td>
</tr>
<tr>
<td>B16TGT</td>
<td>Translational Gastrointestinal Oncology – tissue</td>
<td>Gerrit Meijer</td>
<td>biobank</td>
<td>14/07/2016</td>
</tr>
<tr>
<td>B17CON</td>
<td>CONventional TRTovement Or Leave DCIS</td>
<td>Jelle Wesseling</td>
<td>biobank</td>
<td>27/12/2017</td>
</tr>
<tr>
<td>Type of cancer study (nick name)</td>
<td>Title</td>
<td>Study coordinator in NKI-AVL</td>
<td>Phase</td>
<td>Activated (closed)</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------</td>
<td>----------------------------</td>
<td>-------</td>
<td>-------------------</td>
</tr>
<tr>
<td>B17GEN</td>
<td>Biomarker analyse van weefsel/bixed van patiënten met een HPV-negatieve tumor in het hoofdhalsgebied</td>
<td>Michiel van den Brekel</td>
<td>biobank</td>
<td>27/9/2017 (6/12/2018)</td>
</tr>
<tr>
<td>B17PRE</td>
<td>Prevent Ductal Carcinoma In Situ Invasive D overtreatment Now</td>
<td>Jolle Wesseling</td>
<td>biobank</td>
<td>28/11/2017</td>
</tr>
<tr>
<td>B18HIR</td>
<td>Blood sampling of healthy volunteers for immunological research</td>
<td>Marleen Kok</td>
<td>biobank</td>
<td>08/02/2019</td>
</tr>
<tr>
<td>B18NCI</td>
<td>The Netherlands facility for Cancer-Immune Analysis: studying the immune landscape of tumors</td>
<td>John Haanen</td>
<td>biobank</td>
<td>22/05/2019</td>
</tr>
<tr>
<td>B18UBC</td>
<td>Longitudinal tumor, urine and blood sampling in patients with urinary tract cancer treated with chemotherapy</td>
<td>Michiel van der Heijden</td>
<td>biobank</td>
<td>15/10/2018</td>
</tr>
<tr>
<td>B19BIO</td>
<td>Blood Biobank healthy volunteers</td>
<td>Daan van den Broek</td>
<td>biobank</td>
<td>19/08/2019</td>
</tr>
</tbody>
</table>

BRAIN / CNS

<table>
<thead>
<tr>
<th>Title</th>
<th>Study coordinator in NKI-AVL</th>
<th>Phase</th>
<th>Activated (closed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B17GEN</td>
<td>Biomarker analyse van weefsel/bixed van patiënten met een HPV-negatieve tumor in het hoofdhalsgebied</td>
<td>Michiel van den Brekel</td>
<td>biobank</td>
</tr>
<tr>
<td>B17PRE</td>
<td>Prevent Ductal Carcinoma In Situ Invasive D overtreatment Now</td>
<td>Jolle Wesseling</td>
<td>biobank</td>
</tr>
<tr>
<td>B18HIR</td>
<td>Blood sampling of healthy volunteers for immunological research</td>
<td>Marleen Kok</td>
<td>biobank</td>
</tr>
<tr>
<td>B18NCI</td>
<td>The Netherlands facility for Cancer-Immune Analysis: studying the immune landscape of tumors</td>
<td>John Haanen</td>
<td>biobank</td>
</tr>
<tr>
<td>B18UBC</td>
<td>Longitudinal tumor, urine and blood sampling in patients with urinary tract cancer treated with chemotherapy</td>
<td>Michiel van der Heijden</td>
<td>biobank</td>
</tr>
<tr>
<td>B19BIO</td>
<td>Blood Biobank healthy volunteers</td>
<td>Daan van den Broek</td>
<td>biobank</td>
</tr>
</tbody>
</table>

BRAIN / CNS

<table>
<thead>
<tr>
<th>Title</th>
<th>Study coordinator in NKI-AVL</th>
<th>Phase</th>
<th>Activated (closed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B17GEN</td>
<td>Biomarker analyse van weefsel/bixed van patiënten met een HPV-negatieve tumor in het hoofdhalsgebied</td>
<td>Michiel van den Brekel</td>
<td>biobank</td>
</tr>
<tr>
<td>B17PRE</td>
<td>Prevent Ductal Carcinoma In Situ Invasive D overtreatment Now</td>
<td>Jolle Wesseling</td>
<td>biobank</td>
</tr>
<tr>
<td>B18HIR</td>
<td>Blood sampling of healthy volunteers for immunological research</td>
<td>Marleen Kok</td>
<td>biobank</td>
</tr>
<tr>
<td>B18NCI</td>
<td>The Netherlands facility for Cancer-Immune Analysis: studying the immune landscape of tumors</td>
<td>John Haanen</td>
<td>biobank</td>
</tr>
<tr>
<td>B18UBC</td>
<td>Longitudinal tumor, urine and blood sampling in patients with urinary tract cancer treated with chemotherapy</td>
<td>Michiel van der Heijden</td>
<td>biobank</td>
</tr>
<tr>
<td>B19BIO</td>
<td>Blood Biobank healthy volunteers</td>
<td>Daan van den Broek</td>
<td>biobank</td>
</tr>
</tbody>
</table>

BRAIN / CNS

<table>
<thead>
<tr>
<th>Title</th>
<th>Study coordinator in NKI-AVL</th>
<th>Phase</th>
<th>Activated (closed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B17GEN</td>
<td>Biomarker analyse van weefsel/bixed van patiënten met een HPV-negatieve tumor in het hoofdhalsgebied</td>
<td>Michiel van den Brekel</td>
<td>biobank</td>
</tr>
<tr>
<td>B17PRE</td>
<td>Prevent Ductal Carcinoma In Situ Invasive D overtreatment Now</td>
<td>Jolle Wesseling</td>
<td>biobank</td>
</tr>
<tr>
<td>B18HIR</td>
<td>Blood sampling of healthy volunteers for immunological research</td>
<td>Marleen Kok</td>
<td>biobank</td>
</tr>
<tr>
<td>B18NCI</td>
<td>The Netherlands facility for Cancer-Immune Analysis: studying the immune landscape of tumors</td>
<td>John Haanen</td>
<td>biobank</td>
</tr>
<tr>
<td>B18UBC</td>
<td>Longitudinal tumor, urine and blood sampling in patients with urinary tract cancer treated with chemotherapy</td>
<td>Michiel van der Heijden</td>
<td>biobank</td>
</tr>
<tr>
<td>B19BIO</td>
<td>Blood Biobank healthy volunteers</td>
<td>Daan van den Broek</td>
<td>biobank</td>
</tr>
</tbody>
</table>

BRAIN / CNS

<table>
<thead>
<tr>
<th>Title</th>
<th>Study coordinator in NKI-AVL</th>
<th>Phase</th>
<th>Activated (closed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B17GEN</td>
<td>Biomarker analyse van weefsel/bixed van patiënten met een HPV-negatieve tumor in het hoofdhalsgebied</td>
<td>Michiel van den Brekel</td>
<td>biobank</td>
</tr>
<tr>
<td>B17PRE</td>
<td>Prevent Ductal Carcinoma In Situ Invasive D overtreatment Now</td>
<td>Jolle Wesseling</td>
<td>biobank</td>
</tr>
<tr>
<td>B18HIR</td>
<td>Blood sampling of healthy volunteers for immunological research</td>
<td>Marleen Kok</td>
<td>biobank</td>
</tr>
<tr>
<td>B18NCI</td>
<td>The Netherlands facility for Cancer-Immune Analysis: studying the immune landscape of tumors</td>
<td>John Haanen</td>
<td>biobank</td>
</tr>
<tr>
<td>B18UBC</td>
<td>Longitudinal tumor, urine and blood sampling in patients with urinary tract cancer treated with chemotherapy</td>
<td>Michiel van der Heijden</td>
<td>biobank</td>
</tr>
<tr>
<td>B19BIO</td>
<td>Blood Biobank healthy volunteers</td>
<td>Daan van den Broek</td>
<td>biobank</td>
</tr>
</tbody>
</table>

BRAIN / CNS

<table>
<thead>
<tr>
<th>Title</th>
<th>Study coordinator in NKI-AVL</th>
<th>Phase</th>
<th>Activated (closed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B17GEN</td>
<td>Biomarker analyse van weefsel/bixed van patiënten met een HPV-negatieve tumor in het hoofdhalsgebied</td>
<td>Michiel van den Brekel</td>
<td>biobank</td>
</tr>
<tr>
<td>B17PRE</td>
<td>Prevent Ductal Carcinoma In Situ Invasive D overtreatment Now</td>
<td>Jolle Wesseling</td>
<td>biobank</td>
</tr>
<tr>
<td>B18HIR</td>
<td>Blood sampling of healthy volunteers for immunological research</td>
<td>Marleen Kok</td>
<td>biobank</td>
</tr>
<tr>
<td>B18NCI</td>
<td>The Netherlands facility for Cancer-Immune Analysis: studying the immune landscape of tumors</td>
<td>John Haanen</td>
<td>biobank</td>
</tr>
<tr>
<td>B18UBC</td>
<td>Longitudinal tumor, urine and blood sampling in patients with urinary tract cancer treated with chemotherapy</td>
<td>Michiel van der Heijden</td>
<td>biobank</td>
</tr>
<tr>
<td>B19BIO</td>
<td>Blood Biobank healthy volunteers</td>
<td>Daan van den Broek</td>
<td>biobank</td>
</tr>
</tbody>
</table>

BRAIN / CNS

<table>
<thead>
<tr>
<th>Title</th>
<th>Study coordinator in NKI-AVL</th>
<th>Phase</th>
<th>Activated (closed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B17GEN</td>
<td>Biomarker analyse van weefsel/bixed van patiënten met een HPV-negatieve tumor in het hoofdhalsgebied</td>
<td>Michiel van den Brekel</td>
<td>biobank</td>
</tr>
<tr>
<td>B17PRE</td>
<td>Prevent Ductal Carcinoma In Situ Invasive D overtreatment Now</td>
<td>Jolle Wesseling</td>
<td>biobank</td>
</tr>
<tr>
<td>B18HIR</td>
<td>Blood sampling of healthy volunteers for immunological research</td>
<td>Marleen Kok</td>
<td>biobank</td>
</tr>
<tr>
<td>B18NCI</td>
<td>The Netherlands facility for Cancer-Immune Analysis: studying the immune landscape of tumors</td>
<td>John Haanen</td>
<td>biobank</td>
</tr>
<tr>
<td>B18UBC</td>
<td>Longitudinal tumor, urine and blood sampling in patients with urinary tract cancer treated with chemotherapy</td>
<td>Michiel van der Heijden</td>
<td>biobank</td>
</tr>
<tr>
<td>B19BIO</td>
<td>Blood Biobank healthy volunteers</td>
<td>Daan van den Broek</td>
<td>biobank</td>
</tr>
<tr>
<td>Type of Title Study</td>
<td>Phase Activated (closed)</td>
<td>Study coordinator in NKI-AVL</td>
<td>Title</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------------</td>
<td>-----------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>cancer study</td>
<td>closed</td>
<td>Emiel Rutgers</td>
<td>M12SSU Detectie van onstekingsgeassocieerde eiwitprofielen in het serum, speeksel en urine van patienten met mammatumoren</td>
</tr>
<tr>
<td>coordinator</td>
<td></td>
<td>Sabine Linn</td>
<td>M13TNB Biomarker discovery randomized phase IIb trial with Carboplatin-Cyclophosphamide versus Paclitaxel with or without Bevacizumab as first-line treatment in advanced triple negative breast cancer</td>
</tr>
<tr>
<td>(closed)</td>
<td></td>
<td>Sabine Linn</td>
<td>M14ABC A feasibility study of niraparib for advanced, BRCA1-like, HER2-negative breast cancer patients</td>
</tr>
<tr>
<td>(TRIPLE-B)</td>
<td></td>
<td>Frederieke van Duijnhoven</td>
<td>M14CNB Clinically node negative breast cancer patients undergoing breast conserving therapy: Sentinel lymph node procedure versus follow-up. A Dutch randomized controlled multicentre trial</td>
</tr>
<tr>
<td>(ABC)</td>
<td></td>
<td>Floor van Leeuwen</td>
<td>M14HAR Identifying subgroups with high cardiovascular risk in breast cancer survivors</td>
</tr>
<tr>
<td>(BDOS 2013-08)</td>
<td></td>
<td></td>
<td>M14POS Phase I/prospective randomized phase II trial Of the Safety and Efficacy of tamoxifen in combination with the isoform selective PI3K inhibitor GDC-0032 compared with tamoxifen alone in hormone receptor positive, HER2 negative, metastatic breast cancer patients with prior exposure to endocrine treatment</td>
</tr>
<tr>
<td>(HARBOR)</td>
<td></td>
<td></td>
<td>M15INF Inflame: Towards optimal treatment of inflammatory breast cancer patients</td>
</tr>
<tr>
<td>(INFLAME)</td>
<td></td>
<td>Sabine Linn</td>
<td>M15OLY A randomised double-blind parallel group placebo controlled multicenter phase III study to assess the efficacy and safety of olaparib versus placebo as adjuvant treatment in patients with germline BRCA1/2 mutations and high risk HER2 negative primary breast cancer who have completed definitive local treatment and neoadjuvant or adjuvant chemotherapy</td>
</tr>
<tr>
<td>(INFLAME)</td>
<td></td>
<td>Astrid Scholten</td>
<td>M15PAP Pre- versus Postoperative Accelerated Partial Breast Irradiation in early stage breast cancer patients; A randomized phase III trial</td>
</tr>
<tr>
<td>(PAPBI-2)</td>
<td></td>
<td>Sabine Linn</td>
<td>M16BRC Substantially improving the cure rate of high-risk BRCA1-like breast cancer patients with personalized therapy, an international randomized phase III trial</td>
</tr>
<tr>
<td>(SUBICTO)</td>
<td></td>
<td>Neeltje Steeghs</td>
<td>M16PLE Phase Ib, open-label, multi-center study to characterize the safety, tolerability and pharmacodynamics (PD) of PDR001 in combination with LCL161, Everolimus (RAD001) or Panobinostat (LBH589)</td>
</tr>
<tr>
<td>(GELATO)</td>
<td></td>
<td>Marleen Kok</td>
<td>M17GEL AssessiNG Efficacy of carboplatin and AtZeOlizumab in metastatic Lobular breast cancer</td>
</tr>
<tr>
<td>(GELATO)</td>
<td></td>
<td>Wim Groen</td>
<td>M17PAP Effect of a physical activity promotion program offered online or via blended care on physical activity level in breast and prostate cancer survivors</td>
</tr>
<tr>
<td>(PAPLI)</td>
<td></td>
<td></td>
<td>M17PRP Discovery of prognostic molecular markers within an early stage breast cancer patient population A study of the Dutch Breast Cancer Research Group</td>
</tr>
<tr>
<td>(PRECISE Project)</td>
<td></td>
<td></td>
<td>M17SDM Implementing a decision aid for breast cancer and DCIS patients deciding on their radiation treatment: A pre- and post-intervention study</td>
</tr>
<tr>
<td>(SONIA)</td>
<td></td>
<td></td>
<td>M17TOP Tailored treatment in Older Patients (TOP-1): Omission of radiotherapy in elderly patients with low risk breast cancer</td>
</tr>
<tr>
<td>Type of Title Study Phase Activated cancer study coordinator (closed) (nick name) in NKI-AVL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M18BEL (BELLINI) Pre-operative phase II trial for breast cancer with nivolumab in combination with novel ID Marleen Kok II 22/07/2019</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M18CYP Effect of the moderate CYP3A4 inhibitor erythromycin on the pharmacokinetics of palbociclib Neeltje Steeghs IV 13/02/2019</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M18HAR (HARMony) Favorable and unfavorable effects of risk-reducing salpingo-oophorectomy (RRSD) in women with a high genetic risk of ovarian cancer Floor van Leeuwen other 12/09/2018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M18LBC (NEOLBC) Tailoring Neoadjuvant therapy in hormone receptor positive, HER2 negative, luminal breast cancer Sabine Linn II 15/11/2018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M18LORD (E1401) Management of low grade ductal carcinoma in situ (low-grade DCIS): a randomized, multicenter, non-inferiority trial, standard therapy versus active surveillance Jelle Wesseling III 02/02/2017</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M18MTE Phase 2 study of MCLA-128-based combinations in metastatic breast cancer (MBC): MCLA-128/trastuzumab/chemotherapy in HER2-positive MBC and MCLA-128/ endocrine therapy in estrogen receptor positive and low HER2 expression MBC Vincent Dezentjé II 03/07/2019</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M18TRD (TRAIN-3) Image-guided de-escalation of systemic neoadjuvant treatment in HER2-positive breast cancer Gabe Sonke II 15/02/2019</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M19CAD Phase Ib, multicenter, open-label dose escalation and expansion platform study of select immunotherapy combinations in adult patients with triple negative breast cancer Neeltje Steeghs I 23/05/2019</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M19CON (CONTROL DCIS) Ipsilateral invasive breast cancer-free rate at 10 years; A prospective non-randomized comparison observational study of screen-detected low-risk DCIS between active surveillance and conventional treatment Jelle Wesseling other 31/10/2019</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N08AFT (AFTER) A randomized prospective trial of 2-6 weeks pre-operative hormonal treatment for hormone receptor positive breast cancer: Anastrozole +/- fulvestrant or tamoxifen exposure - response in molecular profile Sabine Linn II 04/08/2008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N12OLG (OLIGO) High-dose alkylating chemotherapy in oligo-metastatic breast cancer harboring homologous recombination deficiency Gabe Sonke III 03/07/2012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N13ORB Olaparib dose escalation combined with radiotherapy in patients with inoperable breast cancer Gabe Sonke I 23/8/2013 (12/2/2019)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N15PPP Prediction of persisting postmastectomy pain by psycho-somato-sensory profiling Anne Lukas other 25/01/2016</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N15TON (TONIC) Adaptive phase II randomized non-comparative trial of nivolumab after induction treatment in triple-negative breast cancer (TNBC) patients Marleen Kok II 10/09/2015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N16MIC (MICRA) Minimally Invasive Complete Response Assessment of the breast after neoadjuvant chemotherapy Marie Jeanne Vrancken Peeters other 06/04/2016</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N16PRB (PRDBI) Pre-operative Breast Irradiation Astrid Scholten I/II 18/4/2017 (26/9/2019)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N16SEN (SENTIMAP) Simplifying the sentinel node procedure in breast cancer using a portable gamma camera in order to replace conventional preoperative lymphatic mapping Marcel Stokkel other 6/7/2017 (8/1/2019)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N18CPB Ervaren beperkingen ten gevolge chronische pijn na borstkanker: een kwalitatieve studie naar het perspectief van de patiënt Kistien Nienhuys other 25/04/2018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N19IPT Contributing to research in a time of privacy: information provision and transparency Marjanka Schmidt other 07/11/2019</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type of cancer study (nick name)</td>
<td>Title</td>
<td>Study coordinator in NKI-AVL</td>
<td>Phase</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------</td>
<td>-----------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>GASTRO INTESTINAL</td>
<td>E1560</td>
<td>Phase II of immunotherapy plus local tumor ablation (IFNα or stereotactic radiotherapy) in patients with colorectal cancer liver metastases</td>
<td>Theo Ruers</td>
</tr>
<tr>
<td>M090CB</td>
<td>A pilot evaluating response to induction chemotherapy with oxaliplatin, capecitabine and bevacizumab in patients with extensive peritoneal carcinomatosis of colorectal origin</td>
<td>Arend Aalbers</td>
<td>pilot</td>
</tr>
<tr>
<td>M12DEC</td>
<td>A randomized trial of dose escalation in definitive chemoradiotherapy for patients with oesophageal cancer</td>
<td>Berthe Aleman</td>
<td>III</td>
</tr>
<tr>
<td>(ART DECO)</td>
<td></td>
<td></td>
<td>(26/3/2019)</td>
</tr>
<tr>
<td>M130RC</td>
<td>A randomized multicenter clinical trial for patients with multi-organ, colorectal cancer metastases comparing the combination of chemotherapy and maximal tumor debulking versus chemotherapy alone</td>
<td>Cecile Grootscholten</td>
<td>III</td>
</tr>
<tr>
<td>(ORCHESTRA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M14CR5</td>
<td>Treatment strategies in colorectal cancer patients with initially unresectable liver-only metastases - a randomised phase 3 study of the Dutch Colorectal Cancer Group</td>
<td>Cecile Grootscholten</td>
<td>III</td>
</tr>
<tr>
<td>(CARD-5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M14NEC</td>
<td>Phase II Study of cisplatin and everolimus in patients with metastatic or unresectable neuroendocrine carcinomas of extrapulmonary origin</td>
<td>Margot Tessaar</td>
<td>II</td>
</tr>
<tr>
<td>(NEC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M14TUM</td>
<td>Tumor organoids: feasibility to predict sensitivity to treatment in cancer patients</td>
<td>Emile Voest</td>
<td>pilot</td>
</tr>
<tr>
<td>(TUMOROID)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M15CRI</td>
<td>A multicentre randomised phase II trial of neo-adjuvant chemotherapy followed by surgery vs. neo-adjuvant chemotherapy and chemoradiation followed by surgery vs. neo-adjuvant chemoradiotherapy followed by surgery in resectable gastric cancer</td>
<td>Marcel Verheij</td>
<td>II</td>
</tr>
<tr>
<td>(CRITICS-IV)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M15HPV</td>
<td>Non-Comparative, Two-Cohort, Single-Arm, Open-Label, Phase 1/2 Study of Nivolumab in Subjects with Virus-Positive and Virus-Negative Solid Tumors</td>
<td>Jan Paul de Boer</td>
<td>I/II</td>
</tr>
<tr>
<td>(BMS-936558)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M15INN</td>
<td>Integration of trastuzumab, with or without pertuzumab, into periOperative chemotherApy of HER-2 positiVe stomach calcicar</td>
<td>Annemieke Cats</td>
<td>II</td>
</tr>
<tr>
<td>(INNOVATION)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M15MOC</td>
<td>Molecular stool test for colorectal cancer surveillance</td>
<td>Monique van Leerdam</td>
<td>other</td>
</tr>
<tr>
<td>(MOCCAS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M15MOD</td>
<td>A multi-centre randomised clinical trial of biomarker-driven maintenance treatment for first-line metastatic colorectal cancer</td>
<td>Cecile Grootscholten</td>
<td>II</td>
</tr>
<tr>
<td>(MODUL)</td>
<td></td>
<td></td>
<td>(5/9/2019)</td>
</tr>
<tr>
<td>M15PEC</td>
<td>Treatment of peritoneal dissemination in stomach cancer patients with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. A multicentre randomised phase III trial</td>
<td>Johanna van Sandick</td>
<td>III</td>
</tr>
<tr>
<td>(PERISCOPE II)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M15SCA</td>
<td>The sensitivity of scar-biopsies for residual colorectal adenocarcinoma after endoscopic resection with uncertain radicality</td>
<td>Monique van Leerdam</td>
<td>other</td>
</tr>
<tr>
<td>(SCAPURA)</td>
<td></td>
<td></td>
<td>(19/8/2018)</td>
</tr>
<tr>
<td>M16BAC</td>
<td>A phase II open-label study with the anti-PD1 Atezolizumab monoclonal antibody in combination with Bevacizumab in patients with advanced chemotherapy resistant colorectal cancer and MSIlike molecular signature</td>
<td>Neeltje Steeghs</td>
<td>II</td>
</tr>
<tr>
<td>(E1604)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M16BCR</td>
<td>A multicenter, randomized, open-label, 3-arm phase 3 study of Encorafenib +Cetuximab plus or minus Binimetinib vs. Irinotecan/Cetuximab or Infusional 5-Fluorouracil (5-FU)/Folinic Acid (FA) /Irinotecan (FOLFIRI)/Cetuximab with a safety lead-in of Encorafenib + Binimetinib + Cetuximab in patients with BRAF V600E-mutant metastatic colorectal cancer: Binimetinib, Encorafenib, And Cetuximab Combined to Treat BRAF-mutant ColoRectal Cancer</td>
<td>Neeltje Steeghs</td>
<td>III</td>
</tr>
<tr>
<td>(BEACON CRC)</td>
<td></td>
<td></td>
<td>(13/12/2018)</td>
</tr>
<tr>
<td>M16EEW</td>
<td>Expectations and experiences of clinical complete responders after chemoradiation for rectal cancer, regarding the Wait-and-See policy: a qualitative multicenter study</td>
<td>Geerard Beets</td>
<td>other</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4/12/2019)</td>
</tr>
<tr>
<td>Type of cancer study</td>
<td>Title</td>
<td>Study coordinator in NKI-AVL</td>
<td>Phase</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------</td>
<td>-----------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>M16EGJ</td>
<td>A Randomized, Multicenter, Double Blind, Phase III Study of Nivolumab or Placebo in Subjects with Resected Lower Esophageal, or Gastroesophageal Junction Cancer: CHECKpoint pathway and nivolumab clinical Trial Evaluation</td>
<td>Cecile Grootscholten</td>
<td>III</td>
</tr>
<tr>
<td>M16EPS</td>
<td>The European Polyo Surveillance study (EPOS). Two randomized controlled trials and an observational study</td>
<td>Monique van Leerdam</td>
<td>other</td>
</tr>
<tr>
<td>M16INC</td>
<td>Intensive therapy for esophageal anastomotic strictures (INCA)</td>
<td>Jolanda van Dieren</td>
<td>II</td>
</tr>
<tr>
<td>M18PLE</td>
<td>Phase Ib, open-label, multi-center study to characterize the safety, tolerability and pharmacodynamics (PD) of PDR001 in combination with LCL181, Everolimus (RAD001) or Panobinostat (LBH589)</td>
<td>Neeltje Steeghs</td>
<td>I</td>
</tr>
<tr>
<td>M16PTO</td>
<td>Preferences, barriers and facilitators for pre-operative exercise participation for elderly treated for colorectal cancer and their social network</td>
<td>Carla Agasi-Idenburg</td>
<td>other</td>
</tr>
<tr>
<td>M16SCR</td>
<td>Screening protocol to molecularly identify MSI-like, BRAF-like and TGFβ-like classifiers in patients with metastatic colorectal cancer (mCRC), to potentially participate in any of the H2020 MoTriColor Clinical Trials</td>
<td>Neeltje Steeghs</td>
<td>other</td>
</tr>
<tr>
<td>M16STA</td>
<td>Can we Save the rectum by watchful waiting or TransAnal microsurgery following (chemo)Radiotherapy versus Total mesorectal excision for early Rectal Cancer?</td>
<td>Geerard Beets</td>
<td>II</td>
</tr>
<tr>
<td>M16STA</td>
<td>Phase I/I study with galunisertib combined with chemotherapy regimens in patients with advanced chemotherapy resistant colorectal cancer and a TGFbeta signature</td>
<td>Neeltje Steeghs</td>
<td>I/I</td>
</tr>
<tr>
<td>M16VIB</td>
<td>A phase II study of vinorelbine in advanced BRAF-like colon cancer</td>
<td>Neeltje Steeghs</td>
<td>II</td>
</tr>
<tr>
<td>M16WAS</td>
<td>Multicentre evaluation of the “wait-and-see” policy for complete responders after chemoradiotherapy for rectal cancer</td>
<td>Geerard Beets</td>
<td>other</td>
</tr>
<tr>
<td>M17CRC</td>
<td>Investigating the benefit of perioperative systemic therapy in patients undergoing cytoreductive surgery with HIPEC for peritoneal metastases of colorectal cancer: the multicentre, phase II-III, prospective, randomised study</td>
<td>Arend Aalbers</td>
<td>other</td>
</tr>
<tr>
<td>M17HCR</td>
<td>Prospective data collection initiative on colorectal cancer - a prospective observational cohort study</td>
<td>Geerard Beets</td>
<td>IV</td>
</tr>
<tr>
<td>M17HCR</td>
<td>Adjuvant hepatic arterial infusion pump chemotherapy after resection of colorectal liver metastases - a feasibility study</td>
<td>Kaart Kuhimann</td>
<td>pilot</td>
</tr>
<tr>
<td>M17HCR</td>
<td>Evaluation of PET and Laparoscopy in STaging advanced gastric Cancer: a multicenter prospective study</td>
<td>Johanna van Sandick</td>
<td>other</td>
</tr>
<tr>
<td>M18PUMP</td>
<td>Intra-arterial lutetium-177-dotatate for treatment of patients with neuroendocrine tumor liver metastases</td>
<td>Marcel Stokkel</td>
<td>II</td>
</tr>
<tr>
<td>M18PUMP</td>
<td>Preoperative Image-guided Identification of Response to neoadjuvant chemoradiotherapy in Esophageal cancer</td>
<td>Marcel Verheij</td>
<td>nvt</td>
</tr>
<tr>
<td>M18SAN</td>
<td>Adjuvant hepatic arterial infusion pump chemotherapy after resection of colorectal liver metastases in patients with a low clinical risk score – a randomized controlled trial</td>
<td>Kurt Kuhimann</td>
<td>III</td>
</tr>
<tr>
<td>M18SAN</td>
<td>Neoadjuvant chemoradiotherapy plus surgery versus active surveillance for oesophageal cancer</td>
<td>Johanna van Sandick</td>
<td>III</td>
</tr>
<tr>
<td>Type of cancer study (nick name)</td>
<td>Title</td>
<td>Study coordinator in NKI-AVL</td>
<td>Phase</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
<td>------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>M18SPD</td>
<td>The (ir)relevance of WHO criterion 2 for the diagnosis of Serrated Polyposis Syndrome</td>
<td>Monique van Leerdam</td>
<td>other</td>
</tr>
<tr>
<td>M18STAR</td>
<td>Standardizing Training for endoscopic Resection of Large Non-Pedunculated Colorectal Polyps: it is prime-time to change practice</td>
<td>Monique van Leerdam</td>
<td>other</td>
</tr>
<tr>
<td>M19AHW</td>
<td>Phase 3b Randomized Clinical Trial of Nivolumab Alone, or in Combination with Ipilimumab in Participants with Microsatellite Instability High (MSI-H) or Mismatch Repair Deficient Metastatic Colorectal Cancer (dMMR). CHECKpoint pathway and nivolumab clinical Trial Evaluation BHW</td>
<td>Cecile Grootscholten</td>
<td>III</td>
</tr>
<tr>
<td>M19CLP</td>
<td>Second and third look laparoscopy in tT4 colon cancer patients for early detection of peritoneal metastases; the COLOPEC II randomized multicentre trial</td>
<td>Arend Aalbers</td>
<td>III</td>
</tr>
<tr>
<td>M19GSC</td>
<td>Dedicated MR imaging vs surgical staging of peritoneal carcinomatosis in colorectal cancer patients: a randomized multicenter trial</td>
<td>Max Lahaye</td>
<td>other</td>
</tr>
<tr>
<td>M19FTR</td>
<td>Prospective Registration of endoscopic Full Thickness Resection in the Netherlands</td>
<td>Thomas de Wijkerslooth</td>
<td>other</td>
</tr>
<tr>
<td>M19FTR0</td>
<td>Long-term oncological outcomes of endoscopic fulthickness resection after previous (potential) incomplete resection of T1 CRC: A national prospective cohort study</td>
<td>Thomas de Wijkerslooth</td>
<td>other</td>
</tr>
<tr>
<td>M19IMP</td>
<td>Image guided treatment optimization with cetuximab for patients with metastatic colorectal cancer. As part of the imaging program: Towards patient tailored cancer treatment supported by molecular imaging IMPACT: Imaging Patients for Cancer drug selection</td>
<td>Tineke Buffart</td>
<td>II</td>
</tr>
<tr>
<td>M19TGR</td>
<td>Distribution of lymph node metastases in esophageal carcinoma</td>
<td>Johanna van Sandick</td>
<td>other</td>
</tr>
<tr>
<td>N12INT</td>
<td>Pilot study to evaluate the tumor-reactivity of infiltrating T cells in human malignancies</td>
<td>Wouter Schepers</td>
<td>pilot</td>
</tr>
<tr>
<td>N13NAV</td>
<td>Image-guided navigation during abdominal surgery</td>
<td>Theo Ruers</td>
<td>pilot</td>
</tr>
<tr>
<td>N14TO</td>
<td>Immunogenicity of Tumor Organoids, a feasibility study</td>
<td>Emile Voest</td>
<td>other</td>
</tr>
<tr>
<td>N14SNS</td>
<td>Selecting cancer patients for treatment using Tumor Organoids</td>
<td>Emile Voest</td>
<td>other</td>
</tr>
<tr>
<td>N14SNSA</td>
<td>Selecting cancer patients for treatment using Tumor Organoids</td>
<td>Emile Voest</td>
<td>other</td>
</tr>
<tr>
<td>N16BTC</td>
<td>Blood Transcript Analysis in colorectal cancer patients</td>
<td>Margot Tesselaar</td>
<td>other</td>
</tr>
<tr>
<td>N16W1</td>
<td>DWI MR imaging for dedicated staging of patients with peritoneal seeding</td>
<td>Max Lahaye</td>
<td>other</td>
</tr>
<tr>
<td>N16GMR</td>
<td>A Feasibility Study of MR-based target delineation for Radiotherapy Treatment Planning For Gastric Cancer</td>
<td>Marcel Verheij</td>
<td>pilot</td>
</tr>
<tr>
<td>N16NCI</td>
<td>Nivolumab, Ipilimumab and COX2-Inhibition in early stage colon cancer: an unbiased approach for signals of sensitivity</td>
<td>Myriam Chalabi</td>
<td>other</td>
</tr>
<tr>
<td>N16OCR</td>
<td>A prospective observational cohort for the clinical evaluation of innovative image guided surgical interventions in rectal cancer</td>
<td>Theo Ruers</td>
<td>other</td>
</tr>
<tr>
<td>Type of Title Study Phase Activated cancer study coordinator (closed) (nick name) in NKI-AVL</td>
<td>Title</td>
<td>Study coordinator in NKI-AVL</td>
<td>Phase</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>----------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>N16TRS</td>
<td>Real-time in vivo sensor tracking of rectal tumours during colorectal cancer surgery</td>
<td>Theo Ruers other</td>
<td></td>
</tr>
<tr>
<td>N17PNO (PANDA)</td>
<td>Neoadjuvant capecitabine, oxaliplatin, docetaxel and atezolizumab in non-metastatic, resectable gastric and GE-junction cancer</td>
<td>Myriam Chalabi</td>
<td>II</td>
</tr>
<tr>
<td>N18TRZ (TARZAN)</td>
<td>Neoadjuvant treatment in rectal cancer with radiotherapy followed by atezolizumab and bevacizumab</td>
<td>Myriam Chalabi</td>
<td>I/II</td>
</tr>
<tr>
<td>N18UIF</td>
<td>Ultrasound image fusion during percutaneous biliary drainage in patients with malignant obstruction of the biliary tree</td>
<td>Brigit Aarts other</td>
<td></td>
</tr>
<tr>
<td>N19ULN</td>
<td>Ultrasound-based navigation during liver surgery</td>
<td>Theo Ruers other</td>
<td></td>
</tr>
<tr>
<td>N19IPT</td>
<td>Contributing to research in a time of privacy: information provision and transparency</td>
<td>Marjanka Schmidt</td>
<td></td>
</tr>
<tr>
<td>N19RNA</td>
<td>The identification and characterization of predictive markers of chemotherapy resistance in metastatic colorectal cancer using single-cell RNA sequencing</td>
<td>Emile Voest other</td>
<td></td>
</tr>
</tbody>
</table>

GYNAECOLOGICAL

<table>
<thead>
<tr>
<th>Type of Title Study Phase Activated cancer study coordinator (closed) (nick name) in NKI-AVL</th>
<th>Title</th>
<th>Study coordinator in NKI-AVL</th>
<th>Phase</th>
<th>Activated (closed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E55102 (ENGOT-EN2-DGCG)</td>
<td>A phase III Trial of postoperative chemotherapy or no further treatment for patients with node-negative stage I-II intermediate or high risk endometrial cancer</td>
<td>Hans Trum III</td>
<td></td>
<td>24/8/2016 (8/4/2019)</td>
</tr>
<tr>
<td>M10MKO (tripleB)</td>
<td>Phase II and pharmacological study with WEE-1 inhibitor MK-1775 combined with carboplatin in patients with p53 mutated epithelial ovarian cancer</td>
<td>Frans Opdam II</td>
<td></td>
<td>08/07/2010</td>
</tr>
<tr>
<td>M14BBB (tripleB)</td>
<td>The Blood-Belly Barrier</td>
<td>Christianne Lok nvt</td>
<td></td>
<td>03/05/2016</td>
</tr>
<tr>
<td>M15HPV (BMS-936558)</td>
<td>Non-Comparative, Two-Cohort, Single-Arm, Open-Label, Phase 1/2 Study of Nivolumab in Subjects with Virus-Positive and Virus-Negative Solid Tumors</td>
<td>Jan Paul de Boer I/II</td>
<td></td>
<td>27/10/2015</td>
</tr>
<tr>
<td>M15HY (SHAPEI)</td>
<td>A randomized phase III trial comparing radical hysterectomy and pelvic node dissection vs simple hysterectomy and pelvic node dissection in patients with low-risk early-stage cervical cancer</td>
<td>Willemien van Driel III</td>
<td></td>
<td>29/12/2015</td>
</tr>
<tr>
<td>M16HE4 (HE4 prediction)</td>
<td>Prospective evaluation of Human Epididymal protein 4 (HE4) as predictor of malignancy in patients with a ovarian mass</td>
<td>Christianne Lok other</td>
<td></td>
<td>(02/12/2019)</td>
</tr>
<tr>
<td>M16RTE (PORTEC 4a)</td>
<td>Randomised Phase III Trial of molecular profile-based versus standard recommendations for adjuvant radiotherapy for women with early stage endometrial cancer</td>
<td>Monique Bloemers III</td>
<td></td>
<td>08/02/2017</td>
</tr>
<tr>
<td>M16SOL (SOLUTION)</td>
<td>Biomarker detection in cytology samples of women with gynaecologic cancer: a multicentric study</td>
<td>Gemma Kenter other</td>
<td></td>
<td>30/1/2017 (3/12/2018)</td>
</tr>
<tr>
<td>M16SON (SDNARP-2)</td>
<td>Sentinel node in ovarian cancer</td>
<td>Willemien van Driel I</td>
<td></td>
<td>15/09/2016</td>
</tr>
<tr>
<td>M16TUB (TUBA)</td>
<td>Early salpingectomy (Tubectomy) with delayed oophorectomy to improve quality of life as alternative for risk-reducing salpingo-oophorectomy in BRCA1/2 mutation carriers</td>
<td>Marc van Beurden other</td>
<td></td>
<td>01/06/2016</td>
</tr>
<tr>
<td>M17CPF (NEOCON-F)</td>
<td>Neo-Adjuvant Chemotherapy and Conservative Surgery in Cervical Cancer to Preserve Fertility</td>
<td>Nienke van Trommel II</td>
<td></td>
<td>04/12/2018</td>
</tr>
<tr>
<td>M17EBR (EMBRACE-II)</td>
<td>Image guided intensity modulated External beam radiochemotherapy and MRI-based adaptive Brachytherapy in locally advanced Cervical cancer</td>
<td>Monique Bloemers other</td>
<td></td>
<td>04/08/2018</td>
</tr>
<tr>
<td>Type of cancer study (nick name)</td>
<td>Title</td>
<td>Study coordinator in NKI-AVL</td>
<td>Phase</td>
<td>Activated (closed)</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>-----------------------------</td>
<td>-------</td>
<td>-------------------</td>
</tr>
<tr>
<td>M17GINC (GINA-Cervix)</td>
<td>The state of the (sentinel) lymph node microenvironment in patients with cancer of the cervix</td>
<td>Henry Zijlmans</td>
<td>other</td>
<td>28/02/2018</td>
</tr>
<tr>
<td>M17GINV (GINA-Vulva)</td>
<td>The state of the (sentinel) lymph node microenvironment in patients with HPV-positive and HPV-negative cancer of the vulva</td>
<td>Henry Zijlmans</td>
<td>other</td>
<td>28/02/2018</td>
</tr>
<tr>
<td>M17GSC (GERSOC)</td>
<td>GERiatric Screening in the treatment of elderly patients with Ovarian Carcinoma</td>
<td>Hans Trum</td>
<td>other</td>
<td>07/06/2018</td>
</tr>
<tr>
<td>M17MRO</td>
<td>Clinical impact of dedicated MR staging of ovarian cancer</td>
<td>Max Lahaye</td>
<td>other</td>
<td>17/04/2018</td>
</tr>
<tr>
<td>M17OVH (OVHIPEC-2)</td>
<td>Randomized clinical trial for stage III epithelial ovarian cancer randomizing between primary cytoreductive surgery with or without hyperthermic intraperitoneal chemotherapy</td>
<td>Willemien van Driel</td>
<td>III</td>
<td>21/06/2019</td>
</tr>
<tr>
<td>M17PDV (PADova)</td>
<td>Physical Activity and Dietary intervention in DVArian cancer: a RCT evaluating effects on body composition, physical function, and fatigue</td>
<td>Willemien van Driel</td>
<td>other</td>
<td>01/05/2018</td>
</tr>
<tr>
<td>M17SNX (Sentix)</td>
<td>A prospective observational trial on sentinel lymph node biopsy in patients with early stage cervical cancer</td>
<td>Hans Trum</td>
<td>other</td>
<td>22/10/2018</td>
</tr>
<tr>
<td>M18BAM</td>
<td>An open-label, first-in-human, multi-center study to evaluate the safety, tolerability, pharmacokinetics and anti-tumor activity of a thorium-227 labeled antibody-chelator conjugate, BAY 2287411 injection, in patients with solid tumors known to express mesothelin</td>
<td>Egbert Smit</td>
<td>I</td>
<td>13/02/2019</td>
</tr>
<tr>
<td>M18CRA</td>
<td>Cancer risk assessment in women with vulvar intraepithelial neoplasia. Historic cohort study + Prospective study</td>
<td>Marc van Beurden</td>
<td>other</td>
<td>06/11/2018</td>
</tr>
<tr>
<td>M18FUG (FUCHSia)</td>
<td>An open-label, single arm, prospective, multi-center, tandem two stage designed, phase II study to evaluate the efficacy of Fulvestrant in women with recurrent/metastatic estrogen receptor positive gynecological malignancies</td>
<td>Frederic Amant</td>
<td>II</td>
<td>13/08/2019</td>
</tr>
<tr>
<td>M18IQM (IQ-EMBRACE)</td>
<td>Quantitative MR Imaging in Locally Advanced Cervical Cancer -Sub-study under the EMBRACE II protocol</td>
<td>Monique Bloemers</td>
<td>other</td>
<td>26/09/2019</td>
</tr>
<tr>
<td>M18KZH</td>
<td>Ontwikkeling option grid/keuzehulp t.b.v. behandeling gevorderd ovariumcarcinoom</td>
<td>Willemien van Driel</td>
<td>other</td>
<td>31/7/2018</td>
</tr>
<tr>
<td>M19GRA (GRANULOSA)</td>
<td>Granulosa cell tumors: a step towards targeted therapy</td>
<td>Christianne Lok</td>
<td>other</td>
<td>23/04/2019</td>
</tr>
<tr>
<td>N12INT</td>
<td>Pilot study to evaluate the tumor-reactivity of infiltrating T cells in human malignancies</td>
<td>Wouter Schaper</td>
<td>pilot</td>
<td>05/09/2012</td>
</tr>
<tr>
<td>N15TCH</td>
<td>Isolation of T cell receptors from human papilloma virus (HPV)-reactive or other tumor-reactive T cells from patients with oropharyngeal, cervical or vulvar cancer</td>
<td>Lotje Zuur</td>
<td>other</td>
<td>13/07/2016</td>
</tr>
<tr>
<td>N16DWI (DISPERSE)</td>
<td>DWI MR imaging for dedicated staging of patients with peritoneal seeding</td>
<td>Max Lahaye</td>
<td>other</td>
<td>26/05/2016</td>
</tr>
<tr>
<td>N16NEON</td>
<td>Personalized adoptive T-cell therapy protocol</td>
<td>John Haanen</td>
<td>other</td>
<td>09/11/2016</td>
</tr>
<tr>
<td>N16OPE</td>
<td>Feasibility study of neo-adjuvant treatment with carboplatin, paclitaxel and pembrolizumab in primary stage IV serous ovarian cancer</td>
<td>Gabe Sonke</td>
<td>I</td>
<td>19/07/2017</td>
</tr>
<tr>
<td>N16SIG</td>
<td>Safety, immunogenicity and clinical response of sig-HELP-E6SH/E7SH-kdel, injected in the epidermis by DNA tattoo vaccination, in HPV16-positive vulvar intraepithelial neoplasia: a phase I/II study</td>
<td>Gemma Kenter</td>
<td>I/II</td>
<td>09/11/2016</td>
</tr>
<tr>
<td>Type of cancer study (nick name)</td>
<td>Title</td>
<td>Study coordinator in NKI-AVL</td>
<td>Phase</td>
<td>Activated (closed)</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------</td>
<td>-----------------------------</td>
<td>--------</td>
<td>-------------------</td>
</tr>
<tr>
<td>HEAD AND NECK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M14PAR</td>
<td>TachoSil patch application as replacement of closed suction wound drainage by parotid gland surgery: a prospective study</td>
<td>Fons Balm</td>
<td>other</td>
<td>22/01/2015</td>
</tr>
<tr>
<td>M15HPV (BMS-936558)</td>
<td>Non-Comparative, Two-Cohort, Single-Arm, Open-Label, Phase 1/2 Study of Nivolumab in Subjects with Virus-Positive and Virus-Negative Solid Tumors</td>
<td>Jan Paul de Boer</td>
<td>I/II</td>
<td>27/10/2015</td>
</tr>
<tr>
<td>M16OPS</td>
<td>Optical properties of the sinonasal cavity after surgical tumor resection</td>
<td>Baris Karakullukcu</td>
<td>other</td>
<td>01/03/2017</td>
</tr>
<tr>
<td>M16SPS</td>
<td>Combination of salvage surgery and adjuvant photodynamic therapy in management of recurrent or residual sinonasal tumors</td>
<td>Baris Karakullukcu</td>
<td>other</td>
<td>26/01/2017</td>
</tr>
<tr>
<td>M17CPI</td>
<td>Validation and psychometric properties of the Dutch version of the Communicative Participation Item Bank (CPIB) short form</td>
<td>Michiel van den Brekel</td>
<td>other</td>
<td>16/10/2017</td>
</tr>
<tr>
<td>M17MOV (Move-FIT)</td>
<td>Optimising physical fitness in patients receiving chemo radiotherapy for head and neck cancer: a feasibility study</td>
<td>Martijn Stuiver</td>
<td>other</td>
<td>01/03/2018</td>
</tr>
<tr>
<td>M17OSA</td>
<td>Prevalence of Obstructive Sleep Apnea Syndrome (OSAS) after treatment for advanced stage head and neck cancer</td>
<td>Ludie Smeele</td>
<td>other</td>
<td>28/02/2019</td>
</tr>
<tr>
<td>M18EAC</td>
<td>External Auditory Canal Carcinoma, a retrospective study on treatment outcome</td>
<td>Michiel van den Brekel</td>
<td>other</td>
<td>16/1/2019 (16/1/2019)</td>
</tr>
<tr>
<td>M18ISA</td>
<td>A randomized, double-blind, placebo-controlled, phase 2 study of Cemiplimab versus the combination of Cemiplimab with ISA101b in the treatment of subjects with HPV16-positive Platin-resistant oropharyngeal cancer (OPC)</td>
<td>Jan Paul de Boer</td>
<td>other</td>
<td>01/05/2019</td>
</tr>
<tr>
<td>M18KOC</td>
<td>Ontwikkeling van een keuzehulp voor patiënten met een orofarynxstumor waarbij curatieve chirurgie een behandeldoel is</td>
<td>Ludie Smeele</td>
<td>other</td>
<td>22/02/2019</td>
</tr>
<tr>
<td>M18SUS (SUSPECT-2)</td>
<td>Mapping of sentinel lymph node drainage Using Spect/CT to tailor highly selective elective nodal irradiation in node-negative neck of patients with head and neck cancer</td>
<td>Abraham Al-Mangani</td>
<td>II</td>
<td>25/08/2019</td>
</tr>
<tr>
<td>N12MAC (HG4)</td>
<td>Exploring the contribution of Macrophages in the microenvironment of HPV-induced squamous cell carcinoma of the head and neck</td>
<td>Jan Paul de Boer</td>
<td>other</td>
<td>31/08/2012</td>
</tr>
<tr>
<td>N13DRH</td>
<td>Diaparib dose escalation trial in patients treated with radiotherapy for stage II-III laryngeal and stage II-III HPV-negative oropharyngeal squamous cell carcinoma</td>
<td>Marcel Verheij</td>
<td>I</td>
<td>20/02/2014</td>
</tr>
<tr>
<td>N14MR (IMRAD)</td>
<td>The immunological aspects of conventional therapies for the treatment of head and neck squamous cell carcinoma (HNSCC). An exploratory study to study the immunological effects of (chemo)radiotherapy in HNSCC patients</td>
<td>Lotje Zuur</td>
<td>other</td>
<td>23/03/2015</td>
</tr>
<tr>
<td>N14LMN</td>
<td>Lymphatic mapping of the neck in patients with oral cavity malignancies using ICG-nanocolloid</td>
<td>Martin Klop</td>
<td>other</td>
<td>10/06/2015</td>
</tr>
<tr>
<td>N15HTC</td>
<td>Longitudinal analysis of head and neck cancer-specific immunity in patients treated with (salvage) surgery</td>
<td>Lotje Zuur</td>
<td>other</td>
<td>16/12/2015</td>
</tr>
<tr>
<td>N15PAH</td>
<td>Feasibility of position averaged planning-CT for head-neck tumours</td>
<td>Wouter Vogel</td>
<td>other</td>
<td>16/12/2015 (15/1/2015)</td>
</tr>
<tr>
<td>Type of cancer study (nick name)</td>
<td>Title</td>
<td>Study coordinator in NKI-AVL</td>
<td>Phase</td>
<td>Activated (closed)</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------</td>
<td>-------------------------------</td>
<td>-------</td>
<td>---------------------</td>
</tr>
<tr>
<td>N15SHA (SHAPE)</td>
<td>Effect of a silicone foam dressing (XtraSorb Foam) and hydrocolloid dressing (XtraSorb HCS) compared to silicone foam dressing (Mepilex) or an alginate (Kaltostat) combined with a semipermeable film (Tegaderm) on the donor site after split-thickness skin graft: a randomized controlled trial</td>
<td>Peter Lohuis</td>
<td>other</td>
<td>31/05/2016</td>
</tr>
<tr>
<td>N15TCH</td>
<td>Isolation of T cell receptors from human papilloma virus (HPV)-reactive or other tumor-reactive T cells from patients with oropharyngeal, cervical or vulvar cancer</td>
<td>Lotje Zuur</td>
<td>other</td>
<td>13/07/2016</td>
</tr>
<tr>
<td>N16IGM (IMCISION)</td>
<td>Intraoperative verification of maxillary malignancy resection with cone-beam computed tomography</td>
<td>Baris Karakullukcu</td>
<td>pilot</td>
<td>21/2/2017 (31/10/2019)</td>
</tr>
<tr>
<td>N16MC (IMCISION)</td>
<td>ImmunoModulation by the Combination of Ipilimumab and nivolumab neoadjuvant to Surgery in advanced Or recurrent head and Neck carcinoma</td>
<td>Lotje Zuur</td>
<td>I</td>
<td>08/12/2016</td>
</tr>
<tr>
<td>N16NEON</td>
<td>Personalized adoptive T-cell therapy protocol</td>
<td>John Haanen</td>
<td>other</td>
<td>09/11/2016</td>
</tr>
<tr>
<td>N17ADM</td>
<td>Adaptive Dose-Escalated Multi-modality Image-guided RadisthErapy for head and neck cancer by twice reimaging, re-delineation and re-planning during the course of radiotherapy</td>
<td>Abraham Al-Mamgani</td>
<td>other</td>
<td>31/8/2017 (24/4/2019)</td>
</tr>
<tr>
<td>N17BTM</td>
<td>Personalization of a biomechanical tongue model for the prediction of treatment outcome: a feasibility study</td>
<td>Ludi Smeele</td>
<td>other</td>
<td>22/06/2017</td>
</tr>
<tr>
<td>N17DSI</td>
<td>Determining the dose-effect relation of salivary gland irradiation and cell loss with PSMA PET</td>
<td>Wouter Vogel</td>
<td>other</td>
<td>23/05/2017</td>
</tr>
<tr>
<td>N17LFO</td>
<td>Effectiveness of lipofilling in patients with oropharyngeal dysfunction (speech and/or swallowing) after treatment for head and neck cancer</td>
<td>Ludi Smeele</td>
<td>other</td>
<td>19/12/2017</td>
</tr>
<tr>
<td>N17SPE (SPEAT)</td>
<td>The timed Swallowing Performance EATing and drinking test to objectify dysphagia in head and neck cancer patients</td>
<td>Ludi Smeele</td>
<td>other</td>
<td>24/04/2018</td>
</tr>
<tr>
<td>N17SSF</td>
<td>Prospective assessment of swallowing and speech function 10 years after preventive swallowing rehabilitation and chemoradiotherapy for head and neck cancer</td>
<td>Ludi Smeele</td>
<td>other</td>
<td>9/3/2018 (30/10/2019)</td>
</tr>
<tr>
<td>N17SWU</td>
<td>Shear wave ultrasound elastography of the tongue – a feasibility study</td>
<td>Ludi Smeele</td>
<td>other</td>
<td>14/6/2017 (8/5/2019)</td>
</tr>
<tr>
<td>N17TOS</td>
<td>Tracking of oral cavity carcinomas in head and neck surgery</td>
<td>Baris Karakullukcu</td>
<td>other</td>
<td>18/04/2017</td>
</tr>
<tr>
<td>N18EMT</td>
<td>Active and passive elasticity measurements of the tongue using in vivo measurement techniques</td>
<td>Ludi Smeele</td>
<td>other</td>
<td>10/08/2018</td>
</tr>
<tr>
<td>N18HME</td>
<td>HME attachment Study</td>
<td>Michel van den Broekel</td>
<td>other</td>
<td>10/1/2019 (19/2/2019)</td>
</tr>
<tr>
<td>N18HSN</td>
<td>Are circulating hematopoietic stem and progenitor cells a potential biomarker for therapy response and disease progression in patients with squamous cell carcinoma of the head and neck?</td>
<td>Lotje Zuur</td>
<td>other</td>
<td>06/07/2018</td>
</tr>
<tr>
<td>N18PCN (PECAN)</td>
<td>Prospective study Evaluating CIpDNA as a biomarker for treatment failure in head and Neck squamous cell carcinoma</td>
<td>Abraham Al-Mamgani</td>
<td>other</td>
<td>15/05/2018</td>
</tr>
<tr>
<td>N18VOQ</td>
<td>Voice quality and voice related quality of life in patients treated with totallaryngectomy: A prospective data collection</td>
<td>Klaske van Sluis</td>
<td>other</td>
<td>20/02/2018</td>
</tr>
<tr>
<td>N19IPC (INFLUENCE)</td>
<td>Intra-operative evaluation of a novel FLuorescent Ct tracer in penile and tongue cancer</td>
<td>Baris Karakullukcu</td>
<td>other</td>
<td>13/11/2019</td>
</tr>
<tr>
<td>Type of cancer study (nick name)</td>
<td>Title</td>
<td>Study coordinator in NKI-AVL</td>
<td>Phase</td>
<td>Activated (closed)</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>-------</td>
<td>--------------------</td>
</tr>
<tr>
<td>LUNG</td>
<td>E1205</td>
<td>EDRTC randomized phase II study of pleurectomy/decortication (P/D) preceded or followed by chemotherapy in patients with early stage malignant pleural mesothelioma</td>
<td>Paul Baas</td>
<td>II</td>
</tr>
<tr>
<td>M14AFS</td>
<td>Phase I/II study with the combination of afatinib and selumetinib in advanced KRAS mutant positive and PIK3CA wildtype colorectal, non-small cell lung and pancreatic cancer</td>
<td>Frans Opdam</td>
<td>I/II</td>
<td>19/05/2015</td>
</tr>
<tr>
<td>M14ENI</td>
<td>A phase II, multicenter, open-label study of EGFR-B16 in combination with Nivolumab in adult patients with EGFR mutated non-small cell lung cancer and of INC280 in combination with Nivolumab in adult patients with cMet positive non-small cell lung cancer</td>
<td>Willemijn Theelen</td>
<td>II</td>
<td>9/6/2015 (20/03/2019)</td>
</tr>
<tr>
<td>M14LTK</td>
<td>Phase I/II study with lapatinib plus trametinib in patients with metastatic KRAS mutant colorectal, non-small cell lung and pancreatic cancer</td>
<td>Frans Opdam</td>
<td>I/II</td>
<td>4/8/2014 (29/5/2019)</td>
</tr>
<tr>
<td>M14TUM (TUMORDID)</td>
<td>Tumor organoids: feasibility to predict sensitivity to treatment in cancer patients</td>
<td>Emile Voest</td>
<td>pilot</td>
<td>22/07/2014</td>
</tr>
<tr>
<td>M15CIN (CINC280A2201)</td>
<td>A phase II, multicenter, three-cohort study of oral cMET inhibitor INC280 in adult patients with EGFR wild-type (wt), advanced non-small cell lung cancer (NSCLC) who have received one or two prior lines of systemic therapy for advanced/metastatic disease</td>
<td>Egbert Smit</td>
<td>II</td>
<td>15/09/2015</td>
</tr>
<tr>
<td>M15LEM (LEMA)</td>
<td>Lung cancer Early Molecular Assessment trial</td>
<td>Sjaak Burgers</td>
<td>other</td>
<td>29/06/2016</td>
</tr>
<tr>
<td>M15N22 (NVALT 22)</td>
<td>First line chemotherapy in KRAS mutated non-small cell lung cancer patients: a phase III comparing cisplatin-pemetrexed with carboplatin-paclitaxel-bevacizumab</td>
<td>Egbert Smit</td>
<td>III</td>
<td>05/07/2016</td>
</tr>
<tr>
<td>M16PLE</td>
<td>Phase Ib, open-label, multi-center study to characterize the safety, tolerability and pharmacodynamics (PD) of PDR001 in combination with LCL161, Everolimus (RAD001) or Panobinostat (LBH589)</td>
<td>Neeltje Steeghs</td>
<td>I</td>
<td>01/11/2016</td>
</tr>
<tr>
<td>M16STT (STARTTRK-2)</td>
<td>An open-label, multicenter, global phase 2 basket study of Entrectinib for the treatment of patients with locally advanced or metastatic solid tumors that harbour NTRK1/2/3, ROS1 or ALK gene rearrangements</td>
<td>Egbert Smit</td>
<td>II</td>
<td>24/08/2016</td>
</tr>
<tr>
<td>M17ARC (ARCSI-Multi)</td>
<td>Phase Ib multi-indication study of Anetumabav tensine (BAY 94-9343) in patients with mesothelin expressing advanced or recurrent malignancies</td>
<td>Egbert Smit</td>
<td>I</td>
<td>07/09/2017</td>
</tr>
<tr>
<td>M17DNM (DENIM)</td>
<td>A randomized, open-label phase II/III study with dendritic cells loaded with allogenic tumor cell lysate (PheraLys) in subjects with mesothelioma as maintenance treatment (MesoPher) after chemotherapy</td>
<td>Paul Baas</td>
<td>II</td>
<td>15/11/2018</td>
</tr>
<tr>
<td>M17FNN</td>
<td>[18F-PD-1] PET/CT to predict response to Nivolumab in patients with NSCLC</td>
<td>Joop de Langen</td>
<td>other</td>
<td>26/10/2018</td>
</tr>
<tr>
<td>M17IMG</td>
<td>[18F]FDG-PET/SPECT imaging in patients with locally advanced or metastatic melanoma or non-small cell lung cancer</td>
<td>John Haanen</td>
<td>pilot</td>
<td>23/07/2018</td>
</tr>
<tr>
<td>M17IPL</td>
<td>Repeatability of 18F FDG/CT and immunological profiling of lymph nodes in NSCLC</td>
<td>Joop de Langen</td>
<td>pilot</td>
<td>23/01/2018</td>
</tr>
<tr>
<td>M17PPO</td>
<td>PDR001 in combination with platinum-doublet chemotherapy in PD-L1 unselected metastatic NSCLC patients</td>
<td>Sjaak Burgers</td>
<td>I</td>
<td>2/11/2017 (11/2/2019)</td>
</tr>
<tr>
<td>Type of cancer study (nick name)</td>
<td>Title</td>
<td>Study coordinator in NKI-AVL</td>
<td>Phase</td>
<td>Activated (closed)</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------</td>
<td>----------------------------</td>
<td>-------</td>
<td>-------------------</td>
</tr>
<tr>
<td>M17RLC</td>
<td>Reirradiation for recurrent lung cancer in the thorax: overall survival, local control, and toxicity: a phase 2 trial</td>
<td>Joost Knegjens</td>
<td>II</td>
<td>07/11/2018</td>
</tr>
<tr>
<td>M17SAT</td>
<td>Safety of TKI concurrent with cranial radiotherapy in NSCLC patients</td>
<td>Egbert Smit</td>
<td>IV</td>
<td>27/05/2019</td>
</tr>
<tr>
<td>M17ZML</td>
<td>Companion biomarker development for MEDI4736 treated non-small-cell lung cancer patients using 18F/2F-chromium-labeled MEDI4736 - a feasibility study</td>
<td>Joop de Langen</td>
<td>pilot</td>
<td>13/08/2018</td>
</tr>
<tr>
<td>M18ACX</td>
<td>Phase II study of alectinib in combination with cetuximab in EGFR exon 20 insertion positive non-small-cell lung cancer</td>
<td>Joop de Langen</td>
<td>II</td>
<td>11/12/2018</td>
</tr>
<tr>
<td>M18AKE</td>
<td>A single arm phase II trial evaluating the activity of alectinib for the treatment of pretreated RETrearranged advanced NSCLC</td>
<td>Egbert Smit</td>
<td>II</td>
<td>17/05/2019</td>
</tr>
<tr>
<td>M18AMG</td>
<td>A Phase I study evaluating the safety, tolerability and pharmacokinetics of AMG 757 in small cell lung cancer</td>
<td>Neeltje Steeghs</td>
<td>I</td>
<td>27/02/2019</td>
</tr>
<tr>
<td>M18BAM</td>
<td>An open-label, first-in-human, multi-center study to evaluate the safety, tolerability, pharmacokinetics and anti-tumor activity of a thorium-227 labeled antibody-chelator conjugate, BAY 2287411 in patients with solid tumors known to express mesothelin</td>
<td>Egbert Smit</td>
<td>I</td>
<td>13/02/2019</td>
</tr>
<tr>
<td>M18BBN</td>
<td>An Exploratory Study of the Biologic Effects and biomarkers of Nivolumab Combined With Ipilimumab in Subjects With Treatment-Naive Stage IV or Recurrent Non-Small Cell Lung Cancer (NSCLC)</td>
<td>Joop de Langen</td>
<td>II</td>
<td>23/10/2018</td>
</tr>
<tr>
<td>M18BAM</td>
<td>A phase I drug-drug interactions study between Brigatinib and the CYP3A substrate Midazolam in patients with ALK-positive or ROSI-positive solid tumors</td>
<td>Egbert Smit</td>
<td>I</td>
<td>13/06/2019</td>
</tr>
<tr>
<td>M18BAM</td>
<td>11C-osimertinib-PET/CT to identify T790M positive tumors in patients that are T790M negative in a single tumor biopsy and a circulating tumor DNA sample</td>
<td>Joop de Langen</td>
<td>I/II</td>
<td>10/04/2019</td>
</tr>
<tr>
<td>M18BAM</td>
<td>A phase 2, multicenter, open-label, 2-cohort study of trastuzumab deruxtecan (DS-8201a), an anti-HER2 antibody drug conjugate (ADC), for HER2-overexpressing or -mutated, unresectable and/or metastatic non-small cell lung cancer</td>
<td>Egbert Smit</td>
<td>II</td>
<td>14/11/2018</td>
</tr>
<tr>
<td>M18BAM</td>
<td>An open-label, randomized, phase I/II trial investigating the safety and efficacy of IDO120 in combination with pembrolizumab, with or without chemotherapy, as first-line treatment for patients with metastatic non-small cell lung cancer</td>
<td>Paul Baas</td>
<td>I/I</td>
<td>02/09/2019</td>
</tr>
<tr>
<td>M18BAM</td>
<td>Phase II study examining the activity of L19-IL2 immunotherapy and stereotactic ablative radiotherapy in metastatic non-small cell lung cancer</td>
<td>Monique de Jong</td>
<td>II</td>
<td>26/09/2019</td>
</tr>
<tr>
<td>M18BAM</td>
<td>Individualized pemetrexed dosing in patients with non-small cell lung cancer or mesothelioma based on renal function to improve treatment response</td>
<td>Sjaak Burgers</td>
<td>II</td>
<td>23/01/2019</td>
</tr>
<tr>
<td>M18BAM</td>
<td>OSIRIS: Osimertinib resistance analysis in patients with EGFR mutation positive non-small-cell lung carcinoma that have progressed on osimertinib treatment</td>
<td>Joop de Langen</td>
<td>other</td>
<td>23/07/2019</td>
</tr>
<tr>
<td>M18BAM</td>
<td>A phase II, multicenter, randomized, open-label controlled study of M7824 versus Pembrolizumab as a first treatment in patients with PD-L1 expressing advanced non-small cell lung cancer</td>
<td>Egbert Smit</td>
<td>II</td>
<td>15/03/2019</td>
</tr>
<tr>
<td>M18BAM</td>
<td>Patients on osimertinib with EGFR mutation exon 20, non-T790M, The position-20 trial</td>
<td>Joop de Langen</td>
<td>II</td>
<td>21/01/2019</td>
</tr>
<tr>
<td>M18BAM</td>
<td>Sputum analysis for diagnosis of malignancy in the differential of radiotherapy induced changes on CT</td>
<td>Egbert Smit</td>
<td>other</td>
<td>05/04/2019</td>
</tr>
<tr>
<td>M18BAM</td>
<td>Combining SBRT and immunotherapy in early stage NSCLC patients planned for surgery: exploring safety and immunological proof of principle</td>
<td>Joop de Langen</td>
<td>other</td>
<td>25/05/2019</td>
</tr>
<tr>
<td>Type of cancer study (nick name)</td>
<td>Title</td>
<td>Study coordinator in NKI-AVL</td>
<td>Phase</td>
<td>Activated (closed)</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------</td>
<td>-----------------------------</td>
<td>-------</td>
<td>-------------------</td>
</tr>
<tr>
<td>M18TAT (TATIN)</td>
<td>Track and treat in NSCLC – ctDNA guided treatment of of early resistance to targeted treatment in patients with EGFR positive NSCLC</td>
<td>Joop de Langen</td>
<td>II</td>
<td>17/07/2019</td>
</tr>
<tr>
<td>M18TEG</td>
<td>Trastuzumab-emtansine and osimertinib combination treatment to target HER2 bypass track resistance in EGFR mutation positive NSCLC</td>
<td>Joop de Langen</td>
<td>II</td>
<td>19/12/2018</td>
</tr>
<tr>
<td>M18TEP (VISION)</td>
<td>A phase II single-arm trial to investigate tepotinib in advanced (Stage IIIIB/IV) non-small cell lung cancer with MET exon 14 (METex14) skipping alterations or MET amplifications</td>
<td>Egbert Smit</td>
<td>II</td>
<td>03/04/2019</td>
</tr>
<tr>
<td>M19EBO</td>
<td>A phase 2, open-label study with Encorafenib + Binimetinib in patients with BRAF V600F-mutant non-small cell lung cancer</td>
<td>Egbert Smit</td>
<td>II</td>
<td>27/11/2019</td>
</tr>
<tr>
<td>M19SYM (SYMPRO-Lung)</td>
<td>Symptom monitoring with patient-reported outcomes using a web application among lung cancer patients in the Netherlands</td>
<td>José Belterbos</td>
<td>other</td>
<td>24/09/2019</td>
</tr>
<tr>
<td>M19TPG</td>
<td>A phase II single-arm study to investigate tepotinib combined with osimertinib in MET amplified, advanced or metastatic non-small cell lung cancer (NSCLC) harboring activating EGFR mutations and having acquired resistance to prior 1st to 3rd generation EGFR-tyrosine kinase inhibitor therapy</td>
<td>Egbert Smit</td>
<td>II</td>
<td>03/12/2019</td>
</tr>
<tr>
<td>N13FPB</td>
<td>Fluid phase biopsy (circulating tumour DNA and serum tumour markers) in patients non-small cell lung cancer</td>
<td>Sjaak Burgers</td>
<td>other</td>
<td>17/12/2013</td>
</tr>
<tr>
<td>N14TO</td>
<td>Immunogenicity of Tumor Organoids, a feasibility study</td>
<td>Emile Voest</td>
<td>other</td>
<td>22/07/2014</td>
</tr>
<tr>
<td>N14PLU (PROOF)</td>
<td>Personalized treatment with combination therapy for patients with pleural effusion due to malignant pleural mesothelioma or lung cancer in second or third line. An open label phase II study</td>
<td>Paul Baas</td>
<td>II</td>
<td>03/10/2014</td>
</tr>
<tr>
<td>N16NEON</td>
<td>Personalized adoptive T-cell therapy protocol</td>
<td>John Haanen</td>
<td>other</td>
<td>09/11/2016</td>
</tr>
<tr>
<td>N17DTL (Induction-1)</td>
<td>A Phase Ib, Open-label, Single-center study to assess the safety of cancer-immunotherapy induction with Tremelimumab and Durvalumab prior to Chemoradiotherapy and/or Resection in the treatment of locally advanced NSCLC</td>
<td>Willemijn Theelen</td>
<td>I</td>
<td>05/10/2018</td>
</tr>
<tr>
<td>N18NWA (NUANCE)</td>
<td>Nutritional Assessment in Non-small Cell lung cancer patients</td>
<td>Martijn Stuiver</td>
<td>other</td>
<td>29/06/2018</td>
</tr>
<tr>
<td>N18PET</td>
<td>Novel Ga68-PSMA PET tracer to differentiate between radiation necrosis and tumor progression in stereotactic irradiated brain metastases</td>
<td>Dieta Brandsma</td>
<td>other</td>
<td>14/08/2019</td>
</tr>
<tr>
<td>N19RER</td>
<td>A Open-label Single-arm pharmacokinetic Trial, Investigating the Effect of CYP3A4 inhibitor Ritonavir on the Pharmacokinetics of Erlotinib</td>
<td>Neeltje Steeghs</td>
<td>other</td>
<td>25/04/2019</td>
</tr>
</tbody>
</table>

LYMPHOMA - HODGKIN’S DISEASE

<table>
<thead>
<tr>
<th>Type of cancer study (nick name)</th>
<th>Title</th>
<th>Study coordinator in NKI-AVL</th>
<th>Phase</th>
<th>Activated (closed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M13SOF (SOPHIA)</td>
<td>Study of Menopause in ex-patients with Hodgkin Lymphoma: influence on long-term adverse events</td>
<td>Floor van Leeuven</td>
<td>other</td>
<td>17/01/2014</td>
</tr>
<tr>
<td>M17MIW</td>
<td>A Phase Ib, open-label, multicenter study of the safety and efficacy of MIW1815 (ADU-S100) administered by intratumoral injection with PDR001 to patients with advanced/metastatic solid tumors or lymphomas</td>
<td>Neeltje Steeghs</td>
<td>I</td>
<td>2/2/2018 (11/12/2019)</td>
</tr>
<tr>
<td>M17SPA (SPARKLE)</td>
<td>The effect of light therapy on fatigue and psychosocial functioning in long-term survivors of (non-)Hodgkin lymphoma: a randomized controlled trial</td>
<td>Eveline Bleker</td>
<td>other</td>
<td>13/07/2017</td>
</tr>
<tr>
<td>Type of cancer study (nick name)</td>
<td>Title</td>
<td>Study coordinator in NKI-AVL</td>
<td>Phase</td>
<td>Activated (closed)</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
<td>-------------------------------</td>
<td>-------</td>
<td>-------------------</td>
</tr>
<tr>
<td>LYMPHOMA - NON-HODGKIN’S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M15PRM (PRMT5i)</td>
<td>A phase I, open-label, dose escalation study to investigate the safety, pharmacokinetics, pharmacodynamics and clinical activity of GSK3326595 in subjects with solid tumors and non-Hodgkin’s lymphoma</td>
<td>Frans Opdam</td>
<td>I</td>
<td>27/10/2016</td>
</tr>
<tr>
<td>M17MIW</td>
<td>A Phase Ib, open-label, multicenter study of the safety and efficacy of MIW815 (ADU-S100) administered by intratumoral injection with PDR001 to patients with advanced/metastatic solid tumors or lymphomas</td>
<td>Neeltje Steeghs</td>
<td>I</td>
<td>2/2/2018</td>
</tr>
<tr>
<td>M17SPA (SPARKLE)</td>
<td>The effect of light therapy on fatigue and psychosocial functioning in long-term survivors of non-Hodgkin lymphoma: a randomized controlled trial</td>
<td>Eveline Bleker</td>
<td>other</td>
<td>13/07/2017</td>
</tr>
<tr>
<td>M18CNH (CLARITY)</td>
<td>Cardiotoxicity and other Late effects After Radiotherapy and Immuno- chemoTherapy for nonHodgkin lymphoma</td>
<td>Floor van Leeuwen</td>
<td>other</td>
<td>07/10/2019</td>
</tr>
<tr>
<td>MELANOMA / SKIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E1208MG (Minibub)</td>
<td>Minitub: Prospective registry of Sentinel Node (SN) positive melanoma patients with minimal SN tumor burden who undergo Completion Lymph Node Dissection (CLND) or Nodal Observation</td>
<td>Alexander van Akkooi</td>
<td>other</td>
<td>23/04/2015</td>
</tr>
<tr>
<td>E1612 (EBIN)</td>
<td>Combination of targeted therapy (encarafenib and binimetinib) followed by combination of immunotherapy (ipilimumab and nivolumab) vs immediate combination of immunotherapy in patients with unresectable or metastatic melanoma with BRAF V600 mutation: an EORTC randomized phase II study</td>
<td>Alexander van Akkooi</td>
<td>II</td>
<td>27/05/2019</td>
</tr>
<tr>
<td>M14TIL</td>
<td>Randomized phase III study comparing a non-myeloablative lymphocyte depleting regimen of chemotherapy followed by infusion of tumor infiltrating lymphocytes and interleukin-2 to standard ipilimumab treatment in metastatic melanoma</td>
<td>John Haanen</td>
<td>III</td>
<td>06/08/2014</td>
</tr>
<tr>
<td>M15HPV (BMS-936558)</td>
<td>Non-Comparative, Two-Cohort, Single-Arm, Open-Label, Phase 1/2 Study of Nivolumab in Subjects with Virus-Positive and Virus-Negative Solid Tumors</td>
<td>Jan Paul de Boer</td>
<td>I/II</td>
<td>27/10/2015</td>
</tr>
<tr>
<td>M16CDW (COWBOY)</td>
<td>Phase 2 Study testing the Combination of Vemurafenib With Cobimetinib in BRAF V600 mutated Melanoma Patients to Normalize LDH and Optimize immunotherapy with Nivolumab and Ipilimumab</td>
<td>Christian Blank</td>
<td>II</td>
<td>06/07/2017</td>
</tr>
<tr>
<td>M16OPN (OpACIN-neo)</td>
<td>Multicenter Phase 2 Study to identify of the Optimal neo-Adjuvant Combination Scheme of Iplimumab and Nivolumab</td>
<td>Christian Blank</td>
<td>II</td>
<td>01/11/2016</td>
</tr>
<tr>
<td>M17MG</td>
<td>[89Zr]-pembrolizumab-PET imaging in patients with locally advanced or metastatic melanoma or nonsmall cell lung cancer</td>
<td>John Haanen</td>
<td>pilot</td>
<td>23/07/2018</td>
</tr>
<tr>
<td>M17VR</td>
<td>In vivo reflectance confocal microscopy, a novel non-invasive tool for diagnosing skin cancer - a randomized controlled trial</td>
<td>Marianne Crijns</td>
<td>other</td>
<td>12/6/2017</td>
</tr>
<tr>
<td>M17PTS (POINTING)</td>
<td>Towards patient-tailored cancer immunotherapy supported by a multifaceted predictive signature composed of integrative omics and molecular imaging</td>
<td>John Haanen</td>
<td>other</td>
<td>12/11/2018</td>
</tr>
<tr>
<td>M18NKN</td>
<td>A Phase 3, Randomized, Open-label Study of NKTR214 Combined with Nivolumab Versus Nivolumab in Participants with Previously Untreated Unresectable or Metastatic Melanoma</td>
<td>Christian Blank</td>
<td>III</td>
<td>27/05/2019</td>
</tr>
<tr>
<td>Type of study</td>
<td>Title</td>
<td>Study coordinator in NKI-AVL</td>
<td>Phase</td>
<td>Activated (closed)</td>
</tr>
<tr>
<td>---------------</td>
<td>-------</td>
<td>-----------------------------</td>
<td>-------</td>
<td>-------------------</td>
</tr>
<tr>
<td>M18PDR</td>
<td>A randomized, open-label, phase II open platform study evaluating the efficacy and safety of novel spartalizumab (PDR001) combinations in previously treated unresectable or metastatic melanoma</td>
<td>John Haanen</td>
<td>II</td>
<td>01/03/2019</td>
</tr>
<tr>
<td>M19PCX (PROCLAIM)</td>
<td>A Phase 2, Open-Label, Multi-cohort Study of PD-L1 Probody™ Therapeutic CK-072 in Combination With Other Anticancer Therapy in Adults With Solid Tumors</td>
<td>Christian Blank</td>
<td>II</td>
<td>04/11/2019</td>
</tr>
<tr>
<td>M19SST (Safe Stop Trial)</td>
<td>Observational study of the STOP & GO strategy of PD-1 blockade in advanced melanoma patients upon achieving a complete or partial response</td>
<td>John Haanen</td>
<td>II</td>
<td>10/05/2019</td>
</tr>
<tr>
<td>N03LAM</td>
<td>Longitudinal analysis of melanoma-specific immunity in stage III and IV melanoma patients</td>
<td>John Haanen</td>
<td>other</td>
<td>22/08/2003</td>
</tr>
<tr>
<td>N13GEN</td>
<td>Regulation of skin tumorgenesis by integrin alpha3beta1</td>
<td>Arnaud Sonnenberg</td>
<td>other</td>
<td>27/11/2013</td>
</tr>
<tr>
<td>N13NOD (REDuCTOR)</td>
<td>Cytoreductive treatment of dabrafenib combined with trametinib to allow complete surgical resection in patients with BRAF mutated, prior unresectable stage III or IV melanoma</td>
<td>John Haanen</td>
<td>II</td>
<td>6/12/2013 (3/7/2019)</td>
</tr>
<tr>
<td>N16IGM</td>
<td>Intraoperative verification of maxillary malignancy resection with cone-beam computed tomography</td>
<td>Baris Karakulucu</td>
<td>pilot</td>
<td>21/2/2017 (31/10/2019)</td>
</tr>
<tr>
<td>N16VOM</td>
<td>HDAC Inhibitor vorinostat in resistant BRAF V600 mutated advanced melanoma</td>
<td>Sofie Wilgenhof</td>
<td>other</td>
<td>24/06/2016</td>
</tr>
<tr>
<td>N17BCC (BCC-COMI)</td>
<td>Noninvasive diagnostics and subtyping of basal cell carcinoma in the head and neck by dermoscopy and handheld reflectance confocal microscopy</td>
<td>Fons Balm</td>
<td>other</td>
<td>19/04/2017</td>
</tr>
<tr>
<td>N17LCM (LM-COMI)</td>
<td>Lentigo maligna: Diagnostic accuracy of in vivo handheld reflectance confocal microscopy for pigmented macules in the head and neck</td>
<td>Marianne Crijns</td>
<td>other</td>
<td>19/04/2017</td>
</tr>
<tr>
<td>N18PET</td>
<td>Novel Ga68-PSMA PET tracer to differentiate between radiation necrosis and tumor progression in stereotactic irradiated brain metastases</td>
<td>Dieta Brandsma</td>
<td>other</td>
<td>14/08/2019</td>
</tr>
</tbody>
</table>

MISCELLANEOUS

<table>
<thead>
<tr>
<th>Type of study</th>
<th>Title</th>
<th>Study coordinator in NKI-AVL</th>
<th>Phase</th>
<th>Activated (closed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1525 (nivothym)</td>
<td>Single-arm, multicenter, phase II study of nivolumab in patients with type B3 thymoma and thymic carcinoma previously treated with chemotherapy</td>
<td>Sjaak Burgers</td>
<td>II</td>
<td>25/02/2019</td>
</tr>
<tr>
<td>M15GRA (GRAFITI)</td>
<td>Prospective registration study on growth behavior of aggressive fibromatosis without therapeutic intervention</td>
<td>Frits van Coevorden</td>
<td>other</td>
<td>15/9/2015 (12/12/2018)</td>
</tr>
<tr>
<td>M16STT (STARTRK-2)</td>
<td>An open-label, multicenter, global phase 2 basket study of Entrectinib for the treatment of patients with locally advanced or metastatic solid tumors that harbour NTRK1/2/3, ROS1 or ALK gene rearrangements</td>
<td>Egbert Smit</td>
<td>II</td>
<td>24/08/2016</td>
</tr>
<tr>
<td>M17ARC (ARCS-Multi)</td>
<td>Phase Ib multi-indication study of Atezolimumab ravtensine (BAY 94-9343) in patients with mesothelin expressing advanced or recurrent malignancies</td>
<td>Egbert Smit</td>
<td>I</td>
<td>07/08/2017</td>
</tr>
<tr>
<td>M17CLE</td>
<td>CLE in diagnosing Pleural Malignancies, a comparison with pathology</td>
<td>Paul Baas</td>
<td>other</td>
<td>16/8/2017 (31/10/2019)</td>
</tr>
<tr>
<td>M17CMT (EXAMINER)</td>
<td>A Randomized, Double-blind Study to Evaluate the Efficacy and Safety of Cabozantinib (XL184) at 60 mg/Day Compared to 140 mg/Day in Progressive, Metastatic Medullary Thyroid Cancer Patients</td>
<td>Jan Paul de Boer</td>
<td>IV</td>
<td>15/05/2018</td>
</tr>
<tr>
<td>Type of cancer study</td>
<td>Title</td>
<td>Study coordinator in NKI-AVL</td>
<td>Phase</td>
<td>Activated (closed)</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
<td>-------------------------------</td>
<td>-------</td>
<td>-------------------</td>
</tr>
<tr>
<td>M17LAN</td>
<td>A phase 3, prospective, randomized, double-blind, multi-center study of the efficacy of lanreotide Autogel/Depot 120 mg plus BSC vs placebo plus BSC for tumour control in subjects with the well differentiated, metastatic and/or unresectable, typical or atypical, lung neuroendocrine tumors</td>
<td>Wieneke Buikhuisen</td>
<td>III</td>
<td>05/07/2017</td>
</tr>
<tr>
<td>N18DAF</td>
<td>A randomized, double-blind, placebo-controlled, phase 3 trial of Nirogacestat versus placebo in adult patients with progressing Desmoid Tumors/Aggressive Fibromatosis</td>
<td>Winette van der Graaf</td>
<td>III</td>
<td>25/09/2019</td>
</tr>
<tr>
<td>N15HNT</td>
<td>Hepatic NET metastasis embolization biomarker evaluation</td>
<td>Margot Tesselaar</td>
<td>other</td>
<td>13/1/2016 (13/11/2019)</td>
</tr>
<tr>
<td>N17CO</td>
<td>Position stability during radiosurgery of brain tumours</td>
<td>Gerben Borst</td>
<td>other</td>
<td>18/1/2018 (24/1/2018)</td>
</tr>
<tr>
<td>N17MRD</td>
<td>Healthy volunteer imaging techniques development for motion management in MR-guided adaptive radiotherapy</td>
<td>Gabe Sonke</td>
<td>other</td>
<td>09/11/2017</td>
</tr>
<tr>
<td>N18SI</td>
<td>Inhibition of salivary glands to reduce uptake of radioactive iodine</td>
<td>Wouter Vogel</td>
<td>pilot</td>
<td>29/01/2019</td>
</tr>
<tr>
<td>N18SEA</td>
<td>Muscle activation during strengthening exercises with the Swallow Exercise Aid: visualization using Magnetic Resonance Imaging</td>
<td>Luci Smeele</td>
<td>other</td>
<td>15/02/2019</td>
</tr>
<tr>
<td>M18ORG</td>
<td>Modeling neuroendocrine tumors using adult stem cell-derived organoids (NET organoids)</td>
<td>Margot Tesselaar</td>
<td>other</td>
<td>23/11/2018</td>
</tr>
</tbody>
</table>

SOFT TISSUE / OSTEOSARCOMA

<table>
<thead>
<tr>
<th>Type of cancer study</th>
<th>Title</th>
<th>Study coordinator in NKI-AVL</th>
<th>Phase</th>
<th>Activated (closed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E120Z</td>
<td>Phase II trial of cabazitaxel in metastatic or inoperable locally advanced dedifferentiated liposarcoma</td>
<td>Neeltje Steeghs</td>
<td>II</td>
<td>7/11/2018 (22/3/2019)</td>
</tr>
<tr>
<td>E140Z</td>
<td>International randomised controlled trial for the treatment of newly diagnosed Ewing’s sarcoma family of tumours</td>
<td>Martijn Kerst</td>
<td>other</td>
<td>18/1/2018 (18/1/2018)</td>
</tr>
<tr>
<td>E1506</td>
<td>A Phase II multicenter study comparing the efficacy of the oral angionenosis inhibitor Nintedanib with the intravenous cytotoxic compound Ifosfamide for treatment of patients with advanced metastatic soft tissue sarcoma after failure of systemic nonoxazaphosporine-based first line chemotherapy for inoperable disease</td>
<td>Neeltje Steeghs</td>
<td>II</td>
<td>03/11/2017</td>
</tr>
<tr>
<td>M15ECO</td>
<td>Gastrointestinal stromal tumors (GIST): assessment of mutation in tumors and in circulating tumor DNA and measurement of TKI plasma exposure to optimize treatment</td>
<td>Neeltje Steeghs</td>
<td>other</td>
<td>12/03/2015</td>
</tr>
<tr>
<td>M15PAS</td>
<td>Phase II clinical study of concurrent PAzopanib for non-metastatic SARcoma patients to be treated with RadioTherapy, localized in the extremities, trunk and chest wall or the head and neck region</td>
<td>Rick Haas</td>
<td>II</td>
<td>30/12/2015 (31/10/2019)</td>
</tr>
<tr>
<td>M16GTDM</td>
<td>Persoonlijk aangepast doseren van anti-tumormedicatie in GIST patiënten op basis van geneesmiddel-spiegels</td>
<td>Neeltje Steeghs</td>
<td>other</td>
<td>08/08/2016</td>
</tr>
<tr>
<td>M16ITF</td>
<td>Three versus five years of adjuvant imatinib as treatment of patients with sperable GIST with a high risk for recurrence: A randomised phase III study</td>
<td>Neeltje Steeghs</td>
<td>III</td>
<td>04/07/2017</td>
</tr>
<tr>
<td>M18HOL</td>
<td>Health-related quality of life in patients with advanced Soft Tissue sarcomas treated with Chemotherapy</td>
<td>Neeltje Steeghs</td>
<td>other</td>
<td>22/01/2019</td>
</tr>
<tr>
<td>Type of Title Study Phase Activated</td>
<td>Study coordinator in NKI-AVL</td>
<td>Cancer Study (nick name)</td>
<td>Phase</td>
<td>Activated (closed)</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>-----------------------------</td>
<td>-------------------------</td>
<td>-------</td>
<td>-------------------</td>
</tr>
<tr>
<td>The impact of the diagnostic trajectory in sarcoma patients on stage at diagnosis, primary treatment, clinical outcome and quality of life</td>
<td>Rick Haas</td>
<td>M18QUE (Quest)</td>
<td>other</td>
<td>05/06/2018</td>
</tr>
<tr>
<td>Dose reduction of preoperative radiotherapy in Myxoid liposarcomas</td>
<td>Rick Haas</td>
<td>N10QMY (QUREMO)</td>
<td>II</td>
<td>15/12/2010</td>
</tr>
<tr>
<td>Development of a platform of Patient Derived Xenografts (PDX) of Soft Tissue Sarcomas (STS): Protocol to obtain biopsies from patients with nonmetastatic STS</td>
<td>Rick Haas</td>
<td>N16TS</td>
<td>other</td>
<td>30/01/2017</td>
</tr>
<tr>
<td>Increasing pazopanib exposure by splitting intake moments</td>
<td>Neeltje Steeghs</td>
<td>N17PSI</td>
<td>IV</td>
<td>22/5/2017</td>
</tr>
<tr>
<td>Absolute bioavailability trial of oral imatinib (Glivec®) using a stable isotope labeled intravenous imatinib microdose</td>
<td>Neeltje Steeghs</td>
<td>N18IBA</td>
<td>I</td>
<td>4/2/2019 (2/9/2019)</td>
</tr>
<tr>
<td>Neoadjuvant trial on the efficacy of propranolol monotherapy in cutaneous angiosarcoma</td>
<td>Neeltje Steeghs</td>
<td>N19PCA</td>
<td>other</td>
<td>03/12/2019</td>
</tr>
</tbody>
</table>

URO-GENITAL

<table>
<thead>
<tr>
<th>Type of Title Study Phase Activated</th>
<th>Study coordinator in NKI-AVL</th>
<th>Cancer Study (nick name)</th>
<th>Phase</th>
<th>Activated (closed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A randomised phase III trial comparing conventional-Dose chemotherapy using paclitaxel, ifosfamide, and cisplatin (TIP) with high dose chemotherapy using mobilizing paclitaxel followed by High-dose carboplatin and etoposide (TI-CE) as first salvage treatment in relapsed or refractory germ cell tumours</td>
<td>Martijn Kerst</td>
<td>E1407 (TIGER)</td>
<td>III</td>
<td>20/10/2016</td>
</tr>
<tr>
<td>Prostate cancer molecular medicine</td>
<td>Herk van der Poel</td>
<td>M10QCM (PCMCM)</td>
<td>other</td>
<td>17/02/2011</td>
</tr>
<tr>
<td>Prospective randomized multicenter comparison of indocyanine green (ICG)-99mTc-nanocolloid vs. 99mTcnanocolloid plus an intraoperative injection of ICG for the detection and surgical resection of the sentinel nodes in patients with prostate cancer</td>
<td>Herk van der Poel</td>
<td>M13P5N</td>
<td>II</td>
<td>17/04/2014</td>
</tr>
<tr>
<td>Sentinel node biopsy for bladder cancer using the hybrid tracer</td>
<td>Bas van Rhijn</td>
<td>M14H5N</td>
<td>other</td>
<td>26/02/2015</td>
</tr>
<tr>
<td>A phase III, open-label, multicenter, randomized study of MPDL3280A (anti-PDL-1 antibody) versus observation as adjuvant therapy in patients with PD-L1-selected, high-risk muscle-invasive bladder cancer after cystectomy</td>
<td>Michel van der Heijden</td>
<td>M15MPD</td>
<td>III</td>
<td>16/11/2015</td>
</tr>
<tr>
<td>Registry of Treatment Outcomes in a non-study population of Symptomatic Metastasized Castration Resistant Prostate Cancer (mCRPC) Patients Treated with Radium-223. WMD-protocol</td>
<td>André Bergman</td>
<td>M15RTD (ROTOR)</td>
<td>other</td>
<td>30/10/2015</td>
</tr>
<tr>
<td>A phase I/II open label clinical trial assessing safety and efficacy of intravesical instillation of VPM1002BC in patients with recurrent non-muscle invasive bladder cancer after standard BCG therapy</td>
<td>Kees Hendricksen</td>
<td>M15V5M</td>
<td>II</td>
<td>18/1/2018 (31/10/2019)</td>
</tr>
<tr>
<td>A randomized, double-blind, placebo-controlled Phase III study of DDM-201 versus placebo in addition to standard androgen deprivation therapy and docetaxel in patients with metastatic hormonerefractory prostate cancer Vascular fingerprint to identify patients at risk for arterial cardiovascular events within the first year after start of cisplatin-based chemotherapy for testicular cancer: a validation study</td>
<td>André Bergman</td>
<td>M16ARA (ARASENS)</td>
<td>III</td>
<td>10/05/2017</td>
</tr>
<tr>
<td></td>
<td>Martijn Kerst</td>
<td>M16F5V (Fingerprint)</td>
<td>other</td>
<td>07/10/2016</td>
</tr>
<tr>
<td>A randomized, open label, Phase III trial of Optimal Sequencing of Treatment Options for Poor Risk Metastasized Castration Resistant Prostate Cancer Previously Treated with Docetaxel</td>
<td>André Bergman</td>
<td>M16OST (OSTRICh)</td>
<td>II</td>
<td>01/08/2017</td>
</tr>
<tr>
<td>Type of cancer study (nick name)</td>
<td>Title</td>
<td>Study coordinator in NKI-AVL</td>
<td>Phase</td>
<td>Activated (closed)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>M16PMP</td>
<td>Phase II Trial of Pembrolizumab (MK-3475) in Subjects with Metastatic Castration-Resistant Prostate Cancer (mCRPC) Previously Treated with Chemotherapy</td>
<td>André Bergman</td>
<td>II</td>
<td>13/10/2016 (8/2/2019)</td>
</tr>
<tr>
<td>M17AAT</td>
<td>A Phase III, multicenter, randomized, placebo-controlled double-blind study of Atezolizumab (anti-PD-L1 antibody) as adjuvant therapy in patients with renal cell carcinoma at high risk of developing metastasis following nephrectomy</td>
<td>Hans van Thienen</td>
<td>III</td>
<td>21/08/2017</td>
</tr>
<tr>
<td>M17AIR</td>
<td>A Phase 3 Randomized Study Comparing Nivolumab and Ipilimumab Combination vs Placebo in Participants with Localized Renal Cell Carcinoma Who Underwent Radical or Partial Nephrectomy and Who Are at High Risk of Relapse</td>
<td>Hans van Thienen</td>
<td>III</td>
<td>21/08/2017</td>
</tr>
<tr>
<td>M17CAP</td>
<td>Towards early identification of responders to CABA2taxel in patients with metastatic castration-resistant prostate cancer: potential of 18F-Choline PET-CT</td>
<td>Marcel Stokkel</td>
<td>II</td>
<td>30/9/2017 (31/10/2019)</td>
</tr>
<tr>
<td>M17EPC</td>
<td>A Phase 3 Randomized, Double-Blind Clinical Study of Pembrolizumab + Epacadostat vs Pembrolizumab + Placebo as a Treatment for Recurrent or Progressive Metastatic Urothelial Carcinoma in Patients who have Failed a First-Line Platinum-containing Chemotherapy Regimen for Advanced/Metastatic Disease</td>
<td>Michiel van der Heijden</td>
<td>III</td>
<td>12/04/2018</td>
</tr>
<tr>
<td>M17EPP</td>
<td>A Phase 3 Randomized, Double-Blind Trial of Pembrolizumab (MK-3475) in Combination with Epacadostat (INCB024360) or Placebo in Participants with Cisplatin-ineligible Urothelial Carcinoma</td>
<td>Michiel van der Heijden</td>
<td>III</td>
<td>02/02/2018</td>
</tr>
<tr>
<td>M17LUC</td>
<td>Lymphadenectomy in urothelial carcinoma in the renal pelvis and ureter - A randomized international clinical trial on lymphadenectomy in urothelial carcinoma in the renal pelvis and ureter</td>
<td>Kees Hendricksen</td>
<td>other</td>
<td>15/1/2018 (17/10/2019)</td>
</tr>
<tr>
<td>M17MDN</td>
<td>A Phase 1/2, Open-label Study to Evaluate the Safety and Antitumor Activity of MED1680 (AMP-514) in Combination with Durvalumab versus Nivolumab Monotherapy in Subjects with Select Advanced Malignancies</td>
<td>Hans van Thienen</td>
<td>I/II</td>
<td>13/2/2018 (6/3/2019)</td>
</tr>
<tr>
<td>M17MRP</td>
<td>Risk assessment and MR imaging in prostate cancer diagnosis: an impact analysis</td>
<td>Herk van der Poel</td>
<td>other</td>
<td>23/01/2018</td>
</tr>
<tr>
<td>M17NIU</td>
<td>A Phase 3, Open-label, Randomized Study of Nivolumab Combined with Ipilimumab versus Standard of Care Chemotherapy in Participants with Previously Untreated Unresectable or Metastatic Urothelial Cancer</td>
<td>Michiel van der Heijden</td>
<td>III</td>
<td>29/05/2017</td>
</tr>
<tr>
<td>M17PAB</td>
<td>Effect of a physical activity promotion program offered online of via blended care on physical activity level in breast and prostate cancer survivors</td>
<td>Wim Groen</td>
<td>other</td>
<td>19/10/2017</td>
</tr>
<tr>
<td>M17PRO</td>
<td>Prostate cancer follow-up care in secondary and primary health care</td>
<td>Lonneke van de Poll - Franse</td>
<td>other</td>
<td>12/04/2018</td>
</tr>
<tr>
<td>M17RCU</td>
<td>A randomized, open label, multicenter Phase 3 study to evaluate the efficacy and safety of Rogaratinib (BAY 1163877) compared to chemotherapy in patients with FGFR-positive locally advanced or metastatic urothelial carcinoma who have received prior platinum-containing chemotherapy</td>
<td>Michiel van der Heijden</td>
<td>III</td>
<td>25/4/2018 (10/9/2019)</td>
</tr>
<tr>
<td>M17REE</td>
<td>REduce Bladder Cancer RECurrence in patients treated for upper urinary tract urothelial carcinoma</td>
<td>Kees Hendricksen</td>
<td>other</td>
<td>24/11/2017</td>
</tr>
<tr>
<td>M17SFC</td>
<td>A Phase 2, Randomized, Open-Label Study of Nivolumab Combined with Ipilimumab Versus Sunitinib Monotherapy in Subjects with Previously Untreated and Advanced (unresectable or metastatic) non-clear Cell Renal Cell Carcinoma</td>
<td>John Haanen</td>
<td>II</td>
<td>27/03/2019</td>
</tr>
<tr>
<td>M18ASG</td>
<td>A single-arm, open-label, multicenter study of enfortumab vedotin (ASG-22CE) for treatment of patients with locally advanced or metastatic urothelial cancer who previously received immune checkpoint inhibitor therapy</td>
<td>Michiel van der Heijden</td>
<td>II</td>
<td>13/12/2018</td>
</tr>
<tr>
<td>Type of cancer study (nick name)</td>
<td>Title</td>
<td>Study coordinator in NKI-AVL</td>
<td>Phase</td>
<td>Activated (closed)</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------</td>
<td>-------------------------------</td>
<td>-------</td>
<td>-------------------</td>
</tr>
<tr>
<td>M18CLR (CLEAR)</td>
<td>A Multicenter, Open-label, Randomized, Phase 3 Trial to Compare the Efficacy and Safety of Lenvatinib in Combination with Everolimus or Pembrolizumab Versus Sunitinib Alone in First-Line Treatment of Subjects with Advanced Renal Cell Carcinoma</td>
<td>Hans van Thienen</td>
<td>III</td>
<td>23/10/2018</td>
</tr>
<tr>
<td>M18ERC (EASE RCC)</td>
<td>European Active Surveillance of Renal Cell Carcinoma study</td>
<td>Axel Bex</td>
<td>other</td>
<td>07/08/2018</td>
</tr>
<tr>
<td>M18EVEU</td>
<td>An Open-Label, Randomized Phase 3 Study to Evaluate Enfortumab Vedotin vs. Chemotherapy in Subjects with Previously Treated Locally Advanced or Metastatic Urothelial Cancer</td>
<td>Michiel van der Heijden</td>
<td>III</td>
<td>24/01/2019</td>
</tr>
<tr>
<td>M18ICR (ICRA)</td>
<td>Improve Checkpoint-blockade Response in Advanced urothelial cancer: an adaptive clinical study to determine efficacy of combining weekly paclitaxel with tremelimumab +/- durvalumab (MEDI4736)</td>
<td>Michiel van der Heijden</td>
<td>I/II</td>
<td>25/04/2019</td>
</tr>
<tr>
<td>M18NM2 (IMBrilla)</td>
<td>An open label, multicenter extension study in patients previously enrolled in a Genentech- and/or F. Hoffmann-La Roche LTD-sponsored Atezolizumab study</td>
<td>Michiel van der Heijden</td>
<td>other</td>
<td>03/10/2018</td>
</tr>
<tr>
<td>M18NJN (KRONOS)</td>
<td>An Open-label, Multicenter, Phase 1b Study of JNJ-63723283, a PD-1 inhibitor, administered in combination with apakatumab in subjects with metastatic castration-resistant prostate cancer</td>
<td>André Bergman</td>
<td>I/II</td>
<td>29/11/2018</td>
</tr>
<tr>
<td>M18NJN</td>
<td>An Open-label, Multicenter, Phase 1b Study of JNJ-63723283, a PD-1 inhibitor, administered in combination with apakatumab in subjects with metastatic castration-resistant prostate cancer</td>
<td>André Bergman</td>
<td>I/II</td>
<td>14/03/2019</td>
</tr>
<tr>
<td>M18NBB</td>
<td>A Phase 2, Randomized, Open-label Study of Nivolumab or Nivolumab/BMS-986205 Alone or Combined with Intravesical BCG in Participants with BCG-Unresponsive, High-Risk, Non-Muscle Invasive Bladder Cancer</td>
<td>Michiel van der Heijden</td>
<td>II</td>
<td>16/11/2018</td>
</tr>
<tr>
<td>M18NIA (NIAGARA)</td>
<td>A phase III, randomized, open-label, multi-center, global study to determine the efficacy and safety of Durvalumab in combination with Gemcitabine+Cisplatin for neoadjuvant treatment followed by Durvalumab alone for adjuvant treatment in patients with muscleinvasive bladder cancer</td>
<td>Michiel van der Heijden</td>
<td>III</td>
<td>25/04/2019</td>
</tr>
<tr>
<td>M18RAP (CERA-PRO)</td>
<td>Cost-Effectiveness of Robot-Assisted Prostatectomy versus laparoscopic prostatectomy a 5 year multi-institutional study of PROMs from a Dutch perspective</td>
<td>Henk van der Poel</td>
<td>other</td>
<td>12/04/2018</td>
</tr>
<tr>
<td>M18RES (RESPONDER)</td>
<td>Biomarker discovery study to identify patients with advanced urothelial cancer benefitting from pembrolizumab treatment</td>
<td>Michiel van der Heijden</td>
<td>II</td>
<td>21/08/2019</td>
</tr>
<tr>
<td>M18TGC (SENDER)</td>
<td>Sentinel Lymph Node Procedure in Testicular Germ Cell Tumour</td>
<td>Simon Horenblas</td>
<td>other</td>
<td>31/08/2018</td>
</tr>
<tr>
<td>M18ZIR (ZIRCION)</td>
<td>A confirmatory, prospective, open-label, multi-centre phase 3 study to evaluate diagnostic performance of 89Zirconium-labelled girentuximab(89Zr-TLX250) to non-invasively detect clear cell renal cell carcinoma (ccRCC) by positron emission tomography/CT (PET/CT) imaging in patients with indeterminate renal masses</td>
<td>Marcel Stokkel</td>
<td>III</td>
<td>12/07/2019</td>
</tr>
<tr>
<td>M19CTR (CATCHER)</td>
<td>Diagnostic yield of colonoscopy surveillance in testicular cancer survivors treated with platinumbased chemotherapy</td>
<td>Monique van Leerdam</td>
<td>other</td>
<td>27/11/2019</td>
</tr>
<tr>
<td>M19LKL (KEYLYNK-010)</td>
<td>A Phase 3, Randomized Open-label study of Pembrolizumab (MK-3475) Plus Olaparib Versus Abiraterone Acetate or Enzalutamide in Participants with Metastatic Castration-resistant Prostate Cancer (mCRPC) Who are Unselected for Homologous Recombination Repair Defects and Have Failed Prior Treatment with One Next-generation Hormonal Agent (NHA) and Chemotherapy</td>
<td>André Bergman</td>
<td>III</td>
<td>09/05/2019</td>
</tr>
<tr>
<td>M19KNT (KEYNOTE-921)</td>
<td>A Phase 3, Randomized, Double-blind Study of Pembrolizumab (MK-3475) Plus Docetaxel Plus Prednisone versus Placebo Plus Docetaxel Plus Prednisone in Participants with Chemotherapy-naive Metastatic Castration-Resistant Prostate Cancer (mCRPC) who have Progressed on a Next Generation Hormonal Agent (NHA)</td>
<td>André Bergman</td>
<td>III</td>
<td>27/06/2019</td>
</tr>
<tr>
<td>Type of cancer study (nick name)</td>
<td>Title</td>
<td>Study coordinator in NKI-AVL</td>
<td>Phase</td>
<td>Activated (closed)</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------</td>
<td>-----------------------------</td>
<td>-------</td>
<td>-------------------</td>
</tr>
<tr>
<td>M19MAG (MAGNITUDE)</td>
<td>A phase 3 randomized, placebo-controlled, double-blind study of Niraparib in combination with Abiraterone acetate and Prednisone versus Abiraterone acetate and Prednisone for treatment of subjects with metastatic prostate cancer</td>
<td>André Bergman</td>
<td>III</td>
<td>03/07/2019</td>
</tr>
<tr>
<td>M19NEK (NEKTAR)</td>
<td>A Phase 2, randomized, non-comparative, open-label study of NKTR-214 in combination with nivolumab and of chemotherapy in cisplatin ineligible, locally advanced or metastatic urothelial cancer patients with low PD-L1 expression</td>
<td>Michiel van der Heijden</td>
<td>II</td>
<td>12/08/2019</td>
</tr>
<tr>
<td>M19OTE (PROTEUS)</td>
<td>Randomized, double-blind, placebo-controlled, phase 3 study of Apalutamide in subjects with high-risk, localized or locally advanced prostate cancer who are candidates for radical prostatectomy</td>
<td>Henk van der Poel</td>
<td>III</td>
<td>28/10/2019</td>
</tr>
<tr>
<td>M19PCX (PROCLAIM)</td>
<td>A Phase 2, Open-Label, Multi-cohort Study of PD-L1 Probody™ Therapeutic CX-072 in Combination With Other Anticancer Therapy in Adults With Solid Tumors</td>
<td>Christian Blank</td>
<td>II</td>
<td>04/11/2019</td>
</tr>
<tr>
<td>M19V15 (VISION)</td>
<td>An international, prospective, open-label, multicenter, randomized phase 3 study of 177LuPSMA-617 in the treatment of patients with progressive PSMA-positive metastatic castration-resistant prostate cancer (mCRPC).</td>
<td>Wouter Vogel</td>
<td>III</td>
<td>28/06/2019</td>
</tr>
<tr>
<td>N12LAR</td>
<td>Longitudinal analysis of RCC-specific immunity in renal cell carcinoma patients</td>
<td>Christian Blank</td>
<td>other</td>
<td>14/12/2012 (13/11/2019)</td>
</tr>
<tr>
<td>N13KCM</td>
<td>Longitudinal kinetics of cancer mutations in the plasma, urine and tumor of patients with urothelial cancer treated with chemotherapy</td>
<td>Michiel van der Heijden</td>
<td>other</td>
<td>24/01/2014</td>
</tr>
<tr>
<td>N14OAR (DARANA)</td>
<td>Dynamics of Androgen Receptor genomics and transcriptomics after neoadjuvant androgen ablation</td>
<td>Henk van der Poel</td>
<td>other</td>
<td>27/08/2014</td>
</tr>
<tr>
<td>N14I1O</td>
<td>Immunogenicity of Tumor Organoids, a feasibility study</td>
<td>Emile Voest</td>
<td>other</td>
<td>22/07/2014</td>
</tr>
<tr>
<td>N15G0P</td>
<td>Weekly ModraDoc/r in combination with hormonal treatment and high-dose intensity-modulated radiation therapy in patients with high-risk early stage prostate cancer</td>
<td>Baukelen van Triest</td>
<td>I</td>
<td>12/05/2016</td>
</tr>
<tr>
<td>N16PEN</td>
<td>Chemoradiation in the treatment of loco-regionally advanced Penile Cancer</td>
<td>Fioris Pos</td>
<td>other</td>
<td>31/8/2015 (5/7/2019)</td>
</tr>
<tr>
<td>N16Q0P</td>
<td>Clinical evaluation of a prototype drop-in gamma probe for (robot-assisted) laparoscopic sentinel node biopsy</td>
<td>Henk van der Poel</td>
<td>other</td>
<td>18/12/2017 (24/1/2018)</td>
</tr>
<tr>
<td>N16NE0N</td>
<td>Personalized adoptive T-cell therapy protocol</td>
<td>John Haanen</td>
<td>other</td>
<td>09/11/2016</td>
</tr>
<tr>
<td>N17D0P</td>
<td>Clinical pharmacokinetics of intravenous docetaxel in patients with castration-resistant prostate cancer and non-castration-resistant prostate cancer</td>
<td>André Bergman</td>
<td>other</td>
<td>27/12/2017</td>
</tr>
<tr>
<td>N17JAV (NEOJAVALIN)</td>
<td>Neoadjuvant AXTINIB plus AVELUMAB for patients with localized RCC and a moderate to high risk of recurrence. A phase II study</td>
<td>Axel Bex</td>
<td>II</td>
<td>16/05/2018</td>
</tr>
<tr>
<td>N17KAB (NABUCO)</td>
<td>Phase I/II Study to assess safety and efficacy of Neo-Adjuvant Bladder Urothelial Carcinoma CD8/immunotherapy</td>
<td>Michiel van der Heijden</td>
<td>I</td>
<td>04/12/2017</td>
</tr>
<tr>
<td>N17PSA</td>
<td>Finger-prick PSA</td>
<td>Huub van Rossum</td>
<td>other</td>
<td>13/09/2019</td>
</tr>
<tr>
<td>N17PSI</td>
<td>Increasing pazopanib exposure by splitting intake moments</td>
<td>Neeltje Steeghs</td>
<td>IV</td>
<td>22/5/2017 (30/10/2019)</td>
</tr>
<tr>
<td>N18CLI (CLIPPS)</td>
<td>A feasibility study on Corenkov Luminescence Imaging during prostate cancer surgery using Gallium-88 PSMA</td>
<td>Marcel Stokkel</td>
<td>other</td>
<td>12/02/2019</td>
</tr>
<tr>
<td>N18ISG</td>
<td>Inhibition of salivary gland function to reduce uptake and toxicity of PSMA-ligands</td>
<td>Wouter Vogel</td>
<td>pilot</td>
<td>28/05/2018</td>
</tr>
<tr>
<td>N18PER</td>
<td>PERICLES</td>
<td>PENile cancer Radio- and Immunotherapy Clinical Exploration Study – a Phase 1B study of atezolizumab with or without radiotherapy in penile cancer</td>
<td>Michiel van der Heijden</td>
<td>I</td>
</tr>
<tr>
<td>N18PSM</td>
<td>PERICLES</td>
<td>Variatie in PSMA receptor expressie over de tijd in prostaatkanker</td>
<td>Marcel Stokkel</td>
<td>other</td>
</tr>
<tr>
<td>N18TAE</td>
<td></td>
<td>Trans arterial embolization for the optimization of percutaneous thermal ablation of primary renal cell carcinoma</td>
<td>Brigit Aarts</td>
<td>other</td>
</tr>
<tr>
<td>N19IFC</td>
<td>INFLUENCE</td>
<td>Intra-operative evaluation of a novel FLUorescent CMEt tracer in penile and tongue cancer</td>
<td>Baris Karakullukcu</td>
<td>other</td>
</tr>
<tr>
<td>N19IPT</td>
<td>INFLUENCE</td>
<td>Contributing to research in a time of privacy: information provision and transparency</td>
<td>Marjanka Schmidt</td>
<td>other</td>
</tr>
</tbody>
</table>
Invited speakers

Andrea Alimonti
Institute of Oncology Research, Bellinzona, Switzerland
Aberrant activation of the tumour immune response drives resistance to prostate cancer therapy

Ido Amit
Weizmann Institute of Science, Rehovot, Israel
Single-cell genomics: a stepping stone for future immunology discoveries

Michal Besser
Ella Institute, Ramat Gan, Israel
Adoptive cell therapy with on-site produced TIL or CD19 CAR T cells - Updated results of 300 enrolled patients

Christoph Bock
CeMM, Vienna, Austria
High-throughput dissection of epigenome regulation in cancer and immune cells

Carlos Caldas
Cancer Research UK, Cambridge Institute, Cambridge, United Kingdom
Breast cancer: from tumour tissue to single cells and back

Keith Caldecott
University of Sussex, Brighton, United Kingdom
DNA strand break-induced ADP-ribosylation and human genetic disease

Gerard Evan
University of Cambridge, Cambridge, United Kingdom
Where cancer phenotypes come from and how to make them go away

Silvia Formenti
Weill Cornell, New York, NY, USA
DNA damage response and immune rejection of cancer

Susan Gasser
Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
The crucial importance of silencing repeats for genome stability: Synergy between BRCA1/BARD1 and H3K9 methylation

Thomas Gregor
Princeton University, Princeton, NJ, USA
Visualizing chromatin dynamics and its effect on transcription
James Haber
Brandeis University, Waltham, MA, USA
Genome stability and instability during repair of a broken chromosome

Hiroshi Kimura
Tokyo Institute of Technology, Kanagawa, Japan
Chromatin modification dynamics during gene activation and inactivation in living cells

Puck Knipscheer
Hubrecht Institute, Utrecht, The Netherlands
Alcohol-derived DNA interstrand crosslinks are repaired by two distinct mechanisms

Philip Kranzusch
Dana-Farber Cancer Institute, Boston, MA, USA
cGAS-like enzymes in human immunity and host-microbe signaling

Jason Locasale
Duke University School of Medicine, Durham, NC, USA
How metabolism shapes epigenetics

Madelon Maurice
UMC Utrecht, Utrecht, The Netherlands
Mutation-guided insights in Wnt signalling alterations in cancer

Nick Navin
MD Anderson Cancer Center, Houston, TX, USA
Insights into Premalignant Breast Cancer Progression with Single Cell Genomics

Emmanuelle Passegué
Columbia University, New York, NY, USA
Hematopoietic stem cells in stress, disease and aging

Ze’ev Ronai
Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
Epigenetic regulators of anti-tumor immunity, from ubiquitin ligases to methyl-transferases

Matti Rookus
Netherlands Cancer Institute, Amsterdam, The Netherlands
Which factors push the risk of breast cancer to be this high? - the population and individual perspective

Davide Ruggero
University of California San Francisco, San Francisco, CA, USA
Translating the cancer genome one codon at a time and its therapeutic implications

Agnel Sfeir
Skirball Institute, NYU School of Medicine, New York, NY, USA
Maintaining genome stability: nuclear and mitochondrial

Peter Sicinski
Dana-Farber Cancer Institute, Boston, MA, USA
Cell cycle machinery in development and in cancer

Arnoud Sonnenberg
Netherlands Cancer Institute, Amsterdam, The Netherlands
What have we learned from over 30 years of integrin research?

Sohail Tavazoie
Rockefeller University, New York, NY, USA
Cancer metastasis and gene regulation

Nicolas Thomâ
Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
CUL4 ubiquitin ligases: from DNA damage detection in chromatin to new modality in drug discovery

Andrew Wood
University of Edinburgh, Edinburgh, UK
Condensin (dys)function during development and disease
Research projects supported by the Dutch Cancer Society
<table>
<thead>
<tr>
<th>Principal investigator</th>
<th>Number of projects</th>
<th>Title</th>
<th>Started</th>
<th>Ended</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aaronson, N.K.</td>
<td>NKI 2014-6788</td>
<td>A randomized controlled trial of internet-based cognitive behavioral therapy for breast cancer patients with climacteric symptoms</td>
<td>01/02/15</td>
<td>31/07/19</td>
</tr>
<tr>
<td>Agami, R.</td>
<td>11574</td>
<td>Exploring the role of serine metabolism adaptations in platinum resistant high grade serous ovarian cancer</td>
<td>01/09/18</td>
<td>31/08/22</td>
</tr>
<tr>
<td>Agami, R.</td>
<td>10315</td>
<td>Diricore, a platform for the discovery of novel amino acid vulnerabilities in aggressive cancer</td>
<td>01/01/17</td>
<td>31/12/20</td>
</tr>
<tr>
<td>Agami, R.</td>
<td>11037</td>
<td>Exploiting proline vulnerability for cancer therapy</td>
<td>01/11/17</td>
<td>31/10/21</td>
</tr>
<tr>
<td>Akkari, L.</td>
<td>12049</td>
<td>Investigating the Cancer Cell-Mediated Shaping of the Liver Immune Environment</td>
<td>01/01/19</td>
<td>31/12/22</td>
</tr>
<tr>
<td>Akkari, L.</td>
<td>10658</td>
<td>Improving the effects of standard of care therapy in glioma by modulating tumor-associated macrophages and microglia functions</td>
<td>01/06/17</td>
<td>31/05/22</td>
</tr>
<tr>
<td>Al-Mamgani, A.</td>
<td>NKI 2015-8034</td>
<td>Dutch randomized multicenter trial COMparing two palliative RADiation schemes for incurable head and neck cancer (COOPERATION)</td>
<td>18/12/15</td>
<td>18/12/19</td>
</tr>
<tr>
<td>Amant, F.C.H.</td>
<td>10084</td>
<td>CRADLE: Cancer tReAtment During pregnancy: from fetal safety to maternal Efficacy</td>
<td>01/05/17</td>
<td>30/04/21</td>
</tr>
<tr>
<td>Amant, F.C.H.</td>
<td>11132</td>
<td>Postpartum breast cancer diagnosed during involution: a distinct entity with unique clinicopathological, molecular and immunological features?</td>
<td>01/01/18</td>
<td>31/12/21</td>
</tr>
<tr>
<td>Baas, P.</td>
<td>NKI 2015-7823</td>
<td>Defining new and personalized treatment options for patients with malignant mesothelioma</td>
<td>01/01/16</td>
<td>31/12/19</td>
</tr>
<tr>
<td>Beets-Tan, R.G.H.</td>
<td>10138</td>
<td>Development and validation of a multiparametric imaging model for pre-treatment response prediction in rectal cancer: the road towards organ-preservation</td>
<td>01/10/17</td>
<td>30/09/21</td>
</tr>
<tr>
<td>Beets-Tan, R.G.H.</td>
<td>10611</td>
<td>Radomics for the prediction of response to neoadjuvant treatment in rectal carcinoma</td>
<td>01/10/17</td>
<td>30/09/19</td>
</tr>
<tr>
<td>Beets, G.L.</td>
<td>UM 2015-7738</td>
<td>Multicentre evaluation of the ‘wait-and-see’ policy for complete responders after chemoradiotherapy for rectal cancer</td>
<td>01/10/15</td>
<td>30/09/21</td>
</tr>
<tr>
<td>Beets, G.L.</td>
<td>10513</td>
<td>Multicenter evaluation of the ‘wait-and-see’ policy for complete responders after chemoradiotherapy for rectal cancer</td>
<td>01/09/17</td>
<td>31/08/21</td>
</tr>
<tr>
<td>Beijersbergen, R.L.</td>
<td>12539</td>
<td>ScreeninC: a national infrastructure for functional genome editing and large scale functional genomic screening</td>
<td>01/06/20</td>
<td>31/05/24</td>
</tr>
<tr>
<td>Bernards, R.</td>
<td>NKI 2015-7803</td>
<td>Evolution of resistant clones to novel target-directed drugs in colorectal tumors: A genetic and epigenetic study of intratumoral heterogeneity dynamics</td>
<td>01/11/16</td>
<td>31/10/19</td>
</tr>
<tr>
<td>Bernards, R.</td>
<td>NKI 2013-5859</td>
<td>Engineering a liver cancer model on a chip</td>
<td>01/09/17</td>
<td>31/08/19</td>
</tr>
<tr>
<td>Bleiker, E.M.A.</td>
<td>NKI 2014-7031</td>
<td>Choices in breast surgery and reconstruction: implementation and testing of a web-based psycho-educational intervention to facilitate decision making, TANGO</td>
<td>01/11/15</td>
<td>31/10/20</td>
</tr>
<tr>
<td>Bleiker, E.M.A.</td>
<td>NKI 2015-7909</td>
<td>The effect of light-therapy on fatigue and psychosocial functioning in long-term survivors of (non-) Hodgkin lymphoma: a randomized controlled trial, M17SPA</td>
<td>01/08/16</td>
<td>31/07/20</td>
</tr>
<tr>
<td>Borst, G.R.</td>
<td>10902</td>
<td>New era of radiosensitization by modulating radio sensitizing agents during RT</td>
<td>01/02/18</td>
<td>31/01/23</td>
</tr>
<tr>
<td>Principal investigator</td>
<td>Number of projects</td>
<td>Title</td>
<td>Started</td>
<td>Ended / Ends</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------</td>
<td>--</td>
<td>-----------</td>
<td>--------------</td>
</tr>
<tr>
<td>Borst, J.G.</td>
<td>NKI 2013-5951</td>
<td>Enhancing the anti-tumor efficacy of immunotherapy by localized radiotherapy.</td>
<td>01/05/14</td>
<td>30/04/20</td>
</tr>
<tr>
<td>Borst, J.G.</td>
<td>11079</td>
<td>Cytotoxic T-cell programming at the dendritic cell interface</td>
<td>01/09/17</td>
<td>31/08/21</td>
</tr>
<tr>
<td>Borst, J.G.</td>
<td>10894</td>
<td>Achieving synergy between radiotherapy and immunotherapy to increase control of metastatic cancer.</td>
<td>01/02/18</td>
<td>31/01/23</td>
</tr>
<tr>
<td>Borst, J.G.</td>
<td>10764</td>
<td>Inducing and sustaining anti-tumor immunity by chemo-radiotherapy.</td>
<td>01/01/18</td>
<td>31/12/19</td>
</tr>
<tr>
<td>Brummelkamp, T.R.</td>
<td>11352</td>
<td>Identification and validation of genetic factors that determine sensitivity to Weel inhibition in high-grade ovarian cancer and related cancers</td>
<td>01/10/18</td>
<td>30/09/23</td>
</tr>
<tr>
<td>Brummelkamp, T.R.</td>
<td>NKI 2015-7609</td>
<td>A mutation-based approach to examine the principles of synthetic lethality in human cells.</td>
<td>01/04/16</td>
<td>31/03/20</td>
</tr>
<tr>
<td>Cats, A.</td>
<td>NKI 2013-6249</td>
<td>Safety, feasibility and cost-effectiveness of genotype- and phenotype-directed individualized dosing of fluoropyrimidines</td>
<td>01/09/14</td>
<td>31/08/20</td>
</tr>
<tr>
<td>de Visser, K.E.</td>
<td>VU 2015-7864</td>
<td>Targeting the right dendritic cell for the job: leveraging antitumor immunity to enhance the efficacy of chemotherapy.</td>
<td>01/07/19</td>
<td>01/12/19</td>
</tr>
<tr>
<td>de Visser, K.E.</td>
<td>10083</td>
<td>Enhancing the success of immunotherapy for metastatic breast cancer by overcoming tumor associated immunosuppressive mechanisms</td>
<td>01/05/17</td>
<td>30/04/21</td>
</tr>
<tr>
<td>de Visser, K.E.</td>
<td>10623</td>
<td>Dissecting how tumor-associated myeloid cells counteract chemotherapy response of breast cancer.</td>
<td>01/04/18</td>
<td>31/03/22</td>
</tr>
<tr>
<td>Faller, W.J.</td>
<td>10535</td>
<td>The role of translation elongation in models of intestinal cancer</td>
<td>01/07/17</td>
<td>30/06/22</td>
</tr>
<tr>
<td>Haanen, J.B.A.G.</td>
<td>11877</td>
<td>Overcoming anti-PD1 failure with adoptive cell therapy using tumor-infiltrating lymphocytes in metastatic melanoma: requirements for a randomized controlled trial.</td>
<td>01/01/19</td>
<td>31/12/21</td>
</tr>
<tr>
<td>Haanen, J.B.A.G.</td>
<td>NKI 2013-5924</td>
<td>Feasibility study using T-cell receptor gene therapy in metastatic melanoma</td>
<td>05/02/13</td>
<td>05/02/19</td>
</tr>
<tr>
<td>Haanen, J.B.A.G.</td>
<td>10034</td>
<td>POINTING: Towards patient-tailored cancer immunotherapy supported by a multifaceted predictive signature composed of integrative omics and molecular imaging</td>
<td>01/09/17</td>
<td>31/08/22</td>
</tr>
<tr>
<td>Haanen, J.B.A.G.</td>
<td>NKI 2017-8244</td>
<td>Netherlands Facility for Cancer Immune Analysis (N-CIA)</td>
<td>01/05/18</td>
<td>30/04/23</td>
</tr>
<tr>
<td>Haas, R.L.M.</td>
<td>NKI 2015-8069</td>
<td>Dose Reduction of preoperative radiotherapy in Myxoid liposarcomas.</td>
<td>01/01/16</td>
<td>31/12/19</td>
</tr>
<tr>
<td>Hauptmann, M.</td>
<td>10004</td>
<td>Statistical assessment of cancer risks from therapeutic radiation exposure incorporating the spatial distribution of radiation dose in the target organ</td>
<td>01/12/17</td>
<td>30/11/21</td>
</tr>
<tr>
<td>Hauptmann, M.</td>
<td>10603</td>
<td>Novel statistical methods for efficient identification of biomarkers for personalized cancer treatment</td>
<td>01/09/17</td>
<td>31/08/21</td>
</tr>
<tr>
<td>Horlings, M.M.</td>
<td>10510</td>
<td>Genetic properties of breast carcinomas associated with cancer-immune interactions.</td>
<td>01/11/17</td>
<td>31/10/21</td>
</tr>
<tr>
<td>Huijbers, I.J.G.</td>
<td>NKI 2017-8231</td>
<td>CustoMCE: a facility for production and distribution of engineered mouse models for cancer research</td>
<td>01/01/18</td>
<td>31/12/20</td>
</tr>
<tr>
<td>Husson, O.</td>
<td>NKI 2015-7527</td>
<td>Psychosocial and physical problems and needs of adolescents and young adults (AYAs) with cancer: Towards comprehensive patient-centered care.</td>
<td>01/10/18</td>
<td>01/08/20</td>
</tr>
<tr>
<td>Jacobs, H.B.</td>
<td>12825</td>
<td>Targeting epigenetic crosstalk in Diffuse Large B Cell Lymphoma</td>
<td>01/06/20</td>
<td>31/05/24</td>
</tr>
<tr>
<td>Jacobs, H.B.</td>
<td>NKI 2012-5713</td>
<td>Exploring DNA-Damage Tolerance as a Drug-Target for Chemosensitization and a Mechanism of Chemoresistance.</td>
<td>01/06/13</td>
<td>31/05/19</td>
</tr>
<tr>
<td>Principal investigator</td>
<td>Number of projects</td>
<td>Title</td>
<td>Started</td>
<td>Ended / Ends</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------</td>
<td>--</td>
<td>------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Jacobs, H.B.</td>
<td>10132</td>
<td>Precision Cancer Therapy: Profiting from Tumor Specific Defects and Synthetic Lethality in the DNA Damage Tolerance System</td>
<td>01/03/17</td>
<td>28/02/21</td>
</tr>
<tr>
<td>Jacobs, H.B.</td>
<td>10796</td>
<td>Role of DNA Damage Tolerance Pathways in Genome Maintenance, Tissue Homeostasis, and Cancer Suppression</td>
<td>01/10/17</td>
<td>30/09/21</td>
</tr>
<tr>
<td>Jacobs, J.J.L.</td>
<td>11805</td>
<td>Mechanisms to overcome replication challenges at telomeres</td>
<td>01/08/19</td>
<td>31/07/23</td>
</tr>
<tr>
<td>Jacobs, J.J.L.</td>
<td>12826</td>
<td>Revealing novel modes of DNA repair control by ubiquitin(-like) reversal</td>
<td>01/06/20</td>
<td>31/05/24</td>
</tr>
<tr>
<td>Jacobs, J.J.L.</td>
<td>10999</td>
<td>Mechanisms of DNA repair pathway control at DNA double-strand breaks and telomeres</td>
<td>01/10/17</td>
<td>30/09/21</td>
</tr>
<tr>
<td>Jonkers, J.M.M.</td>
<td>NKI 2014-7048</td>
<td>Ex vivo assays for selection of breast and ovarian cancer patients for PARP inhibitor treatment</td>
<td>01/09/15</td>
<td>31/08/20</td>
</tr>
<tr>
<td>Jonkers, J.M.M.</td>
<td>NKI 2015-7589</td>
<td>Cancer-associated fibroblasts as therapeutic targets in invasive lobular breast carcinoma.</td>
<td>01/01/16</td>
<td>30/06/20</td>
</tr>
<tr>
<td>Jonkers, J.M.M.</td>
<td>NKI 2015-7877</td>
<td>Functional analysis of BRCA1 variants and domains to improve genetic counselling and treatment strategies.</td>
<td>01/01/16</td>
<td>31/12/19</td>
</tr>
<tr>
<td>Jonkers, J.M.M.</td>
<td>NKI 2015-7835</td>
<td>Combating therapy resistance by integrating genomic, transcriptomic and proteomic data from mouse models of invasive lobular breast carcinoma</td>
<td>01/01/17</td>
<td>31/12/20</td>
</tr>
<tr>
<td>Kok, M.</td>
<td>NKI 2015-7542</td>
<td>KWF fellowship</td>
<td>01/06/15</td>
<td>31/05/19</td>
</tr>
<tr>
<td>Kok, M.</td>
<td>10853</td>
<td>Mapping immunosuppressive cascades in breast cancer patients treated with immunotherapy</td>
<td>01/09/17</td>
<td>31/01/20</td>
</tr>
<tr>
<td>Kvistborg, P.</td>
<td>NKI 2015-7978</td>
<td>How checkpoint blockade alters the quality of tumor specific T cells</td>
<td>01/09/16</td>
<td>31/08/21</td>
</tr>
<tr>
<td>Linn, S.C.</td>
<td>NKI 2014-7052</td>
<td>The substantially improving the cure rate of high-risk BRCA1-like breast cancer patients with personalized therapy (SUBITO) trial; an international randomized phase III trial. SUBITO studie.</td>
<td>01/02/16</td>
<td>31/01/21</td>
</tr>
<tr>
<td>Linn, S.C.</td>
<td>NKI 2015-7808</td>
<td>Clinical Impact of Intratumor heterogeneity in metastatic breast cancer. Transcan</td>
<td>01/04/16</td>
<td>31/03/19</td>
</tr>
<tr>
<td>Lok, C.A.R.</td>
<td>12894</td>
<td>DVI-DETECT; Liquid biopsy for improving the pre-operative diagnosis of ovarian cancer.</td>
<td>01/06/20</td>
<td>31/05/24</td>
</tr>
<tr>
<td>Marijnen, C.A.M.</td>
<td>12612</td>
<td>Pre-versus postoperative accelerated partial breast irradiation in early stage breast cancer patients (PAPBI-2). A randomized phase III trial.</td>
<td>01/06/20</td>
<td>31/05/24</td>
</tr>
<tr>
<td>Marijnen, C.A.M.</td>
<td>12702</td>
<td>INTERACTION of hypofractionated radiotherapy with targeted agents, antibodies and immunotherapy</td>
<td>01/06/20</td>
<td>31/05/24</td>
</tr>
<tr>
<td>Medema, R.H.</td>
<td>12233</td>
<td>Unbalanced genomes: why do cancer cells not care?</td>
<td>01/11/19</td>
<td>31/10/23</td>
</tr>
<tr>
<td>Medema, R.H.</td>
<td>NKI 2014-6787</td>
<td>Determinants of cell fate after DNA damage.</td>
<td>01/04/15</td>
<td>31/03/19</td>
</tr>
<tr>
<td>Medema, R.H.</td>
<td>NKI 2015-7742</td>
<td>Enhancing chromosome segregation errors in cancer therapy.</td>
<td>01/07/15</td>
<td>30/06/19</td>
</tr>
<tr>
<td>Medema, R.H.</td>
<td>NKI 2015-7832</td>
<td>Exploring the vulnerabilities of chromosome unstable tumor cells</td>
<td>01/05/16</td>
<td>30/04/20</td>
</tr>
<tr>
<td>Meijer, G.A.</td>
<td>11809</td>
<td>Towards implementation of liquid biopsy cell-free circulating tumor DNA as prognostic biomarker for stage I II colon cancer patients</td>
<td>01/01/19</td>
<td>31/12/22</td>
</tr>
<tr>
<td>Meijer, G.A.</td>
<td>NKI 2013-6338</td>
<td>MOCICAS; Molecular Stool test for postpolypectomie surveillance</td>
<td>01/07/15</td>
<td>30/06/20</td>
</tr>
<tr>
<td>Meijer, G.A.</td>
<td>NKI 2014-6813</td>
<td>Identifying signaling pathways</td>
<td>01/09/15</td>
<td>31/08/19</td>
</tr>
<tr>
<td>Principal investigator</td>
<td>Number of projects</td>
<td>Title</td>
<td>Started</td>
<td>Ended</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------</td>
<td>-------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>Meijer, G.A.</td>
<td>2013-5885</td>
<td>Fellowship Linda Bosch:DCR1 and its role in response of colorectal cancer patients to irinotecan treatment</td>
<td>01/04/15</td>
<td>31/05/20</td>
</tr>
<tr>
<td>Meijer, G.A.</td>
<td>NKI 2014-6635</td>
<td>Deciphering diagnostic and companion therapies for mesenchymal colorectal cancer.</td>
<td>01/04/15</td>
<td>31/03/19</td>
</tr>
<tr>
<td>Meijer, G.A.</td>
<td>8166</td>
<td>Translational research IT (TraIT) in transition Health RI - Sustaining FAIR data stewardship support for translational cancer research</td>
<td>01/02/17</td>
<td>31/01/20</td>
</tr>
<tr>
<td>Meijer, G.A.</td>
<td>10438</td>
<td>Liquid biopsy analyses of cell-free circulating tumor DNA as predictive and prognostic biomarker for colorectal cancer patients with metastatic disease</td>
<td>01/10/17</td>
<td>30/09/21</td>
</tr>
<tr>
<td>Opdam, F.L.</td>
<td>11352</td>
<td>Identification and validation of genetic factors that determine sensitivity to Weel inhibition in high-grade ovarian cancer and related cancers</td>
<td>01/10/18</td>
<td>30/09/23</td>
</tr>
<tr>
<td>Peep, D.S.</td>
<td>12188</td>
<td>AXL as an anchor to combat therapy-refractory Soft Tissue Sarcoma</td>
<td>01/09/19</td>
<td>31/08/23</td>
</tr>
<tr>
<td>Peep, D.S.</td>
<td>NKI 2014-7241</td>
<td>In vivo cancer drug target discovery screens exploiting T cell immunity.</td>
<td>01/09/15</td>
<td>31/08/19</td>
</tr>
<tr>
<td>Peep, D.S.</td>
<td>NKI 2015-7595</td>
<td>Function-based unbiased discovery of clinically exploitable metabolic vulnerabilities of cancer cells.</td>
<td>01/10/16</td>
<td>30/09/20</td>
</tr>
<tr>
<td>Peep, D.S.</td>
<td>10425</td>
<td>Targeting phenotype switching as a therapy for melanoma</td>
<td>01/09/17</td>
<td>31/08/21</td>
</tr>
<tr>
<td>Peep, D.S.</td>
<td>10304</td>
<td>Increasing drug holiday impact on therapy-refractory cancers for more durable responses</td>
<td>01/01/17</td>
<td>31/12/20</td>
</tr>
<tr>
<td>Perrakis, A.</td>
<td>10215</td>
<td>Membrane glycerophosphodiesterases: novel players in cell differentiation and cancer biology</td>
<td>01/01/17</td>
<td>31/12/20</td>
</tr>
<tr>
<td>Rookus, M.A.</td>
<td>12535</td>
<td>Nationwide infrastructure integrating research and health care to improve management for Dutch women with familiar breast cancer risk</td>
<td>01/06/20</td>
<td>31/05/25</td>
</tr>
<tr>
<td>Rookus, M.A.</td>
<td>12560</td>
<td>The potential association between circadian disruption and hormone-related cancer risk: prospective cohort study among 59,947 female nurses</td>
<td>01/06/20</td>
<td>31/05/24</td>
</tr>
<tr>
<td>Rookus, M.A.</td>
<td>NKI 2014-6987</td>
<td>A nationwide prospective cohort study among 59,947 female nurses to elucidate the potential association between shift work and risk of breast cancer.</td>
<td>01/02/16</td>
<td>31/01/20</td>
</tr>
<tr>
<td>Rowland, B.D.</td>
<td>11665</td>
<td>SW/SNF-mediated cohesin loading: A dual role in tumorigenesis?</td>
<td>01/07/19</td>
<td>30/06/23</td>
</tr>
<tr>
<td>Rowland, B.D.</td>
<td>12687</td>
<td>A universal binding hub on cohesin to control the genome?</td>
<td>01/06/20</td>
<td>31/05/24</td>
</tr>
<tr>
<td>Rowland, B.D.</td>
<td>NKI 2015-7657</td>
<td>Locking Together the Sister Chromatids.</td>
<td>01/11/15</td>
<td>31/10/19</td>
</tr>
<tr>
<td>Ruers, T.J.M.</td>
<td>12815</td>
<td>Augmented reality for precision surgery in cancer</td>
<td>01/06/20</td>
<td>31/05/24</td>
</tr>
<tr>
<td>Ruers, T.J.M.</td>
<td>NKI 2014-6586</td>
<td>Clinical implementation of image-guided surgery in rectal cancer. Tevens studie N14RCS.</td>
<td>01/05/15</td>
<td>30/04/19</td>
</tr>
<tr>
<td>Ruers, T.J.M.</td>
<td>NKI 2016-8162</td>
<td>TomTom voor de OK (via Vriendenlots)</td>
<td>01/01/17</td>
<td>31/05/21</td>
</tr>
<tr>
<td>Ruers, T.J.M.</td>
<td>10747</td>
<td>Improving the outcome of breast cancer surgery by real time assessment of resection margins using Hyperspectral Imaging (10396).</td>
<td>01/01/18</td>
<td>31/12/21</td>
</tr>
<tr>
<td>Schagen, S.B.</td>
<td>NKI 2015-7737</td>
<td>Trajectories of cognitive decline in survivors of non-CNS cancers: from precancer diagnosis to late life after cancer.</td>
<td>01/09/16</td>
<td>31/08/20</td>
</tr>
<tr>
<td>Schagen, S.B.</td>
<td>NKI 2015-7937</td>
<td>Monitoring, understanding and managing cognitive problems in cancer patients without central nervous system disease: putting knowledge into practice</td>
<td>01/01/17</td>
<td>31/12/22</td>
</tr>
<tr>
<td>Principal investigator</td>
<td>Number of projects</td>
<td>Title</td>
<td>Started</td>
<td>Ended / Ends</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------</td>
<td>--</td>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Schagen, S.B.</td>
<td>UU 2015-7954</td>
<td>Effect of physical exercise on cognitive function after chemotherapy in patients with breast cancer</td>
<td>01/09/16</td>
<td>31/08/20</td>
</tr>
<tr>
<td>Schmidt, M.K.</td>
<td>10758</td>
<td>Risk prediction, screening and Therapy of breast cancer in women from CHEK2 c.1100delC families in the Netherlands (in ART).</td>
<td>01/11/17</td>
<td>31/10/21</td>
</tr>
<tr>
<td>Schmidt, M.K.</td>
<td>11655</td>
<td>Balancing risks of under- and overtreatment in young breast cancer patients: a focus on the triple negative subtype</td>
<td>01/02/19</td>
<td>31/01/23</td>
</tr>
<tr>
<td>Schmidt, M.K.</td>
<td>NKI 2013-6253</td>
<td>Risk management of contralateral breast cancer: development and validation of an online decision aid for physicians and patients.</td>
<td>01/10/14</td>
<td>30/09/19</td>
</tr>
<tr>
<td>Schmidt, M.K.</td>
<td>NKI 2015-7632</td>
<td>Breast cancer prognosis: identification of hereditary genetic variants.</td>
<td>01/03/16</td>
<td>29/02/20</td>
</tr>
<tr>
<td>Schumacher, A.N.M.</td>
<td>NKI 2013-6122</td>
<td>Linking cancer exomes to cancer immunotherapy</td>
<td>01/08/14</td>
<td>31/07/20</td>
</tr>
<tr>
<td>Sixma, T.K.</td>
<td>NKI 2015-8082</td>
<td>Elucidating regulation of tumor suppressor BAP1 in genome stability maintenance</td>
<td>01/12/16</td>
<td>30/11/20</td>
</tr>
<tr>
<td>Sonke, G.S.</td>
<td>NKI 2012-5685</td>
<td>High-dose alkylating chemotherapy in oligo-metastatic breast cancer harboring homologous recombination deficiency</td>
<td>01/07/12</td>
<td>01/04/21</td>
</tr>
<tr>
<td>Sonke, G.S.</td>
<td>NKI 2014-6838</td>
<td>Improving the outcome of ovarian cancer patients: when and why to use neoadjuvant chemotherapy or primary surgery in advanced ovarian cancer.</td>
<td>01/10/15</td>
<td>30/09/19</td>
</tr>
<tr>
<td>Sonke, J.J.</td>
<td>RUG 2017-8254</td>
<td>Proton Therapy Research Infrastructure - PreTRAIT</td>
<td>01/09/19</td>
<td>31/08/22</td>
</tr>
<tr>
<td>Sonke, J.J.</td>
<td>11964 ALPE</td>
<td>Cardiac changes after radiotherapy with high fraction doses for early stage lung cancer: MI9CER.</td>
<td>01/09/19</td>
<td>28/02/22</td>
</tr>
<tr>
<td>Sonke, J.J.</td>
<td>RUG 2017-8254</td>
<td>Proton Therapy Research Infrastructure - PreTRAIT</td>
<td>01/02/18</td>
<td>31/01/21</td>
</tr>
<tr>
<td>Sonnenberg, A.</td>
<td>12143</td>
<td>Analysis of the role of PEAK1, an integrin-associated pseudokinase, in the initiation and progression of colorectal carcinomas</td>
<td>01/10/19</td>
<td>30/09/23</td>
</tr>
<tr>
<td>te Riele, H.P.J.</td>
<td>NKI 2014-6702</td>
<td>Replication stress in cancer: mechanisms and consequences for therapy.</td>
<td>01/10/14</td>
<td>30/09/19</td>
</tr>
<tr>
<td>te Riele, H.P.J.</td>
<td>NKI 2014-7176</td>
<td>Development of prevention strategies for intestinal cancer in Lynch syndrome using novel mouse models.</td>
<td>01/08/15</td>
<td>31/07/19</td>
</tr>
<tr>
<td>te Riele, H.P.J.</td>
<td>10645</td>
<td>INVUSE: Investigation of variants of uncertain clinical significance for use in clinical practice</td>
<td>01/02/18</td>
<td>31/01/22</td>
</tr>
<tr>
<td>te Riele, H.P.J.</td>
<td>11074</td>
<td>Targeting replication rescue pathways</td>
<td>01/03/18</td>
<td>28/02/23</td>
</tr>
<tr>
<td>Thommen, D.S.</td>
<td>12046</td>
<td>Dysfunctional T cells in predicting and modulating the response to PD-1 blockade in human cancer</td>
<td>01/06/19</td>
<td>31/05/23</td>
</tr>
<tr>
<td>van de Poll, L.V.</td>
<td>NKI 2015-7932</td>
<td>A randomized study, PROstate cancer follow-up care in secondary and Primary health care (PROSPEC)</td>
<td>01/09/17</td>
<td>31/08/22</td>
</tr>
<tr>
<td>van der Graaf, W.T.A.</td>
<td>11788</td>
<td>COMPRANA: Dutch nationwide infrastructure for COMPREhensive health outcome and intervention research among Adolescent and Young Adult cancer survivors.</td>
<td>01/01/20</td>
<td>31/12/24</td>
</tr>
<tr>
<td>van der Heide, U.A.</td>
<td>NKI 2013-6311</td>
<td>Brachytherapy for rectal cancer: a better balance between tumor control and side effects.</td>
<td>01/11/14</td>
<td>31/10/20</td>
</tr>
<tr>
<td>van der Heide, U.A.</td>
<td>10088</td>
<td>Focal escalation of the radiation dose to the tumor in prostate cancer</td>
<td>01/04/17</td>
<td>31/03/21</td>
</tr>
<tr>
<td>van der Heijden, M.S.</td>
<td>NKI 2014-7080</td>
<td>Genetic causes of resistance to new androgen receptor signaling inhibitors in circulating tumor DNA of metastasized castration resistant prostate cancer patients.</td>
<td>01/06/15</td>
<td>31/05/20</td>
</tr>
<tr>
<td>Principal investigator</td>
<td>Number of projects</td>
<td>Title</td>
<td>Started</td>
<td>Ended</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------</td>
<td>-------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>van Driel, W.J.</td>
<td>11540</td>
<td>Primary cytoreductive surgery with or without hyperthermic intraperitoneal chemotherapy for stage II ovarian cancer: a randomized phase III trial (DVHPEC-2). M17DVH</td>
<td>01/12/19</td>
<td>30/11/26</td>
</tr>
<tr>
<td>van Driel, W.J.</td>
<td>11910</td>
<td>Implementation of HIPEC for patients with stage III ovarian carcinoma treated with neoadjuvant chemotherapy and interval debulking in the Netherlands</td>
<td>01/01/19</td>
<td>31/12/22</td>
</tr>
<tr>
<td>van Harten, W.H.</td>
<td>NKI 2014-6078</td>
<td>Advanced Logistics Optimization of the Radiotherapy Treatment (ALORT)</td>
<td>01/02/15</td>
<td>31/01/20</td>
</tr>
<tr>
<td>van Harten, W.H.</td>
<td>NKI 2015-7904</td>
<td>A randomized controlled trial of an internet-based tailored physical activity support program in breast and prostate cancer survivors. PABLO.M17PAB</td>
<td>01/09/16</td>
<td>31/08/20</td>
</tr>
<tr>
<td>van Harten, W.H.</td>
<td>10325</td>
<td>Does physical exercise during adjuvant cardiotoxic chemotherapy protect against cardiac injury among women with breast cancer? HEART</td>
<td>01/09/17</td>
<td>31/08/20</td>
</tr>
<tr>
<td>van Houdt, W.J.</td>
<td>12686</td>
<td>Development of a translational ex-vivo model of 2D cells and organoids as a predictive tool for soft tissue sarcoma</td>
<td>01/06/20</td>
<td>31/05/24</td>
</tr>
<tr>
<td>van Leerdam, M.E.</td>
<td>10274</td>
<td>Evaluation of optimal intervals for colonoscopy surveillance: a randomized trial. M16EPS</td>
<td>01/02/17</td>
<td>31/01/29</td>
</tr>
<tr>
<td>van Leeuwen, F.</td>
<td>11480</td>
<td>DDT1L as a druggable epigenetic writer in T cell programming and immunotherapy</td>
<td>01/12/18</td>
<td>31/05/20</td>
</tr>
<tr>
<td>van Leeuwen, F.</td>
<td>NKI 2014-7232</td>
<td>Epigenetic Pathways in Cancer Development and Treatment: Crosstalk between Conserved Histone Modifiers in T-cell Lymphoma.</td>
<td>01/11/15</td>
<td>31/10/19</td>
</tr>
<tr>
<td>van Leeuwen, F.E.</td>
<td>12710</td>
<td>Prediction tools for Hodgkin lymphoma patients to weigh benefits and harms of different treatment and survivorship care strategies</td>
<td>01/06/20</td>
<td>31/05/24</td>
</tr>
<tr>
<td>van Leeuwen, F.E.</td>
<td>10164</td>
<td>Favorable and unfavorable effects of risk-reducing salpingo-oophorectomy(RRASO) in women at high genetic risk of ovarian cancer</td>
<td>01/07/17</td>
<td>30/06/21</td>
</tr>
<tr>
<td>van Leeuwen, F.E.</td>
<td>10424</td>
<td>Cardiotoxicity and second cancer risk after treatment of aggressive B-cell Non-Hodgkin lymphoma (M16CNH)</td>
<td>01/01/18</td>
<td>31/12/21</td>
</tr>
<tr>
<td>van Leeuwen, F.E.</td>
<td>NKI 2017-8237</td>
<td>The BETER-REFLECT biobank: A REsource For studies on Late Effects of CancerTreatment</td>
<td>01/02/18</td>
<td>31/01/22</td>
</tr>
<tr>
<td>van Leeuwen, F.E.</td>
<td>10933</td>
<td>A risk prediction tool for cardiovascular disease in breast cancer patients. PREDICT</td>
<td>01/12/17</td>
<td>31/08/21</td>
</tr>
<tr>
<td>van Leeuwen, F.E.</td>
<td>VU 2017-8288</td>
<td>Psychosocial factors and cancer incidence: a pre-planned meta-analysis of the psychosocial</td>
<td>01/12/17</td>
<td>30/11/21</td>
</tr>
<tr>
<td>van Lohuizen, M.M.S.</td>
<td>11700</td>
<td>Identifying and testing new intervention therapies for mesotheliomas.</td>
<td>01/09/18</td>
<td>31/08/22</td>
</tr>
<tr>
<td>van Lohuizen, M.M.S.</td>
<td>NKI 2014-7208</td>
<td>Testing therapeutic responses to Polycomb inhibition in preclinical mouse models of Kras mutant lung cancer.</td>
<td>01/07/15</td>
<td>30/06/19</td>
</tr>
<tr>
<td>van Rheenen, J.E</td>
<td>11491</td>
<td>Mechanistic insight in the role of cell competition in growth of colorectal cancer liver metastases</td>
<td>01/01/19</td>
<td>31/12/22</td>
</tr>
<tr>
<td>van Rheenen, J.E</td>
<td>UU 2015-7838</td>
<td>Understanding the role of SDX4 in educating the mammary tumor niche: the potential for personalized therapeutic targeting.</td>
<td>01/10/17</td>
<td>31/12/13</td>
</tr>
<tr>
<td>van Rheenen, J.E</td>
<td>10123</td>
<td>The intermediate filament network in glioma invasion</td>
<td>01/05/17</td>
<td>30/04/21</td>
</tr>
<tr>
<td>van Tellingen, G.</td>
<td>11165</td>
<td>Radiosensitization of glioma through induction of mitotic enrichment</td>
<td>01/01/18</td>
<td>30/06/20</td>
</tr>
<tr>
<td>van Trommel, N.E.</td>
<td>12674</td>
<td>Neo-Adjuvant Chemotherapy and Less Extensive Surgery in Cervical Cancer to Preserve Fertility (CONTESSA/NEEDCON-F)</td>
<td>01/06/20</td>
<td>01/05/24</td>
</tr>
<tr>
<td>Principal investigator</td>
<td>Number of projects</td>
<td>Title</td>
<td>Started</td>
<td>Ended</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------------</td>
<td>-------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>Vens, C.</td>
<td>VU 2014-7072</td>
<td>A multiparameter radiogenomics-based decision support system for personalized treatment of advanced stage head and neck cancer patients (DESIGN)</td>
<td>01/11/15</td>
<td>31/10/20</td>
</tr>
<tr>
<td>Verheij, M.</td>
<td>NKI 2017-8287</td>
<td>Multicentre randomized phase II trial of neo-adjuvant chemotherapy vs. chemotherapy/chemoradiotherapy vs. chemoradiotherapy followed by surgery in resectable gastric cancer (CRITICS-II)</td>
<td>01/12/17</td>
<td>30/11/21</td>
</tr>
<tr>
<td>Voest, E.E.</td>
<td>NKI 2015-7732</td>
<td>Tumor organoids: feasibility to predict sensitivity to treatment in cancer patients (TUMOOn trial M14OOn)</td>
<td>01/07/15</td>
<td>31/12/21</td>
</tr>
<tr>
<td>Voest, E.E.</td>
<td>HUBR 2014-7036</td>
<td>Exploring The Use Of Lung Cancer Organoids In Personalized Medicine (TUMOOn trial M14OOn)</td>
<td>01/02/16</td>
<td>31/01/20</td>
</tr>
<tr>
<td>Voest, E.E.</td>
<td>10014</td>
<td>The Drug Rediscovery Protocol (DRUP trial)</td>
<td>01/06/17</td>
<td>31/05/20</td>
</tr>
<tr>
<td>Vogel, W.V.</td>
<td>10606</td>
<td>Comprehensive functional salivary gland management to avoid an iatrogenic dry mouth</td>
<td>01/11/17</td>
<td>31/10/21</td>
</tr>
<tr>
<td>Wesseling, J.</td>
<td>NKI 2014-6250</td>
<td>Management of low risk ductal carcinoma in situ: watchful waiting or not? A randomized, non-inferiority trial (LORD Trial)</td>
<td>01/02/15</td>
<td>31/01/21</td>
</tr>
<tr>
<td>Wesseling, J.</td>
<td>NKI 2015-7711</td>
<td>Management of low grade ductal carcinoma in situ: active surveillance or not? A randomized, non-inferiority phase III trial (LORD trial) (BDOX). Data management</td>
<td>01/07/15</td>
<td>30/06/19</td>
</tr>
<tr>
<td>Wesseling, J.</td>
<td>11105</td>
<td>Improving breast cancer screening among young high risk women by blood-based methods</td>
<td>01/02/18</td>
<td>31/01/22</td>
</tr>
<tr>
<td>Wessels, L.F.A.</td>
<td>11741 ALPE</td>
<td>From fixed to functional pathology: defining intermediate phenotypes that determine prognosis and therapy response</td>
<td>01/12/18</td>
<td>30/11/20</td>
</tr>
<tr>
<td>Wessels, L.F.A.</td>
<td>12516</td>
<td>Phosphoproteomics and integrative analysis to enable precision medicine for anti-EGFR therapy in colorectal cancer</td>
<td>01/01/20</td>
<td>31/12/23</td>
</tr>
<tr>
<td>Wessels, L.F.A.</td>
<td>NKI 2015-7835</td>
<td>Combatting therapy resistance by integrating genomic, transcriptomic and proteomic data from mouse models of invasive lobular breast carcinoma</td>
<td>01/01/17</td>
<td>31/12/20</td>
</tr>
<tr>
<td>Wessels, L.F.A.</td>
<td>NKI 2014-7080 A</td>
<td>Genetic causes of resistance to new androgen receptor signaling inhibitors in circulating tumor DNA of metastasized castration resistant prostate cancer patients.</td>
<td>01/06/15</td>
<td>31/05/20</td>
</tr>
<tr>
<td>Zwart, W.T.</td>
<td>12018</td>
<td>Unraveling DNA repair / Estrogen Receptor interplay in breast cancer</td>
<td>01/06/19</td>
<td>31/05/23</td>
</tr>
<tr>
<td>Zwart, W.T.</td>
<td>12128</td>
<td>Exploiting the Glucocorticoid Receptor signaling axis to induce growth arrest in lung cancer.</td>
<td>01/11/19</td>
<td>31/10/23</td>
</tr>
<tr>
<td>Zwart, W.T.</td>
<td>NKI 2015-7733</td>
<td>Companion diagnostics for endocrine treatment selection in breast cancer</td>
<td>01/07/15</td>
<td>30/06/19</td>
</tr>
<tr>
<td>Zwart, W.T.</td>
<td>10084</td>
<td>Biomarker discovery for prognostication and treatment selection in prostate cancer through Androgen Receptor profiling</td>
<td>01/06/17</td>
<td>31/05/21</td>
</tr>
</tbody>
</table>
Research projects supported by other organisations
<table>
<thead>
<tr>
<th>Principal investigator</th>
<th>Granting agency</th>
<th>Title</th>
<th>Started</th>
<th>Ended</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aaronson, N.K.</td>
<td>Pink Ribbon</td>
<td>Zorg op maat om fysieke fitheid en welzijn van vrouwen met gemetastaseerde borstkanker te bevorderen</td>
<td>01/09/15 01/02/19</td>
<td></td>
</tr>
<tr>
<td>Agami, R.</td>
<td>EEG-CEC / EU</td>
<td>Breaking borders, Functional genetic screens of structural regulatory DNA elements</td>
<td>01/09/19 31/08/24</td>
<td></td>
</tr>
<tr>
<td>Agami, R.</td>
<td>EMBD</td>
<td>Two-year EMBD Long-Term Fellowship of Dr. A. Pataskar</td>
<td>01/01/19 30/04/19</td>
<td></td>
</tr>
<tr>
<td>Agami, R.</td>
<td>Stichting Decode Institute</td>
<td>Decode Agami</td>
<td>01/09/17 31/08/22</td>
<td></td>
</tr>
<tr>
<td>Agami, R.</td>
<td>ZonMw</td>
<td>Uncovering cancerous enhancers of prostate and breast cancers</td>
<td>01/03/17 28/02/21</td>
<td></td>
</tr>
<tr>
<td>Akkari, L.</td>
<td>AvL Foundation</td>
<td>Immunologie & Kanker Akkari</td>
<td>01/01/18 31/12/19</td>
<td></td>
</tr>
<tr>
<td>Akkari, L.</td>
<td>NWO</td>
<td>Zwaartekracht programma 2012 Akkari</td>
<td>01/01/17 31/12/21</td>
<td></td>
</tr>
<tr>
<td>Akkari, L.</td>
<td>Stichting Decode Institute</td>
<td>Decode Akkari</td>
<td>01/01/19 31/08/22</td>
<td></td>
</tr>
<tr>
<td>Akkari, L.</td>
<td>The Royal Institution for the Advancement of Learning/McGill University</td>
<td>Harnessing the brain tumor immune-microenvironment to enhance therapeutic efficacy</td>
<td>01/01/19 31/12/21</td>
<td></td>
</tr>
<tr>
<td>Akkari, L.</td>
<td>ZonMw</td>
<td>Investigating the Consequences of Macrophage Evolution in Brain Tumor Recurrence Post Radiotherapy</td>
<td>01/11/19 31/10/23</td>
<td></td>
</tr>
<tr>
<td>Altelaar, M.</td>
<td>NWO</td>
<td>X-omics</td>
<td>01/09/18 31/08/23</td>
<td></td>
</tr>
<tr>
<td>Altelaar, M.</td>
<td>NWO</td>
<td>Proteins@Work: A large-scale proteomics research facility for the life sciences</td>
<td>01/05/13 30/06/19</td>
<td></td>
</tr>
<tr>
<td>Amant, F.C.H.</td>
<td>EEG-CEC / EU</td>
<td>CRADLE: Cancer TreAtment During pregnancy, from fetal safety to maternal Efficacy</td>
<td>01/10/15 30/09/20</td>
<td></td>
</tr>
<tr>
<td>Baas-Vrancken Peeters, M.J.T.F.D.</td>
<td>Innovatiefonds</td>
<td>Towards omitting breast surgery in patients with pathologic complete response after neoadjuvant systemic therapy</td>
<td>01/03/18 31/12/20</td>
<td></td>
</tr>
<tr>
<td>Baas-Vrancken Peeters, M.J.T.F.D.</td>
<td>Pink Ribbon</td>
<td>Towards patient tailored locoregional treatment of breast cancer in patients treated with neoadjuvant systemic therapy, N16MIC</td>
<td>01/09/16 31/08/19</td>
<td></td>
</tr>
<tr>
<td>Baas, P.</td>
<td>AvL Foundation</td>
<td>E-Nose</td>
<td>01/11/19 31/10/20</td>
<td></td>
</tr>
<tr>
<td>Baas, P.</td>
<td>AvL Foundation</td>
<td>Uitbreiding Longgroep</td>
<td>01/03/18 28/02/20</td>
<td></td>
</tr>
<tr>
<td>Baas, P.</td>
<td>EEG-CEC / EU</td>
<td>DC-based immunotherapy to treat Malignant Mesothelioma</td>
<td>01/01/16 31/12/21</td>
<td></td>
</tr>
<tr>
<td>Beets-Tan, R.G.H.</td>
<td>EEG-CEC / EU</td>
<td>Active Monitoring of Cancer As An Alternative To Surgery</td>
<td>01/11/19 31/10/23</td>
<td></td>
</tr>
<tr>
<td>Beets-Tan, R.G.H.</td>
<td>Nederlandse Vereniging voor Radiologie (NVVR)</td>
<td>Optimalisatie van MRI diagnostiek bij behandeling van rectumcarcinoom</td>
<td>01/07/18 31/12/19</td>
<td></td>
</tr>
<tr>
<td>Beets-Tan, R.G.H.</td>
<td>ZonMw</td>
<td>MR imaging vs surgical staging of peritoneal carcinomatosis in colorectal cancer patients; a randomized multicenter trial</td>
<td>01/09/19 31/08/23</td>
<td></td>
</tr>
<tr>
<td>Beets-Tan, R.G.H.</td>
<td>ZonMw</td>
<td>Clinical impact of dedicated MR staging of ovarian cancer patients</td>
<td>28/12/17 28/12/21</td>
<td></td>
</tr>
<tr>
<td>Beijersbergen, R.L.</td>
<td>Merck Sharp & Dohme Corp.</td>
<td>Identification of chromatin modifiers genes that upon inactivation show a synthetic lethal phenotype with Switch/Sucrose NonFermentable (SWI/SNF) chromatin-remodeling complex mutations in tumor cell lines.</td>
<td>08/09/15 08/09/19</td>
<td></td>
</tr>
<tr>
<td>Principal investigator</td>
<td>Granting agency</td>
<td>Title</td>
<td>Started</td>
<td>Ended</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------</td>
<td>-------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>Beijnen, J.H.</td>
<td>EEG-CEC / EU</td>
<td>Efficacy and Safety of a newly registered Artemisinin-Based Combination for the treatment of uncomplicated malaria in African pregnant women</td>
<td>01/03/19</td>
<td>29/02/24</td>
</tr>
<tr>
<td>Beijnen, J.H.</td>
<td>EEG-CEC / EU</td>
<td>Afri-KA-DIA: Towards an adapted, safe, effective combination treatment for African visceral leishmaniasis (Kala Azar) and improved diagnostic tools</td>
<td>10/12/17</td>
<td>10/12/21</td>
</tr>
<tr>
<td>Beijnen, J.H.</td>
<td>ZonMw</td>
<td>Optimizing drug development for the neglected tropical disease visceral leishmaniasis through a systems pharmacology model</td>
<td>01/12/16</td>
<td>30/11/20</td>
</tr>
<tr>
<td>Belderbos-Candiff, J.S.A.</td>
<td>KNL (Utrecht)</td>
<td>Implementatie van patient-gerapporteerde (PRO) monitoring van bijwerkingen en therapietrouw van systemische behandeling.</td>
<td>01/08/18</td>
<td>31/07/21</td>
</tr>
<tr>
<td>Belderbos-Candiff, J.S.A.</td>
<td>Ned Vor v Radioth en Docolgie NVRO</td>
<td>Ontwikkeling en implementatie van PRO-CTCAE-subsets voor longkankerpatiënten</td>
<td>01/09/19</td>
<td>31/08/20</td>
</tr>
<tr>
<td>Bergman, A.M.</td>
<td>AVL Foundation</td>
<td>CRISPR screen to identify genes critical for prostate cancer cells faith in a context with macrophages and cancer associated fibroblasts</td>
<td>01/01/19</td>
<td>31/12/24</td>
</tr>
<tr>
<td>Bergman, A.M.</td>
<td>Stichting DUODS</td>
<td>Zijn er in prostaatkanker metastasen van eerder op de prostaat bestraalde patietermutaties te vinden passend bij ioniserende bestraling?</td>
<td>01/08/19</td>
<td>31/05/21</td>
</tr>
<tr>
<td>Bernards, R.</td>
<td>Astex UK</td>
<td>ERK1 inhibition in KRAS mutant solid tumors and in BRAF mutant melanoma</td>
<td>01/09/14</td>
<td>30/06/19</td>
</tr>
<tr>
<td>Bernards, R.</td>
<td>Astex UK</td>
<td>SHP2 inhibition in KRAS mutant solid tumors</td>
<td>01/03/16</td>
<td>22/12/19</td>
</tr>
<tr>
<td>Bernards, R.</td>
<td>CGC</td>
<td>PD-1 clinical trial voor melanoma patiënten</td>
<td>01/12/15</td>
<td>31/12/21</td>
</tr>
<tr>
<td>Bernards, R.</td>
<td>EEG-CEC / EU</td>
<td>Senescence therapy for cancer</td>
<td>01/10/18</td>
<td>30/09/23</td>
</tr>
<tr>
<td>Bernards, R.</td>
<td>EEG-CEC / EU</td>
<td>Molecularly guided trials with specific treatment strategies in patients with advanced newly molecular defined subtypes of colorectal cancer (MoTriColor)</td>
<td>01/10/15</td>
<td>30/09/19</td>
</tr>
<tr>
<td>Bernards, R.</td>
<td>Eli Lilly Cork Limited</td>
<td>CDK4/6 mesylate salt synthetic lethal interactions in KRAS mutant colorectal cancer.</td>
<td>12/01/16</td>
<td>31/03/20</td>
</tr>
<tr>
<td>Bernards, R.</td>
<td>NWO</td>
<td>Zwaartekracht programma 2012</td>
<td>01/01/13</td>
<td>31/12/21</td>
</tr>
<tr>
<td>Bernards, R.</td>
<td>NWO</td>
<td>NWO Diamond Graduate Program J. Kahn</td>
<td>01/09/15</td>
<td>31/08/19</td>
</tr>
<tr>
<td>Bernards, R.</td>
<td>Stand up to cancer (SU2C)</td>
<td>SU2C - Targeting SHP2 in pancreatic cancer</td>
<td>01/11/18</td>
<td>31/12/19</td>
</tr>
<tr>
<td>Bernards, R.</td>
<td>Stichting Oncode Institute</td>
<td>Oncode Bernards</td>
<td>01/09/17</td>
<td>31/08/22</td>
</tr>
<tr>
<td>Bernards, R.</td>
<td>University of California (UCLA)</td>
<td>Interrogation of Resistance Mechanisms to Checkpoint Inhibitors Using Functional Genomics</td>
<td>01/11/17</td>
<td>31/10/19</td>
</tr>
<tr>
<td>Berns, A.J.M.</td>
<td>EEG-CEC / EU</td>
<td>Combination therapies for personalized cancer medicine</td>
<td>01/05/13</td>
<td>30/04/19</td>
</tr>
<tr>
<td>Berns, A.J.M.</td>
<td>Stichting Oncode Institute</td>
<td>Oncode Berns</td>
<td>01/09/17</td>
<td>31/05/19</td>
</tr>
<tr>
<td>Blank-de Hoop, C.U.</td>
<td>AVL Foundation</td>
<td>Impulsplan Immunotherapie</td>
<td>01/04/18</td>
<td>31/03/22</td>
</tr>
<tr>
<td>Blank-de Hoop, C.U.</td>
<td>Bristol Myers Squibb Company</td>
<td>3D analyses of melanoma treated with Ipilimumab + Nivolumab neoadjuvant</td>
<td>01/01/19</td>
<td>30/06/20</td>
</tr>
<tr>
<td>Blank-de Hoop, C.U.</td>
<td>Bristol Myers Squibb Company</td>
<td>Improve the understanding of systemic melanoma-mediated immune suppression by deep serum profiling</td>
<td>01/06/17</td>
<td>31/05/19</td>
</tr>
<tr>
<td>Blank-de Hoop, C.U.</td>
<td>Bristol Myers Squibb France</td>
<td>A prospective multicenter cohort study of late physical, psychological and social effects in patients treated with IOD for advanced melanoma.</td>
<td>01/07/16</td>
<td>31/12/19</td>
</tr>
<tr>
<td>Principal investigator</td>
<td>Granting agency</td>
<td>Title</td>
<td>Started</td>
<td>Ended</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------</td>
<td>-------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>Blank-de Hoop, C.U.</td>
<td>Bristol Myers Squibb USA</td>
<td>Systematic analysis of Cutaneous and Uveal Melanoma</td>
<td>01/06/17</td>
<td>31/12/19</td>
</tr>
<tr>
<td>Blank-de Hoop, C.U.</td>
<td>Bristol Myers Squibb USA</td>
<td>Impact of NSAIDs on the response to checkpoint therapy.</td>
<td>02/08/17</td>
<td>02/08/19</td>
</tr>
<tr>
<td>Bleiker, E.M.A.</td>
<td>EDRTIC</td>
<td>EDRTIC kwaliteit van levensdata.</td>
<td>01/12/15</td>
<td>31/12/20</td>
</tr>
<tr>
<td>Bleiker, E.M.A.</td>
<td>Stichting Reparun</td>
<td>Het optimaliseren en implementeren van de online borstreconstructie keuzehulp voor vrouwen met borstkanker.</td>
<td>01/07/19</td>
<td>30/06/20</td>
</tr>
<tr>
<td>Bleiker, E.M.A.</td>
<td>Zorginstituut Nederland</td>
<td>Mannen met Borstkanker</td>
<td>15/02/18</td>
<td>30/11/19</td>
</tr>
<tr>
<td>Borst, G.R.</td>
<td>AACR</td>
<td>Uncovering and exploiting interphase effects of tumor treating fields</td>
<td>01/07/19</td>
<td>30/06/20</td>
</tr>
<tr>
<td>Borst, J.G.</td>
<td>Aduro Biotech, Europe B.V.</td>
<td>Identification and validation of novel T-cell modulators in Immune Oncology</td>
<td>01/07/17</td>
<td>30/06/19</td>
</tr>
<tr>
<td>Borst, J.G.</td>
<td>AIL Foundation</td>
<td>Dendritic Cell project</td>
<td>01/01/18</td>
<td>31/12/22</td>
</tr>
<tr>
<td>Borst, J.G.</td>
<td>Elekta Ltd</td>
<td>Radio-immunotherapy in cancer treatment</td>
<td>01/06/16</td>
<td>24/01/19</td>
</tr>
<tr>
<td>Borst, J.G.</td>
<td>Fonds Wetenschappelijk Onderzoek</td>
<td>Refining cancer cell death and danger signals for the improvement of immunotherapy</td>
<td>01/01/18</td>
<td>31/12/21</td>
</tr>
<tr>
<td>Borst, J.G.</td>
<td>LUMC</td>
<td>Mutation-bearing (G)MOPD Cells: Drivers of LCH Pathology?</td>
<td>01/05/19</td>
<td>28/02/19</td>
</tr>
<tr>
<td>Borst, J.G.</td>
<td>NWO</td>
<td>Mechanisms of action of the Ubiquitin-like modifier ISG15 in immune regulation</td>
<td>01/01/15</td>
<td>31/08/19</td>
</tr>
<tr>
<td>Borst, J.G.</td>
<td>ZonMw</td>
<td>Discriminating signaling nodes in conventional and regulatory T cells to guide clinical targeting of costimulatory receptors in cancer, autoimmunity and transplant rejection.</td>
<td>01/04/14</td>
<td>31/07/19</td>
</tr>
<tr>
<td>Brummelkamp, T.R.</td>
<td>CIHR-IRSC / Canadian Institutes of Health Research</td>
<td>Exploiting proline vulnerability for cancer therapy</td>
<td>01/05/19</td>
<td>30/04/21</td>
</tr>
<tr>
<td>Brummelkamp, T.R.</td>
<td>EEG-CEC / EU</td>
<td>A global alliance for Zika virus control and prevention</td>
<td>01/10/16</td>
<td>30/09/20</td>
</tr>
<tr>
<td>Brummelkamp, T.R.</td>
<td>EMBO</td>
<td>Two-year EMBO Long-Term Fellowship Dr. Abdelghani Mazouzi</td>
<td>01/07/18</td>
<td>30/06/20</td>
</tr>
<tr>
<td>Brummelkamp, T.R.</td>
<td>Health-Holland</td>
<td>Exploiting proline vulnerability for cancer therapy</td>
<td>01/09/19</td>
<td>31/08/23</td>
</tr>
<tr>
<td>Brummelkamp, T.R.</td>
<td>NWO</td>
<td>Zwaartekracht programma 2012</td>
<td>01/01/13</td>
<td>31/12/21</td>
</tr>
<tr>
<td>Brummelkamp, T.R.</td>
<td>NWO</td>
<td>Human Genes and Intracellular Phenotypes.</td>
<td>01/03/17</td>
<td>28/02/22</td>
</tr>
<tr>
<td>Brummelkamp, T.R.</td>
<td>Stichting Ammodo</td>
<td>Ammodo Award 2015 voor Biomedical Sciences</td>
<td>04/03/16</td>
<td>04/03/19</td>
</tr>
<tr>
<td>Brummelkamp, T.R.</td>
<td>Stichting Oncode Institute</td>
<td>Oncode Brummelkamp</td>
<td>01/09/17</td>
<td>31/08/22</td>
</tr>
<tr>
<td>Brummelkamp, T.R.</td>
<td>University of Copenhagen</td>
<td>Benchfee Peter Haahr</td>
<td>01/07/19</td>
<td>30/06/22</td>
</tr>
<tr>
<td>Principal investigator</td>
<td>Granting agency</td>
<td>Title</td>
<td>Started</td>
<td>Ended</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------</td>
<td>-------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>Chalabi, M.</td>
<td>Bristol-Myers Squibb International Belgie</td>
<td>Towards deciphering immune escape mechanisms of early colon cancers and developing rationales for future treatment strategies.</td>
<td>01/10/17</td>
<td>30/09/20</td>
</tr>
<tr>
<td>de Langen, A.J.</td>
<td>Merus N.V.</td>
<td>Collaboration for identification of NRG1-fusion cases in Lung Cancer.</td>
<td>01/03/19</td>
<td>31/12/20</td>
</tr>
<tr>
<td>de Visser, K.E.</td>
<td>EEG-CEC / EU</td>
<td>Mechanistic insights into the impact of tumor-associated neutrophils on metastatic breast cancer</td>
<td>01/03/14</td>
<td>28/02/20</td>
</tr>
<tr>
<td>de Visser, K.E.</td>
<td>F. Hoffmann-LaRoche Ltd</td>
<td>Rational identification and in vivo validation of effective immunotherapy opportunities for metastatic breast cancer</td>
<td>12/04/19</td>
<td>12/10/22</td>
</tr>
<tr>
<td>de Visser, K.E.</td>
<td>Fonds National Suisse De La Recherche Scientifique</td>
<td>Fellowship Spagnuolo</td>
<td>01/02/19</td>
<td>31/07/20</td>
</tr>
<tr>
<td>de Visser, K.E.</td>
<td>NWO</td>
<td>To study the anti-cancer efficacy of a triple combination treatment consisting of the Roche murinized antibody against CSF-1 receptor, cisplatin, and another modulator in a spontaneous mammary tumor mouse model.</td>
<td>01/10/16</td>
<td>30/09/20</td>
</tr>
<tr>
<td>de Visser, K.E.</td>
<td>NWO</td>
<td>Dncode - Deciphering the Cancer-Immune Landscape; towards personalized immune intervention strategies</td>
<td>01/09/17</td>
<td>31/08/22</td>
</tr>
<tr>
<td>de Visser, K.E.</td>
<td>ZonMw</td>
<td>Dissecting cancer cell-intrinsic mechanisms dictating the immune landscape of breast cancer; towards personalized immune intervention strategies</td>
<td>01/09/19</td>
<td>31/08/24</td>
</tr>
<tr>
<td>de Wit, E.</td>
<td>EEG-CEC / EU</td>
<td>From haplotype to phenotype: a systems integration of allelic variation, chromatin state and 3D genome data</td>
<td>01/09/15</td>
<td>31/08/20</td>
</tr>
<tr>
<td>de Wit, E.</td>
<td>NWO</td>
<td>The role of transcription factors in 3D genome organization.</td>
<td>01/10/16</td>
<td>30/09/21</td>
</tr>
<tr>
<td>de Wit, E.</td>
<td>NWO</td>
<td>Impact of sequential driver mutations on epigenetic regulation during intestinal carcinogenesis.</td>
<td>01/09/17</td>
<td>31/08/20</td>
</tr>
<tr>
<td>de Wit, E.</td>
<td>Stichting Oncode Institute</td>
<td>Dncode de Wit</td>
<td>01/09/17</td>
<td>31/08/22</td>
</tr>
<tr>
<td>Faller, W.J.</td>
<td>EMBO</td>
<td>Two-year EMBO Long-Term Fellowship Dr. Joana Da Silva</td>
<td>01/07/18</td>
<td>30/06/20</td>
</tr>
<tr>
<td>Faller, W.J.</td>
<td>NWO</td>
<td>Zwaartekracht programma 2012</td>
<td>01/01/17</td>
<td>31/12/21</td>
</tr>
<tr>
<td>Fast, M.F.</td>
<td>NWO Applied and Engineering Sciences</td>
<td>Breathe easy: adapting lung radiotherapy in a heartbeat</td>
<td>01/09/19</td>
<td>31/08/24</td>
</tr>
<tr>
<td>Haanen, J.B.A.G.</td>
<td>AVL Foundation</td>
<td>ACT with TCR gene modified T-cells</td>
<td>01/01/19</td>
<td>31/12/21</td>
</tr>
<tr>
<td>Haanen, J.B.A.G.</td>
<td>Bristol Myers Squibb Company</td>
<td>Analysis of PD-1 TILs as biomarker for response to anti-PD-1 therapy in non-small cell lung cancer</td>
<td>01/09/18</td>
<td>01/09/19</td>
</tr>
<tr>
<td>Haanen, J.B.A.G.</td>
<td>Bristol Myers Squibb Company</td>
<td>RESpOnses to novel Immunotherapies in ex vivo Cultured tumor frAgments (REPLICATE)</td>
<td>14/02/18</td>
<td>14/02/20</td>
</tr>
<tr>
<td>Haanen, J.B.A.G.</td>
<td>Merck (MSD)</td>
<td>Dissection of the role of pembrolizumab (MK-3475) on the circulating tumor-specific T cell pool specific for shared tumor-associated antigens</td>
<td>01/11/14</td>
<td>31/08/19</td>
</tr>
<tr>
<td>Principal investigator</td>
<td>Granting agency</td>
<td>Title</td>
<td>Started</td>
<td>Ended</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------</td>
<td>-------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>Haanen, J.B.A.G.</td>
<td>Neon Therapeutics</td>
<td>T Cell Program, Stimulation of neo-antigen specific T cell responses from patient PBMC. N16NEON</td>
<td>01/02/16</td>
<td>31/12/19</td>
</tr>
<tr>
<td>Haanen, J.B.A.G.</td>
<td>ZonMw</td>
<td>Individualized T cell receptor (TCR) gene therapy, from bench to men</td>
<td>01/09/19</td>
<td>31/08/25</td>
</tr>
<tr>
<td>Haanen, J.B.A.G.</td>
<td>ZonMw</td>
<td>Randomized controlled trial comparing TIL treatment to ipilimumab for the treatment of advanced stage melanoma. M14TIL</td>
<td>01/07/15</td>
<td>30/06/22</td>
</tr>
<tr>
<td>Haanen, J.B.A.G.</td>
<td></td>
<td>Precision Cell Therapy: the next wave in personalized cancer treatment</td>
<td>01/12/19</td>
<td>30/11/20</td>
</tr>
<tr>
<td>Hauptmann, M.</td>
<td>AVL Foundation</td>
<td>Startgeld Hauptmann</td>
<td>17/07/17</td>
<td>01/08/20</td>
</tr>
<tr>
<td>Hauptmann, M.</td>
<td>EEG-CEC / EU</td>
<td>Implications of Medical Low Dose Radiation Exposure</td>
<td>01/06/17</td>
<td>28/02/22</td>
</tr>
<tr>
<td>Hofland, L.</td>
<td>AVL Foundation</td>
<td>AVL Foundation hoofdhuiskoeling</td>
<td>01/11/18</td>
<td>30/06/20</td>
</tr>
<tr>
<td>Horenblas, S.</td>
<td>AVL Foundation</td>
<td>Testis onderzoek</td>
<td>01/01/19</td>
<td>31/12/20</td>
</tr>
<tr>
<td>Horenblas, S.</td>
<td>AVL Foundation</td>
<td>Immunological aspects of the microenvironment of primary tumours, tumour-positive and tumour-negative lymph nodes in HPV+ and HPV- penile cancer patients (CPMB-522)</td>
<td>01/01/17</td>
<td>31/12/20</td>
</tr>
<tr>
<td>Horlings, H.M.</td>
<td>AVL Foundation</td>
<td>Start-up package Horlings</td>
<td>01/09/19</td>
<td>31/08/24</td>
</tr>
<tr>
<td>Huijbers, J.J.G.</td>
<td>EEG-CEC / EU</td>
<td>Towards enduring mouse resources and services advancing research into human health and disease</td>
<td>01/01/17</td>
<td>31/12/20</td>
</tr>
<tr>
<td>Huitema, A.D.R.</td>
<td>Merus B.V.</td>
<td>Support of (pre)-clinical development program of the Merus HER2/HER3 bispecific monoclonal antibody (MCLA-128) with PK/PD modeling and simulation</td>
<td>18/04/14</td>
<td>31/08/19</td>
</tr>
<tr>
<td>Huitema, A.D.R.</td>
<td>Merus B.V.</td>
<td>Support of clinical development program of the Merus bispecific monoclonal antibody MCLA-117 with PK/PD modeling and simulation</td>
<td>01/09/16</td>
<td>01/01/19</td>
</tr>
<tr>
<td>Huitema, A.D.R.</td>
<td>Radboudumc</td>
<td>Individualized PeMetRexed dOsing in lung cancER and mesothelioma patients to improve treatment response and allow treatment of patients with impaired renal function</td>
<td>01/12/17</td>
<td>30/11/21</td>
</tr>
<tr>
<td>Husson, O.</td>
<td>EDRTC</td>
<td>Incorporating the patient voice in sarcoma research. How can we assess health-related quality of life in this heterogeneous group of patients?</td>
<td>01/01/19</td>
<td>31/12/20</td>
</tr>
<tr>
<td>Husson, O.</td>
<td>NWO</td>
<td>Facing the unthinkable in the prime of life: Prevalence, risk factors and mechanisms of impaired medical and psychological health outcomes among adolescents and young adults with cancer</td>
<td>01/12/19</td>
<td>30/11/24</td>
</tr>
<tr>
<td>Husson, O.</td>
<td>Sarcoma Patients EuroNet e.V./ Assoc.</td>
<td>SPAEN sarcomonderzoek</td>
<td>01/05/19</td>
<td>30/04/21</td>
</tr>
<tr>
<td>Husson, O.</td>
<td>Stichting Vrienden Integratie Oncologische Zorg</td>
<td>Onderzoek naar het effect van de Match app, een online interventie om het menselijk contact en begrip tussen jongvolwassenen met kanker en hun omgeving te verbeteren</td>
<td>01/10/18</td>
<td>30/09/20</td>
</tr>
<tr>
<td>Jacobs, H.B.</td>
<td>ZonMw</td>
<td>The role of stable immunoglobulin transcripts in establishing atelic exclusion</td>
<td>01/04/14</td>
<td>31/03/19</td>
</tr>
<tr>
<td>Jacobs, J.J.L.</td>
<td>EEG-CEC / EU</td>
<td>Joint Training and Research Program on Chromatin Dynamics and the DNA Damage Response - address</td>
<td>01/03/19</td>
<td>28/02/23</td>
</tr>
<tr>
<td>Jacobs, J.J.L.</td>
<td>EMBD</td>
<td>EMBD Small Grant for funding of research materials</td>
<td>01/01/17</td>
<td>31/12/20</td>
</tr>
<tr>
<td>Jacobs, J.J.L.</td>
<td>NWO-ALW</td>
<td>EMBD Young Investigators</td>
<td>01/01/13</td>
<td>31/12/20</td>
</tr>
<tr>
<td>Principal investigator</td>
<td>Granting agency</td>
<td>Title</td>
<td>Started</td>
<td>Ended / Ends</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------</td>
<td>-------</td>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>Jalink, C.</td>
<td>EEG-CEC / EU</td>
<td>Microscopy of living cancer cells at physiological oxygen levels: the MICRDX platform</td>
<td>15/09/19</td>
<td>14/09/22</td>
</tr>
<tr>
<td>Jalink, C.</td>
<td>STW</td>
<td>New Film Camera for molecular microscopy</td>
<td>01/09/16</td>
<td>15/06/20</td>
</tr>
<tr>
<td>Jonkers, J.M.M.</td>
<td>EEG-CEC / EU</td>
<td>Combination Therapies for personalized medicine</td>
<td>01/05/13</td>
<td>30/04/19</td>
</tr>
<tr>
<td>Jonkers, J.M.M.</td>
<td>EEG-CEC / EU</td>
<td>Generation of the CanPath prototype - a platform for predictive cancer pathway modeling</td>
<td>01/03/16</td>
<td>28/02/21</td>
</tr>
<tr>
<td>Jonkers, J.M.M.</td>
<td>EEG-CEC / EU</td>
<td>Targeting SYNthetic lethal interactions for new cancer treatments</td>
<td>01/09/16</td>
<td>31/08/20</td>
</tr>
<tr>
<td>Jonkers, J.M.M.</td>
<td>NWO</td>
<td>Zwaartekracht programma 2012</td>
<td>01/01/13</td>
<td>31/12/21</td>
</tr>
<tr>
<td>Jonkers, J.M.M.</td>
<td>NWO</td>
<td>Finding novel Achilles 'heels to prevent and target BRCA1-associated breast cancer.</td>
<td>01/02/14</td>
<td>31/01/21</td>
</tr>
<tr>
<td>Jonkers, J.M.M.</td>
<td>Stand up to cancer (SU2C)</td>
<td>2018 Stand up to cancer Laura Ziskin Price Award, A high-risk, high-rewarded breast cancer research project.</td>
<td>01/02/18</td>
<td>31/01/19</td>
</tr>
<tr>
<td>Jonkers, J.M.M.</td>
<td>Stichting Decode Institute</td>
<td>Decode Jonkers</td>
<td>01/09/17</td>
<td>31/08/22</td>
</tr>
<tr>
<td>Jonkers, J.M.M.</td>
<td>University of Copenhagen</td>
<td>Unraveling the genetic background of familial breast cancer</td>
<td>01/01/18</td>
<td>31/12/22</td>
</tr>
<tr>
<td>Jonkers, J.M.M.</td>
<td>ZonMw</td>
<td>Deciphering the contribution of cancer-associated fibroblasts to invasive lobular carcinoma development, progression and tumor microenvironment</td>
<td>01/01/19</td>
<td>31/12/21</td>
</tr>
<tr>
<td>Karakullukcu, M.B.</td>
<td>AVL Foundation</td>
<td>3D Lab</td>
<td>01/04/17</td>
<td>31/12/21</td>
</tr>
<tr>
<td>Karakullukcu, M.B.</td>
<td>Health-Holland</td>
<td>PPS-toeslag</td>
<td>11/03/19</td>
<td>31/03/21</td>
</tr>
<tr>
<td>Kok, M.</td>
<td>AVL Foundation</td>
<td>Materiag budget TONIC-Trial</td>
<td>01/09/15</td>
<td>31/03/20</td>
</tr>
<tr>
<td>Kok, M.</td>
<td>AVL Foundation</td>
<td>How breast cancer cells escape from the immune system</td>
<td>01/04/19</td>
<td>30/06/20</td>
</tr>
<tr>
<td>Kok, M.</td>
<td>AVL Foundation</td>
<td>Hoe omzeilt borstkanker het immuunsysteem?</td>
<td>01/01/19</td>
<td>31/12/20</td>
</tr>
<tr>
<td>Kok, M.</td>
<td>AVL Foundation</td>
<td>Start-up package Marleen Kok</td>
<td>01/12/18</td>
<td>30/11/28</td>
</tr>
<tr>
<td>Kok, M.</td>
<td>Breast Cancer Research Foundation</td>
<td>Exploiting the Foreign Antigenic Space in Breast Cancer</td>
<td>01/10/17</td>
<td>31/10/19</td>
</tr>
<tr>
<td>Kok, M.</td>
<td>Pink Ribbon</td>
<td>Discovery of biomarkers to select metastatic breast cancer patients for immunotherapy using anti-PD1</td>
<td>01/09/16</td>
<td>30/06/20</td>
</tr>
<tr>
<td>Kok, N.F.M.</td>
<td>AVL Foundation</td>
<td>PUMP-IT Trial (M19PIT)</td>
<td>01/11/19</td>
<td>31/12/24</td>
</tr>
<tr>
<td>Kvistborg, P.</td>
<td>Bristol Myers Squibb Company</td>
<td>Quantitative and qualitative changes in tumor-specific T cells upon anti-PD-1 therapy</td>
<td>01/02/16</td>
<td>18/06/19</td>
</tr>
<tr>
<td>Kvistborg, P.</td>
<td>Merck Sharp & Dohme Corp.</td>
<td>To compare the tumor reactivity and antigenic determinants of CD8+ TCR clones in tumor tissue from KN161 participants who respond to pembrolizumab compared to KN161 participants who do not respond to pembrolizumab</td>
<td>02/11/18</td>
<td>01/11/23</td>
</tr>
<tr>
<td>Kvistborg, P.</td>
<td>Merck Sharp & Dohme Corp.</td>
<td>Feasibility study of neo-adjuvant treatment with carboplatin, paclitaxel and pembrolizumab in stage IV epithelial ovarian cancer</td>
<td>01/10/16</td>
<td>30/09/20</td>
</tr>
<tr>
<td>Principal investigator</td>
<td>Granting agency</td>
<td>Title</td>
<td>Started</td>
<td>Ended / Ends</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------</td>
<td>--</td>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Lenstra, T.L.</td>
<td>EEG-CEC / EU</td>
<td>Single-molecule visualization of transcription dynamics to understand regulatory mechanisms of transcriptional bursting and its effects on cellular fitness.</td>
<td>01/01/18</td>
<td>31/12/22</td>
</tr>
<tr>
<td>Lenstra, T.L.</td>
<td>NWO</td>
<td>Zwaartekracht programma 2012</td>
<td>01/01/17</td>
<td>31/12/21</td>
</tr>
<tr>
<td>Lenstra, T.L.</td>
<td>NWO Exacte en Natuurwetenschappen</td>
<td>Unravelling how DNA organization is linked to transcriptional dynamics</td>
<td>01/09/18</td>
<td>31/12/21</td>
</tr>
<tr>
<td>Lenstra, T.L.</td>
<td>Stichting Oncode Institute</td>
<td>Dencode Lenstra</td>
<td>01/01/19</td>
<td>31/12/23</td>
</tr>
<tr>
<td>Lenstra, T.L.</td>
<td>Stichting Oncode Institute</td>
<td>3D orbital tracking microscope</td>
<td>01/08/19</td>
<td>31/07/20</td>
</tr>
<tr>
<td>Linn, S.C.</td>
<td>A Sister’s Hope</td>
<td>Toward personalized medicine by using the nationwide population-based breast cancer registry (1989-2009) couple with biobanking: NBCP</td>
<td>01/06/12</td>
<td>31/08/19</td>
</tr>
<tr>
<td>Linn, S.C.</td>
<td>A Sister’s Hope</td>
<td>PI3K pathway activation in primary and metastatic estrogen receptor alpha (ERα) positive breast cancer and the association with drug response</td>
<td>01/12/12</td>
<td>31/08/21</td>
</tr>
<tr>
<td>Linn, S.C.</td>
<td>A Sister’s Hope</td>
<td>Mutational analysis and BRCA1-like classification in WSG-ADAPT TN-Trial</td>
<td>01/11/17</td>
<td>31/12/20</td>
</tr>
<tr>
<td>Linn, S.C.</td>
<td>Agenda N.V.</td>
<td>Validation of ultralow threshold MammaPrint in the IKA trial</td>
<td>01/03/19</td>
<td>29/02/20</td>
</tr>
<tr>
<td>Linn, S.C.</td>
<td>AVL Foundation</td>
<td>Breast cancer research aimed at saving lives</td>
<td>01/11/17</td>
<td>01/11/21</td>
</tr>
<tr>
<td>Linn, S.C.</td>
<td>AVL Foundation</td>
<td>ADAPT BRCA-like project Zaan aan de Wandel</td>
<td>01/01/17</td>
<td>31/12/20</td>
</tr>
<tr>
<td>Linn, S.C.</td>
<td>AVL Foundation</td>
<td>STARZ Foundation</td>
<td>01/01/14</td>
<td>31/12/20</td>
</tr>
<tr>
<td>Linn, S.C.</td>
<td>AVL Foundation</td>
<td>Zaan Peeper-Linn ‘Learning from unexpected cures’</td>
<td>01/04/14</td>
<td>31/08/21</td>
</tr>
<tr>
<td>Linn, S.C.</td>
<td>AVL Foundation</td>
<td>Materiaal budget TONIC-Trial</td>
<td>01/05/15</td>
<td>31/12/20</td>
</tr>
<tr>
<td>Linn, S.C.</td>
<td>Daiichi Sankyo Oncology Europe GmbH</td>
<td>ENDEAVOUR-Breast</td>
<td>01/06/18</td>
<td>31/05/21</td>
</tr>
<tr>
<td>Linn, S.C.</td>
<td>ZonMw</td>
<td>Substantiële verbetering van de overleving van stadium III, BRCA1-like borstkanker patienten met doelgerichte behandeling. SUBIT0</td>
<td>01/01/17</td>
<td>31/12/22</td>
</tr>
<tr>
<td>Marijnen, C.A.M.</td>
<td>AVL Foundation</td>
<td>Prospective study evaluating ctDNA as a biomarker for treatment response in head and neck squamous cell carcinoma</td>
<td>01/05/19</td>
<td>30/04/22</td>
</tr>
<tr>
<td>Marijnen, C.A.M.</td>
<td>AVL Foundation</td>
<td>Image Guided Therapy onderzoek met de Gamma Knife</td>
<td>01/01/17</td>
<td>31/12/20</td>
</tr>
<tr>
<td>Marijnen, C.A.M.</td>
<td>Ned Ver v Radioth en Oölologie NVRD</td>
<td>De ontwikkeling van een PRO-bijwerkingensubset voor prostaatkankerpatienten</td>
<td>01/05/19</td>
<td>31/08/20</td>
</tr>
<tr>
<td>Medema, R.H.</td>
<td>NWO</td>
<td>Zwaartekracht programma</td>
<td>01/01/13</td>
<td>31/12/21</td>
</tr>
<tr>
<td>Medema, R.H.</td>
<td>Stichting Oncode Institute</td>
<td>Dencode Medema</td>
<td>01/09/17</td>
<td>31/08/22</td>
</tr>
<tr>
<td>Medema, R.H.</td>
<td>ZonMw</td>
<td>Impact of chromatin context on DNA double-strand break repair kinetics, fidelity and signaling.</td>
<td>01/07/16</td>
<td>30/06/20</td>
</tr>
<tr>
<td>Meijer, G.A.</td>
<td>AACR</td>
<td>AACR GENE Project</td>
<td>01/07/16</td>
<td>31/12/23</td>
</tr>
<tr>
<td>Meijer, G.A.</td>
<td>AVL Foundation</td>
<td>Darmkanker en biomarkers (research / translationeel deel van CAIRO 6 studie, M17CR6)</td>
<td>01/03/17</td>
<td>28/02/20</td>
</tr>
<tr>
<td>Principal investigator</td>
<td>Granting agency</td>
<td>Title</td>
<td>Started</td>
<td>Ended</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------------</td>
<td>-------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>Meijer, G.A.</td>
<td>BBMRI-NL</td>
<td>X-omics BBMRI</td>
<td>01/09/18</td>
<td>31/08/23</td>
</tr>
<tr>
<td>Meijer, G.A.</td>
<td>EEG-CEC / EU</td>
<td>Coordinated Research Infrastructures Building Enduring Life-science services</td>
<td>01/11/16</td>
<td>31/05/20</td>
</tr>
<tr>
<td>Meijer, G.A.</td>
<td>EIT Health e.V.</td>
<td>Convention for distributing funds Subvention by Philantropia</td>
<td>01/03/19</td>
<td>31/03/20</td>
</tr>
<tr>
<td>Meijer, G.A.</td>
<td>Health-Holland</td>
<td>DRCBScreen3.0</td>
<td>10/07/19</td>
<td>09/07/20</td>
</tr>
<tr>
<td>Meijer, G.A.</td>
<td>Health-Holland</td>
<td>Liquid biopsy-based molecular diagnostics to monitor therapy response in metastatic colorectal cancer: PLCRC-ORCA EXTended beyond RAS</td>
<td>01/01/17</td>
<td>31/12/20</td>
</tr>
<tr>
<td>Meijer, G.A.</td>
<td>Stichting Sacha Swarttouw-Hijmans</td>
<td>Vrij circulerend tumor DNA (ctDNA) als biomarker voor monitoring van patienten met rectumkanker</td>
<td>01/05/18</td>
<td>30/04/20</td>
</tr>
<tr>
<td>Meijer, G.A.</td>
<td>Stichting Sacha Swarttouw-Hijmans</td>
<td>Securing Blood from Colon Adenoma Patients in the CLIPPER Trial to Enable Development of Biomarkers for Early Detection of High-Risk Colon Adenomas and CRC. The SAMPLE Study.</td>
<td>01/05/18</td>
<td>30/04/20</td>
</tr>
<tr>
<td>Meijer, G.A.</td>
<td>ZonMw</td>
<td>Molecular adenoma features to predict colorectal cancer risk</td>
<td>10/06/19</td>
<td>10/12/21</td>
</tr>
<tr>
<td>Meijer, G.A.</td>
<td>ZonMw</td>
<td>WGS implementation in standard cancer Diagnostics for Each cancer patient (WIDE) N18WGS</td>
<td>15/07/19</td>
<td>14/01/22</td>
</tr>
<tr>
<td>Meijer, G.A.</td>
<td>ZonMw</td>
<td>Voorlichtingsvideo kiembaanbevindingen</td>
<td>04/11/19</td>
<td>04/03/20</td>
</tr>
<tr>
<td>Monkhorst, K.</td>
<td>AstraZeneca BV (NL)</td>
<td>Primary Molecular Profiling in NSCLC using Plasma cfDNA from the LEMA cohort</td>
<td>07/05/19</td>
<td>01/07/20</td>
</tr>
<tr>
<td>Nederlof, P.M.</td>
<td>Roche Nederland BV</td>
<td>Roche CGH Array</td>
<td>01/10/12</td>
<td>30/11/19</td>
</tr>
<tr>
<td>Neefjes, J.J.C.</td>
<td>NWO</td>
<td>Visualizing macromolecular complexes in MHC antigen presentation</td>
<td>01/10/14</td>
<td>31/12/19</td>
</tr>
<tr>
<td>Neefjes, J.J.C.</td>
<td>NWO</td>
<td>Discovery of novel cancer therapies(oncdrugs)</td>
<td>01/01/16</td>
<td>31/12/19</td>
</tr>
<tr>
<td>Nuijen, B.</td>
<td>Modra Pharmaceuticals B.V.</td>
<td>For Chemistry, Manufacturing and Control of ModraDoc006 tablets</td>
<td>28/05/18</td>
<td>31/05/19</td>
</tr>
<tr>
<td>Nuijen, B.</td>
<td>Modra Pharmaceuticals B.V.</td>
<td>To provide clinical services for Study: Multicenter safety, feasibility and pharmacokinetic phase I-II trial of ModraDoc006/r in patients with metastatic castration-resistant prostate cancer (M17D0C)</td>
<td>25/05/17</td>
<td>30/06/19</td>
</tr>
<tr>
<td>Nuijen, B.</td>
<td>Modra Pharmaceuticals B.V.</td>
<td>A multicentre phase IIa study to evaluate the efficacy and tolerability of ModraDoc006/r in patients with recurrent or metastatic HER-2 negative breast cancer, suitable for treatment with a taxane (M18D0M)</td>
<td>01/01/19</td>
<td>31/12/19</td>
</tr>
<tr>
<td>Ovaa, H.</td>
<td>NWO</td>
<td>Covalent Enzyme Capture</td>
<td>01/06/14</td>
<td>31/05/19</td>
</tr>
<tr>
<td>Ovaa, H.</td>
<td>NWO</td>
<td>Discovery of novel cancer therapies(oncdrugs)</td>
<td>01/01/16</td>
<td>31/12/19</td>
</tr>
<tr>
<td>Ovaa, H.</td>
<td>NWO Chemische Wetenschappen</td>
<td>Exploring and exploiting activity-based protein profiling in chemical biology and medicinal chemistry</td>
<td>01/03/15</td>
<td>28/02/21</td>
</tr>
<tr>
<td>Peeper, D.S.</td>
<td>AVL Foundation</td>
<td>Screening novel therapeutic targets for immune oncology</td>
<td>01/12/17</td>
<td>30/11/19</td>
</tr>
<tr>
<td>Peeper, D.S.</td>
<td>Bristol Myers Squibb USA</td>
<td>Defining and tackling immunotherapy resistance in melanoma and lung cancer</td>
<td>01/08/17</td>
<td>31/07/21</td>
</tr>
<tr>
<td>Peeper, D.S.</td>
<td>EEG-CEC / EU</td>
<td>Combination Therapies for personalized medicine</td>
<td>01/05/13</td>
<td>30/04/19</td>
</tr>
<tr>
<td>Peeper, D.S.</td>
<td>Genmab</td>
<td>Research into cell signal pathways and oncogenic divers.</td>
<td>01/05/15</td>
<td>30/09/20</td>
</tr>
<tr>
<td>Principal investigator</td>
<td>Granting agency</td>
<td>Title</td>
<td>Started</td>
<td>Ended</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------</td>
<td>---</td>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Peeper, D.S.</td>
<td>Josephine Nefkens Stichting</td>
<td>Identificatie van nieuwe immuuntherapie met Itellicyt Screener PLUS</td>
<td>01/03/18</td>
<td>28/02/22</td>
</tr>
<tr>
<td>Peeper, D.S.</td>
<td>Merck Sharp & Dohme Corp.</td>
<td>Identify tumor-intrinsic factors that induce resistance to anti PD-1 antibody treatment in vivo (Keytruda resistome) in the D10 system.</td>
<td>13/11/18</td>
<td>13/11/19</td>
</tr>
<tr>
<td>Peeper, D.S.</td>
<td>Merck Sharp & Dohme Corp.</td>
<td>Identification of chromatin modifiers genes that upon inactivation show a synthetic lethal phenotype with Switch/Sucrose NonFermentable (SW/SNF) chromatin-remodeling complex mutations in tumor cell lines.</td>
<td>08/09/15</td>
<td>08/09/19</td>
</tr>
<tr>
<td>Peeper, D.S.</td>
<td>Stichting Oncode Institute</td>
<td>Oncode Peeper</td>
<td>01/09/17</td>
<td>31/08/22</td>
</tr>
<tr>
<td>Perrakis, A.</td>
<td>EEG-CEC / EU</td>
<td>REXT_JRA</td>
<td>01/09/15</td>
<td>31/08/19</td>
</tr>
<tr>
<td>Perrakis, A.</td>
<td>Janssen Research & Development</td>
<td>Enhancement of PDB_REDO algorithms and software</td>
<td>01/01/16</td>
<td>30/04/19</td>
</tr>
<tr>
<td>Perrakis, A.</td>
<td>NWO Chemische Wetenschappen</td>
<td>Structural and chemical basis for the biosynthesis and propagation of base J.</td>
<td>01/09/14</td>
<td>31/08/19</td>
</tr>
<tr>
<td>Perrakis, A.</td>
<td>NWO Chemische Wetenschappen</td>
<td>Optimized protein knowledge through transfer of evolutionary conserved features and chemical knowledge.</td>
<td>15/11/14</td>
<td>14/11/19</td>
</tr>
<tr>
<td>Perrakis, A.</td>
<td>STFC Science & Technology Facilities Council C/O UK SBS Ltd</td>
<td>CCP4 Software Derivative Work</td>
<td>01/06/19</td>
<td>31/05/20</td>
</tr>
<tr>
<td>Perrakis, A.</td>
<td>Stichting Oncode Institute</td>
<td>Oncode Perrakis</td>
<td>01/01/19</td>
<td>31/08/22</td>
</tr>
<tr>
<td>Perrakis, A.</td>
<td>Universiteit Utrecht</td>
<td>Releasing the full potential of Instruct to expand and consolidate infrastructure services for integrated structural life science research</td>
<td>01/01/17</td>
<td>31/12/20</td>
</tr>
<tr>
<td>Rosing, H.</td>
<td>Neon Therapeutics</td>
<td>Qualification of an UPLC-MS method for the identity analysis of neo-antigen peptides drug products and the quality control of these products</td>
<td>01/03/18</td>
<td>31/12/19</td>
</tr>
<tr>
<td>Rowland, B.D.</td>
<td>EEG-CEC / EU</td>
<td>Cohesin-mediated chromosomal looping: from linear paths to 3D effects</td>
<td>01/04/18</td>
<td>31/03/23</td>
</tr>
<tr>
<td>Ruers, T.J.M.</td>
<td>AVL Foundation</td>
<td>Fluorescence Life Time Imaging</td>
<td>01/09/19</td>
<td>31/08/21</td>
</tr>
<tr>
<td>Ruers, T.J.M.</td>
<td>AVL Foundation</td>
<td>Optical guided surgery</td>
<td>01/11/14</td>
<td>31/05/20</td>
</tr>
<tr>
<td>Ruers, T.J.M.</td>
<td>AVL Foundation</td>
<td>Pixelanalyse voor (vroeg)detectie van dikkedarmkanker</td>
<td>01/01/17</td>
<td>31/12/20</td>
</tr>
<tr>
<td>Ruers, T.J.M.</td>
<td>EEG-CEC / EU</td>
<td>Photonics Manufacturing Pilot Lines for Photonic Components and Devices</td>
<td>01/01/20</td>
<td>31/12/23</td>
</tr>
<tr>
<td>Ruers, T.J.M.</td>
<td>EEG-CEC / EU</td>
<td>Advancing Smart Optical Imaging and Sensing for Health.</td>
<td>01/06/16</td>
<td>31/05/19</td>
</tr>
<tr>
<td>Ruers, T.J.M.</td>
<td>Health-Holland</td>
<td>TomTom project van Venture Challenge Fall 2016</td>
<td>01/12/16</td>
<td>30/11/20</td>
</tr>
<tr>
<td>Ruers, T.J.M.</td>
<td>Holland High Tech</td>
<td>ECSL project ASTONISH.</td>
<td>01/06/16</td>
<td>31/05/19</td>
</tr>
<tr>
<td>Ruers, T.J.M.</td>
<td>Innovation Exchange Amsterdam</td>
<td>Magnetische Marker voor Chirurgische Lokalisatie. Amsterdam Science & Innovation Award.</td>
<td>01/06/16</td>
<td>31/05/20</td>
</tr>
<tr>
<td>Ruers, T.J.M.</td>
<td>Intuitive Surgical Operations Inc.</td>
<td>Improving robotic surgery of prostate cancer by real time tissue characterization using Diffuse Reflection Spectroscopy. Development of clinical implementation of existing technology.</td>
<td>01/01/20</td>
<td>31/12/20</td>
</tr>
<tr>
<td>Principal investigator</td>
<td>Granting agency</td>
<td>Title</td>
<td>Started</td>
<td>Ended</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------------</td>
<td>-------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>Ruers, T.J.M.</td>
<td>Nijbakker-Morra Stichting</td>
<td>Fiber probe; steriliseerbare instrument voor in vivo spectroscopisch onderzoek van resectiemarges.</td>
<td>01/02/18</td>
<td>31/03/19</td>
</tr>
<tr>
<td>Ruers, T.J.M.</td>
<td>Philips</td>
<td>Research collaboration Philips</td>
<td>01/04/10</td>
<td>30/06/20</td>
</tr>
<tr>
<td>Ruers, T.J.M.</td>
<td>Stichting Life Science Health Ti</td>
<td>Hyperspectral Imaging for Improving Cancer Surgery</td>
<td>01/04/19</td>
<td>31/03/22</td>
</tr>
<tr>
<td>Ruers, T.J.M.</td>
<td>STW</td>
<td>Combining Optics and Acoustics For Real-time Guidance during Cancer Surgery</td>
<td>01/04/18</td>
<td>31/03/22</td>
</tr>
<tr>
<td>Schellens, J.H.M.</td>
<td>aCBG</td>
<td>Convenant CBG</td>
<td>01/05/17</td>
<td>30/04/22</td>
</tr>
<tr>
<td>Schellens, J.H.M.</td>
<td>NWO</td>
<td>Zwaartekracht programma 2012</td>
<td>01/01/13</td>
<td>31/12/21</td>
</tr>
<tr>
<td>Schmidt, M.K.</td>
<td>BBMRI-NL</td>
<td>Personalized medicine: servicedesk ethiek en recht</td>
<td>01/09/18</td>
<td>31/12/19</td>
</tr>
<tr>
<td>Schmidt, M.K.</td>
<td>BBMRI-NL</td>
<td>X-omics</td>
<td>01/09/18</td>
<td>31/08/23</td>
</tr>
<tr>
<td>Schmidt, M.K.</td>
<td>EEG-CEC / EU</td>
<td>Breast Cancer Stratification: understanding the determinants of risk and prognosis of molecular subtypes.</td>
<td>01/09/15</td>
<td>31/08/20</td>
</tr>
<tr>
<td>Schmidt, M.K.</td>
<td>Ministerie van VWS</td>
<td>Verkenning niet-WMO-onderzoek</td>
<td>06/05/19</td>
<td>30/11/19</td>
</tr>
<tr>
<td>Schmidt, M.K.</td>
<td>ZonMw</td>
<td>Practical help towards responsible use of residual bio specimens and data in medical research in the Netherlands</td>
<td>01/10/19</td>
<td>30/09/20</td>
</tr>
<tr>
<td>Schmidt, M.K.</td>
<td>ZonMw</td>
<td>Fostering the responsible use of residual bio specimens and data in medical</td>
<td>01/05/17</td>
<td>30/04/19</td>
</tr>
<tr>
<td>Schmidt, M.K.</td>
<td>ZonMw</td>
<td>Personalized medicine: servicedesk ethiek en recht</td>
<td>01/09/17</td>
<td>31/08/21</td>
</tr>
<tr>
<td>Schmidt, M.K.</td>
<td>Servicedesk 2</td>
<td></td>
<td>01/09/19</td>
<td>31/08/21</td>
</tr>
<tr>
<td>Schumacher, A.N.M.</td>
<td>Cancer Research Institute</td>
<td>Unraveling the biology of CMTM6: A novel regulator of PD-Li identified through genome-wide genetic screening</td>
<td>01/01/17</td>
<td>31/12/19</td>
</tr>
<tr>
<td>Schumacher, A.N.M.</td>
<td>EEG-CEC / EU</td>
<td>Sensitivity of human tumors to T cell attack</td>
<td>01/12/17</td>
<td>30/11/22</td>
</tr>
<tr>
<td>Schumacher, A.N.M.</td>
<td>Kristian Gerhard Jebsen foundation</td>
<td>Jobsen grant</td>
<td>01/06/13</td>
<td>31/12/19</td>
</tr>
<tr>
<td>Schumacher, A.N.M.</td>
<td>Merck KGaA</td>
<td>Single cell analysis of the tumor-immune ecosystem in human cancer: Dissecting the dynamics of immune-tumor cross talk following checkpoint blockade.</td>
<td>01/06/17</td>
<td>31/05/20</td>
</tr>
<tr>
<td>Schumacher, A.N.M.</td>
<td>NWO</td>
<td>Zwaartekracht programma 2012</td>
<td>01/10/14</td>
<td>30/09/19</td>
</tr>
<tr>
<td>Schumacher, A.N.M.</td>
<td>Roche Nederland BV</td>
<td>T cell responses and mapping of neo-antigen-specific T cell repertoires in follicular lymphoma patients after local anti-CD20 therapy</td>
<td>01/04/14</td>
<td>30/06/19</td>
</tr>
<tr>
<td>Schumacher, A.N.M.</td>
<td>Stichting Oncode Institute</td>
<td>Oncode Schumacher</td>
<td>01/09/17</td>
<td>31/08/22</td>
</tr>
<tr>
<td>Sixma, T.K.</td>
<td>EEG-CEC / EU</td>
<td>Regulated Assembly of Molecular Machines for DNA REPAIR: a Molecular Analysis training Network</td>
<td>01/01/17</td>
<td>31/12/20</td>
</tr>
<tr>
<td>Sixma, T.K.</td>
<td>NWO</td>
<td>Structure-function analysis of transcription-associated DNA repair</td>
<td>01/06/18</td>
<td>31/05/24</td>
</tr>
<tr>
<td>Sixma, T.K.</td>
<td>NWO</td>
<td>Zwaartekracht programma 2012</td>
<td>01/01/13</td>
<td>31/12/21</td>
</tr>
<tr>
<td>Principal investigator</td>
<td>Granting agency</td>
<td>Title</td>
<td>Started</td>
<td>Ended</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------</td>
<td>--</td>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Sixma, T.K.</td>
<td>NWO</td>
<td>Thermophoresis HPLC imager</td>
<td>01/04/13</td>
<td>31/12/21</td>
</tr>
<tr>
<td>Sixma, T.K.</td>
<td>NWO</td>
<td>The molecular mechanism of USP48, a BRCA1 antagonist during DNA damage response</td>
<td>01/09/18</td>
<td>31/08/23</td>
</tr>
<tr>
<td>Sixma, T.K.</td>
<td>NWO</td>
<td>A program to enable discovery of catalytic and/or inhibitors of the USP4/11/15 family of deubiquitinating enzymes</td>
<td>01/10/18</td>
<td>30/09/23</td>
</tr>
<tr>
<td>Sixma, T.K.</td>
<td>NWO Chemische Wetenschappen</td>
<td>A movie of DNA mismatch repair: how information is transmitted by conformational change</td>
<td>01/01/17</td>
<td>31/12/22</td>
</tr>
<tr>
<td>Sixma, T.K.</td>
<td>NWO Exacte en Natuurwetenschappen</td>
<td>The mechanism of USP1 activation</td>
<td>01/06/20</td>
<td>31/05/24</td>
</tr>
<tr>
<td>Sixma, T.K.</td>
<td>NWO-ALW</td>
<td>Cellular activation of the allosterically inhibited UCHL5/INO80G complex</td>
<td>01/12/16</td>
<td>30/11/19</td>
</tr>
<tr>
<td>Sixma, T.K.</td>
<td>Stichting Life Science Health Tui</td>
<td>Development of activity-based probes for metalloDUBs</td>
<td>01/09/19</td>
<td>31/08/21</td>
</tr>
<tr>
<td>Sixma, T.K.</td>
<td>Stichting Oncode Institute</td>
<td>Oncode Sixma</td>
<td>01/09/17</td>
<td>31/08/22</td>
</tr>
<tr>
<td>Sonke, G.S.</td>
<td>AVL Foundation</td>
<td>Long-term survival in HER2+ Breast Cancer project Zaan de Wandel</td>
<td>01/01/18</td>
<td>30/06/20</td>
</tr>
<tr>
<td>Sonke, G.S.</td>
<td>Pink Ribbon</td>
<td>Learning from long-term survivors in metastatic breast cancer</td>
<td>01/11/16</td>
<td>31/10/20</td>
</tr>
<tr>
<td>Sonke, J.J.</td>
<td>Elekta Ltd</td>
<td>Framework Research Agreement between Elekta and NKI/AvL</td>
<td>10/08/10</td>
<td>10/08/20</td>
</tr>
<tr>
<td>Sonnenberg, A.</td>
<td>DEBRA AUSTRIA</td>
<td>High-content screening for new therapies for Epidermolysis Bullosa Simplex associated with Muscular Dystrophy (EBS-MD)</td>
<td>01/04/17</td>
<td>31/03/19</td>
</tr>
<tr>
<td>Steeghs, N.</td>
<td>EEG-CEC / EU</td>
<td>Molecularly guided trials with specific treatment strategies in patients with advanced newly molecular defined subtypes of colorectal cancer (MofrColor).</td>
<td>01/10/15</td>
<td>31/05/20</td>
</tr>
<tr>
<td>Steeghs, N.</td>
<td>Glaxo Smith Kline Durham</td>
<td>Oncology Clinical and Translational consortium (OCTC)</td>
<td>22/10/13</td>
<td>22/10/20</td>
</tr>
<tr>
<td>Stokkel, M.P.M.</td>
<td>AVL Foundation</td>
<td>Tumour specific imaging of prostate cancer using PSMA-PET</td>
<td>01/07/16</td>
<td>30/06/19</td>
</tr>
<tr>
<td>Stokkel, M.P.M.</td>
<td>STW</td>
<td>A feasibility study on Cerenkov Luminescence Imaging during prostate cancer surgery using Gallium-68 PSMA</td>
<td>01/08/17</td>
<td>31/10/19</td>
</tr>
<tr>
<td>Stuiver, M.M.</td>
<td>EE-CEC / EU</td>
<td>Project on Exercise for Fatigue Eradication in Advanced Breast cancer to improve quality of life - PREFERABLE</td>
<td>01/01/19</td>
<td>31/12/23</td>
</tr>
<tr>
<td>Stuiver, M.M.</td>
<td>Nutricia Nederland B.V.</td>
<td>Voedingsstatus en het beloop van de behandeling van stadium III longkanker.</td>
<td>01/11/17</td>
<td>31/12/20</td>
</tr>
<tr>
<td>te Riele, H.P.J.</td>
<td>STW</td>
<td>Phenotypic assessment of intra- and extra-exonic variants of disease-related genes present in the human population.</td>
<td>01/01/17</td>
<td>31/12/20</td>
</tr>
<tr>
<td>Tesselaar, M.E.T.</td>
<td>Ipsen Farmaceutica BV</td>
<td>NEN database</td>
<td>15/12/19</td>
<td>14/12/20</td>
</tr>
<tr>
<td>Tesselaar, M.E.T.</td>
<td>Merck BV</td>
<td>Database of retrospectively and subsequent prospectively gathered data of all MCC patients treated in the Netherlands as platform for a national MCC database.</td>
<td>01/09/18</td>
<td>31/12/22</td>
</tr>
<tr>
<td>Thommen, D.S.</td>
<td>AVL Foundation</td>
<td>DNA gala</td>
<td>01/09/19</td>
<td>31/08/24</td>
</tr>
<tr>
<td>Principal investigator</td>
<td>Granting agency</td>
<td>Title</td>
<td>Started</td>
<td>Ended</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------</td>
<td>-------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>Thommen, D.S.</td>
<td>Bristol Myers Squibb Company</td>
<td>Simultaneous versus sequential combination of nivolumab and ipilimumab in human tumor explants</td>
<td>01/10/19</td>
<td>31/03/20</td>
</tr>
<tr>
<td>Trum, J.W.</td>
<td>ZonMw</td>
<td>GERiatric Screeing in the treatment of elderly patients with Dvarian Carcinoma (GERSCDC)</td>
<td>15/08/17</td>
<td>15/08/21</td>
</tr>
<tr>
<td>van Akkooi, A.C.J.</td>
<td>Amgen B.V.</td>
<td>the infra structure registry: prospective melanoma stadium III registry</td>
<td>01/07/17</td>
<td>30/06/20</td>
</tr>
<tr>
<td>van Akkooi, A.C.J.</td>
<td>EORTC</td>
<td>Transitional study moving towards logical and personal combination therapies in the treatment of melanoma in-transit metastases and improving understanding of underlying biology.</td>
<td>01/05/18</td>
<td>31/12/20</td>
</tr>
<tr>
<td>van Beurden, M.</td>
<td>AVL Foundation</td>
<td>Onderzoek naar vrouwen met LS die kanker ontwikkelen</td>
<td>01/05/18</td>
<td>30/04/20</td>
</tr>
<tr>
<td>van de Poll, L.V.</td>
<td>EEG-CEC / EU</td>
<td>Cancer Patients Better Life Experience (CAPABLE)</td>
<td>01/01/20</td>
<td>31/12/23</td>
</tr>
<tr>
<td>van de Poll, L.V.</td>
<td>EORTC</td>
<td>Phase II and III development of an EORTC QOL cancer survivorship questionnaire</td>
<td>01/02/17</td>
<td>31/07/19</td>
</tr>
<tr>
<td>van de Poll, L.V.</td>
<td>Stichting Roparun</td>
<td>Project CALM Roparun</td>
<td>01/10/18</td>
<td>30/09/20</td>
</tr>
<tr>
<td>van de Ven, H.W.M.</td>
<td>EEG-CEC / EU</td>
<td>EuroPDX Distributed Infrastructure for Research on patient-derived cancer Xenografts</td>
<td>01/02/18</td>
<td>31/01/22</td>
</tr>
<tr>
<td>van den Berg, J.K.</td>
<td>Bristol Myers Squibb Company</td>
<td>Urelumab to improve tumor reactivity of Tumor Infiltrating Lymphocytes (TIL) derived from ovarian cancer and NSCLC using urelumab</td>
<td>31/07/17</td>
<td>31/01/19</td>
</tr>
<tr>
<td>van den Berg, J.K.</td>
<td>MedImmune</td>
<td>Immunomagnetic selection of PD1 + Peripheral Blood Mononuclear Cells.</td>
<td>10/07/17</td>
<td>10/07/20</td>
</tr>
<tr>
<td>van den Berg, J.K.</td>
<td>Neon Therapeutics</td>
<td>NEON manufacturing agreement</td>
<td>28/08/19</td>
<td>27/08/22</td>
</tr>
<tr>
<td>van den Brekel, M.W.M.</td>
<td>ATOS</td>
<td>ATOS research and new product development NKI-AVL</td>
<td>01/01/14</td>
<td>30/06/20</td>
</tr>
<tr>
<td>van den Brekel, M.W.M.</td>
<td>AVL Foundation</td>
<td>Hoofd-Hals Targeted therapy</td>
<td>01/01/15</td>
<td>31/12/20</td>
</tr>
<tr>
<td>van den Brekel, M.W.M.</td>
<td>EEG-CEC / EU</td>
<td>Training Network on Automatic Processing of Pathological Speech</td>
<td>01/11/17</td>
<td>31/10/21</td>
</tr>
<tr>
<td>van den Brekel, M.W.M.</td>
<td>Patienten-vereniging Hoofd-Hals</td>
<td>De ontwikkeling van een keuzehulp voor patienten met een orofarynxcarcinoom waarvoor een chirurgisch curatieve behandeling mogelijk is.</td>
<td>01/07/18</td>
<td>31/01/20</td>
</tr>
<tr>
<td>van den Broek, D.</td>
<td>Roche Nederland BV</td>
<td>Roche AVENG first evaluation and validation NKI-AVL</td>
<td>01/09/18</td>
<td>01/09/19</td>
</tr>
<tr>
<td>van den Broek, D.</td>
<td>ZonMw</td>
<td>ctDNA on the way to implementation in the Netherlands(COIN)</td>
<td>27/03/19</td>
<td>26/03/23</td>
</tr>
<tr>
<td>van den Heuvel, M.M.</td>
<td>Bristol Myers Squibb USA</td>
<td>Introducing an easily accessible biomarker based on an active immune expression array can optimize personalized immunotherapy.</td>
<td>01/11/16</td>
<td>31/12/20</td>
</tr>
<tr>
<td>van der Heide, U.A.</td>
<td>Health-Holland</td>
<td>Magnetic en Momentum</td>
<td>01/06/18</td>
<td>28/02/23</td>
</tr>
<tr>
<td>van der Heide, U.A.</td>
<td>Philips Finland</td>
<td>Feasibility of MR-only in Radiation Oncology.</td>
<td>13/12/17</td>
<td>30/04/22</td>
</tr>
<tr>
<td>van der Heide, U.A.</td>
<td>Rijksdienst voor Ondernemend Nederland</td>
<td>ARTWORK</td>
<td>01/11/19</td>
<td>30/11/21</td>
</tr>
<tr>
<td>van der Heide, U.A.</td>
<td>ZonMw</td>
<td>Quandivision project - perfect cut</td>
<td>15/05/15</td>
<td>15/05/19</td>
</tr>
<tr>
<td>van der Heijden, M.S.</td>
<td>Stichting DUOD</td>
<td>Translationeel onderzoek immunotherapie bij peniskanker</td>
<td>01/06/19</td>
<td>31/05/21</td>
</tr>
<tr>
<td>Principal investigator</td>
<td>Granting agency</td>
<td>Title</td>
<td>Started</td>
<td>Ended / Ends</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------------</td>
<td>--</td>
<td>-----------</td>
<td>--------------</td>
</tr>
<tr>
<td>van der Poel, H.G.</td>
<td>Intuitive Surgical</td>
<td>Robot-assisted radioguided surgery using a drop-in gamma probe</td>
<td>01/03/18</td>
<td>29/02/20</td>
</tr>
<tr>
<td></td>
<td>Operations Inc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>van Driel, W.J.</td>
<td>AVL Foundation</td>
<td>Onderzoek voor ovarium cancaroom</td>
<td>01/10/17</td>
<td>30/09/20</td>
</tr>
<tr>
<td>van Driel, W.J.</td>
<td>ZonMw</td>
<td>Implementation of diagnostic laparoscopy in advanced stage ovarian</td>
<td>01/01/20</td>
<td>31/12/20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cancer to guide initial treatment; either primary debulking surgery</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>or neo-adjuvant chemotherapy.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>van Harten, W.H.</td>
<td>AVL Foundation</td>
<td>Monopolie met maatschappelijk rendement - Verantwoord omgaan met</td>
<td>01/01/17</td>
<td>28/02/21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>patenten in de oncologie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>van Harten, W.H.</td>
<td>Intuitive Surgical</td>
<td>CERA-PRD: cost-effectiveness of robot-assisted prostatectomy compared</td>
<td>01/09/19</td>
<td>31/08/27</td>
</tr>
<tr>
<td></td>
<td>Operations Inc.</td>
<td>to laparoscopic prostatectomy; 6-8 year multi-institutional PROM's</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>follow-up study out of a Dutch perspective.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>van Harten, W.H.</td>
<td>ZonMw</td>
<td>Technology Assessment of Next Generation Sequencing in Personalized</td>
<td>31/12/16</td>
<td>13/02/21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oncology (TANGO)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>van Leerdom, M.E.</td>
<td>MAAG LEVER</td>
<td>Diagnostic yield of colonoscopy surveillance in testicular cancer</td>
<td>01/01/20</td>
<td>31/12/21</td>
</tr>
<tr>
<td></td>
<td>DARM Stichting</td>
<td>survivors treated with platinum-based chemotherapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>van Leerdom, M.E.</td>
<td>MAAG LEVER</td>
<td>DICHOS project: Diagnostic yield of screening colonoscopy in</td>
<td>01/05/15</td>
<td>30/04/19</td>
</tr>
<tr>
<td></td>
<td>DARM Stichting</td>
<td>Hodgkin lymphoma survivors at increased risk of treatment-induced</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>colorectal cancer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>van Leeuwen, F.</td>
<td>NWO</td>
<td>Principles of epigenetic inheritance</td>
<td>23/07/13</td>
<td>23/07/19</td>
</tr>
<tr>
<td>van Leeuwen, F.</td>
<td>NWO Chemische</td>
<td>Development of antibodies targeted at site-specific protein</td>
<td>01/09/16</td>
<td>31/08/19</td>
</tr>
<tr>
<td></td>
<td>Wetenschappen</td>
<td>ubiquitylation Phase 1 & Phase 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>van Leeuwen, F.</td>
<td>ZonMw</td>
<td>Epigenetic control of cytotoxic T cells to modulate immune responses</td>
<td>01/06/19</td>
<td>31/05/24</td>
</tr>
<tr>
<td>van Leeuwen, F.E.</td>
<td>AVL Foundation</td>
<td>Beter Project</td>
<td>01/06/18</td>
<td>31/05/20</td>
</tr>
<tr>
<td>van Leeuwen, F.E.</td>
<td>DES</td>
<td>Onderzoek CCAC van DES-docteurs ouder dan 50 jaar</td>
<td>01/10/17</td>
<td>31/03/19</td>
</tr>
<tr>
<td>van Leeuwen, F.E.</td>
<td>EEG-CEC / EU</td>
<td>Implications of Medical Low Dose Radiation Exposure</td>
<td>01/06/17</td>
<td>28/02/22</td>
</tr>
<tr>
<td>van Leeuwen, F.E.</td>
<td>Pink Ribbon</td>
<td>Assessment of myocardial strain: a novel method for early detection</td>
<td>01/12/16</td>
<td>30/11/19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>of subclinical cardiotoxicity after anthracycline-based chemotherapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>in young breast cancer patients.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>van Leeuwen, F.E.</td>
<td>Social & Scientific</td>
<td>Preparing and providing tissue samples and clinical data from</td>
<td>02/09/16</td>
<td>31/05/20</td>
</tr>
<tr>
<td></td>
<td>Systems Inc.</td>
<td>histologically confirmed second gastric tumor cases among survivors</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>of Hodgkin lymphoma and testicular cancer for a study characterizing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the molecular characteristics of secondary primary gastric cancers.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>van Leeuwen, F.E.</td>
<td>The General Hospital</td>
<td>LIFT-OMEGA</td>
<td>01/09/17</td>
<td>30/11/19</td>
</tr>
<tr>
<td></td>
<td>Corporation D b/a the</td>
<td>Massachusetts General Hospital</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lyfingo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>van Leeuwen, F.E.</td>
<td>Vlissingen Lyfingo</td>
<td>Evaluatie BETER poliklinieken</td>
<td>01/03/18</td>
<td>31/12/19</td>
</tr>
<tr>
<td>van Lohuizen, M.M.S.</td>
<td>NWO</td>
<td>Zwaartekracht programma 2012</td>
<td>01/01/13</td>
<td>31/12/21</td>
</tr>
<tr>
<td>van Lohuizen, M.M.S.</td>
<td>Stichting Oncode</td>
<td>Oncode van Lohuizen</td>
<td>01/09/17</td>
<td>31/08/22</td>
</tr>
<tr>
<td></td>
<td>Institute</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>van Lohuizen, M.M.S.</td>
<td>EZH2 + FGFR inhibitor</td>
<td>Combination Therapy to Treat BAPI. Deficient Tumors</td>
<td>01/07/19</td>
<td>30/06/20</td>
</tr>
<tr>
<td>Principal investigator</td>
<td>Granting agency</td>
<td>Title</td>
<td>Started</td>
<td>Ended</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------</td>
<td>-------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>van Luenen, H.G.A.M.</td>
<td>AVL Foundation</td>
<td>Junior groepsleider 2019</td>
<td>01/10/19</td>
<td>30/09/24</td>
</tr>
<tr>
<td>van Luenen, H.G.A.M.</td>
<td>EEG-CEC / EU</td>
<td>Libra</td>
<td>01/10/15</td>
<td>31/03/19</td>
</tr>
<tr>
<td>van Luenen, H.G.A.M.</td>
<td>NWO</td>
<td>Stimulerings Europees Onderzoek</td>
<td>01/12/15</td>
<td>30/11/20</td>
</tr>
<tr>
<td>van Rheenen, J.E</td>
<td>CGC</td>
<td>CGC</td>
<td>01/10/17</td>
<td>31/12/21</td>
</tr>
<tr>
<td>van Rheenen, J.E</td>
<td>Dr. Josef Steiner Krebsstiftung</td>
<td>Research Award 2017</td>
<td>01/10/17</td>
<td>30/09/21</td>
</tr>
<tr>
<td>van Rheenen, J.E</td>
<td>EEG-CEC / EU</td>
<td>Tumor cell death supports recurrence of cancer (Cancer Recurrence)</td>
<td>01/10/17</td>
<td>31/08/20</td>
</tr>
<tr>
<td>van Rheenen, J.E</td>
<td>EMBD</td>
<td>Two-year EMBD Long-Term Fellowship Dr. Miguel Vizoso Patino</td>
<td>01/09/18</td>
<td>31/12/19</td>
</tr>
<tr>
<td>van Rheenen, J.E</td>
<td>EMBD</td>
<td>EMBD Long-Term Fellowship H. Messal</td>
<td>01/08/19</td>
<td>31/07/21</td>
</tr>
<tr>
<td>van Rheenen, J.E</td>
<td>H.F.S.P.O.</td>
<td>HFSPO Fellowship Claire Vennin</td>
<td>01/06/18</td>
<td>31/05/21</td>
</tr>
<tr>
<td>van Rheenen, J.E</td>
<td>Stichting Oncode Institute</td>
<td>Oncode van Rheenen</td>
<td>01/09/17</td>
<td>31/08/22</td>
</tr>
<tr>
<td>van Sandick, J.W.</td>
<td>Vrolijk</td>
<td>Slukdarmkankeronderzoek Stichting Vrolijk</td>
<td>01/01/08</td>
<td>30/06/20</td>
</tr>
<tr>
<td>van Sandick, J.W.</td>
<td>Vrolijk</td>
<td>Lab slukdarmkankeronderzoek Stichting Vrolijk</td>
<td>01/09/09</td>
<td>30/06/20</td>
</tr>
<tr>
<td>van Sandick, J.W.</td>
<td>ZonMw</td>
<td>Combinatie behandeling van cytoreductieve chirurgie en hypertherme intraperitoneale chemotherapie (HIPEC) bij patienten met een maagcarcinoom en synchrone buikvleesmetastasen en/of tumorpoel en buikvloed</td>
<td>01/10/17</td>
<td>30/09/22</td>
</tr>
<tr>
<td>van Steensel, B.</td>
<td>AIRC</td>
<td>Twisting the boundaries: Role of Topoisomerase 1 at the nuclear lamina iCARE-2 fellowship</td>
<td>01/01/19</td>
<td>31/12/21</td>
</tr>
<tr>
<td>van Steensel, B.</td>
<td>AVL Foundation</td>
<td>Ontwikkeling Chromatin Genomics</td>
<td>01/11/14</td>
<td>31/10/24</td>
</tr>
<tr>
<td>van Steensel, B.</td>
<td>EEG-CEC / EU</td>
<td>Genomics of Chromosome Architecture and Dynamics in Single Cells</td>
<td>01/03/17</td>
<td>28/02/22</td>
</tr>
<tr>
<td>van Steensel, B.</td>
<td>Stichting Oncode Institute</td>
<td>Oncode van Steensel</td>
<td>01/09/17</td>
<td>31/08/22</td>
</tr>
<tr>
<td>van Steensel, B.</td>
<td>University of Illinois</td>
<td>NIH 4DNucleome deel 1 Mapping and Technology Development</td>
<td>28/09/15</td>
<td>31/07/20</td>
</tr>
<tr>
<td>van Steensel, B.</td>
<td>University of Illinois</td>
<td>NIH 4DNucleome deel 2 Additional Tool Development or Data Generation module</td>
<td>01/09/17</td>
<td>31/08/20</td>
</tr>
<tr>
<td>van Steensel, B.</td>
<td>ZonMw</td>
<td>Impact of chromatin context on DNA double-strand break repair kinetics, fidelity and signaling.</td>
<td>28/07/16</td>
<td>28/07/20</td>
</tr>
<tr>
<td>van Tellingen, O.</td>
<td>AVL Foundation</td>
<td>Improving chemoradiation therapy of GBM by inhibition of glioma invasion: A Proof-of-Concept study</td>
<td>01/12/17</td>
<td>30/11/20</td>
</tr>
<tr>
<td>van Tellingen, O.</td>
<td>AVL Foundation</td>
<td>Multi-Targeted Combination Therapy for treatment of glioblastoma: in vivo proof-of-concept study</td>
<td>01/06/18</td>
<td>31/05/20</td>
</tr>
<tr>
<td>van Tellingen, O.</td>
<td>Debipharm International SA</td>
<td>Efficacy study of WEE1 inhibitor Debio 0123 and radiotherapy against orthotopic intracranial tumor models</td>
<td>01/10/18</td>
<td>30/09/20</td>
</tr>
<tr>
<td>van Tellingen, O.</td>
<td>Izumi Biosciences INC</td>
<td>Modulation of the metabolism of elacridar by deuteration by deuteration</td>
<td>01/10/18</td>
<td>30/09/20</td>
</tr>
<tr>
<td>van Tellingen, O.</td>
<td>Numeric Biotech Holding BV</td>
<td>Collaboration to test the validity of using senolytic peptides in combination with radiotherapy for the treatment of cancer</td>
<td>01/10/18</td>
<td>30/09/20</td>
</tr>
<tr>
<td>Principal investigator</td>
<td>Granting agency</td>
<td>Title</td>
<td>Started</td>
<td>Ended / Ends</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------</td>
<td>-------</td>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>van Tellingen, O.</td>
<td>Reneuron Limited</td>
<td>Efficacy study of exosomes against orthotopic intracranial tumor models</td>
<td>01/06/16</td>
<td>31/05/19</td>
</tr>
<tr>
<td>van Tinteren, H.</td>
<td>KNL</td>
<td>Overeenkomst zelfregisterend melanocentrum DMTR</td>
<td>01/05/16</td>
<td>31/12/20</td>
</tr>
<tr>
<td>van Tinteren, H.</td>
<td>KNL (Utrecht)</td>
<td>Dutch Oncology Research Platform (DORP)</td>
<td>01/06/19</td>
<td>31/05/23</td>
</tr>
<tr>
<td>van Tinteren, H.</td>
<td>Modra Pharmaceuticals B.V.</td>
<td>Work order 1 Multicenter safety, feasibility and pharmacokinetic phase II trial of ModraDoc006/r in patients with metastatic castration-resistant prostate</td>
<td>01/06/17</td>
<td>31/03/20</td>
</tr>
<tr>
<td>van Tinteren, H.</td>
<td>Modra Pharmaceuticals B.V.</td>
<td>Food effect of weekly administration of (bi) daily Oral Docetaxel(ModraDoc006) in combination with ritonavir</td>
<td>01/07/17</td>
<td>31/03/20</td>
</tr>
<tr>
<td>van Tinteren, H.</td>
<td>Modra Pharmaceuticals B.V.</td>
<td>Safety of extended use of the weekly oral docetaxel formulation ModraDoc006/r in patients with advanced solid tumors (N17DEX)</td>
<td>01/07/17</td>
<td>30/09/20</td>
</tr>
<tr>
<td>van Tinteren, H.</td>
<td>NVALT</td>
<td>A phase III prospective double blind placebo controlled randomized study of adjuvant MED4736 in completely resected non-small cell lung cancer.</td>
<td>08/02/18</td>
<td>08/08/22</td>
</tr>
<tr>
<td>van Trommel, N.E.</td>
<td>AvL Foundation</td>
<td>Onderzoek ADP Carvixcarcinoom, tavenis M17CPF</td>
<td>01/09/17</td>
<td>31/08/21</td>
</tr>
<tr>
<td>van Trommel, N.E.</td>
<td>AvL Foundation</td>
<td>Onderzoek ADP Ovariumcarcinoom</td>
<td>01/09/17</td>
<td>31/08/21</td>
</tr>
<tr>
<td>Vens, C.</td>
<td>AstraZeneca BV(NL)</td>
<td>Olaparib- Radiation combination studies: evaluating the potential of Olaparib to mitigate RT-induced lung toxicity and comparing this combination to conventional chemo-radiation</td>
<td>01/01/14</td>
<td>01/07/19</td>
</tr>
<tr>
<td>Verheij, M.</td>
<td>EEG-CEC / EU</td>
<td>Clinical proof of concept through a randomized phase II study: a combination of immunotherapy and stereotactic ablative radiotherapy as a curative treatment for limited metastatic lung cancer.</td>
<td>01/01/17</td>
<td>31/12/22</td>
</tr>
<tr>
<td>Voest, E.E.</td>
<td>NWO</td>
<td>Zwaartekracht programma 2012</td>
<td>01/03/14</td>
<td>31/12/21</td>
</tr>
<tr>
<td>Voest, E.E.</td>
<td>Stichting Oncode Institute</td>
<td>Oncode Voest</td>
<td>01/01/19</td>
<td>31/06/22</td>
</tr>
<tr>
<td>Voest, E.E.</td>
<td>ZonMw</td>
<td>COLOSYS: A systems approach to preventing drug resistance in colon cancer</td>
<td>01/05/16</td>
<td>30/11/19</td>
</tr>
<tr>
<td>Wesseling, J.</td>
<td>Cancer Research UK</td>
<td>Prevent Ductal Carcinoma In Situ Invasive Overtreatment Now - PRECISION</td>
<td>01/06/18</td>
<td>31/12/19</td>
</tr>
<tr>
<td>Wesseling, J.</td>
<td>HerIT, Inc</td>
<td>Immunoprevention of BRCA1-associated mammary cancer</td>
<td>01/03/18</td>
<td>28/02/21</td>
</tr>
<tr>
<td>Wesseling, J.</td>
<td>Pink Ribbon</td>
<td>Preventing overtreatment of microcalcification-associated in situ breast lesions by implementing more accurate prognostic biomarkers</td>
<td>01/04/14</td>
<td>31/03/19</td>
</tr>
<tr>
<td>Wesseling, J.</td>
<td>Pink Ribbon</td>
<td>Low Risk Ductal carcinoma In Situ - a Randomized, Non-inferiority trial. (LORD Trial)</td>
<td>01/04/14</td>
<td>31/03/19</td>
</tr>
<tr>
<td>Wessels, L.F.A.</td>
<td>CGC</td>
<td>Bioinformatica CGC</td>
<td>01/11/13</td>
<td>31/12/21</td>
</tr>
<tr>
<td>Wessels, L.F.A.</td>
<td>EEG-CEC / EU</td>
<td>Combination Therapies for personalized medicine</td>
<td>01/05/13</td>
<td>30/04/19</td>
</tr>
<tr>
<td>Wessels, L.F.A.</td>
<td>Genmab</td>
<td>Identification of Biomarkers for HexaBodyR-DR5/DR5 therapy.</td>
<td>01/09/17</td>
<td>31/12/20</td>
</tr>
<tr>
<td>Wessels, L.F.A.</td>
<td>GlaxoSmithKline</td>
<td>Computational analyses to unravel the mechanism of action of BET and EZH2 inhibitors and define biomarkers</td>
<td>01/02/16</td>
<td>31/01/19</td>
</tr>
<tr>
<td>Wessels, L.F.A.</td>
<td>Health-Holland</td>
<td>A genomics compendium to identify therapeutic targets</td>
<td>01/09/19</td>
<td>31/06/23</td>
</tr>
<tr>
<td>Wessels, L.F.A.</td>
<td>NWO</td>
<td>Zwaartekracht programma 2012</td>
<td>01/01/13</td>
<td>31/12/21</td>
</tr>
<tr>
<td>Principal investigator</td>
<td>Granting agency</td>
<td>Title</td>
<td>Started</td>
<td>Ended</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------------</td>
<td>--</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>Wessels, L.F.A.</td>
<td>Stichting CPCT</td>
<td>Tumor Organoids: A new preclinical model for drug sensitivity analysis</td>
<td>01/05/14</td>
<td>30/04/19</td>
</tr>
<tr>
<td>Wessels, L.F.A.</td>
<td>Stichting Oncode Institute</td>
<td>Oncode Wessels</td>
<td>01/09/17</td>
<td>31/08/22</td>
</tr>
<tr>
<td>Wessels, L.F.A.</td>
<td>Vall D’Hebron Institute of Oncology</td>
<td>Basket of Baskets: A modular, open-label, phase II, multicentre study to evaluate targeted agents in molecularly selected populations with advanced solid tumors</td>
<td>01/11/18</td>
<td>31/10/22</td>
</tr>
<tr>
<td>Wessels, L.F.A.</td>
<td>ZonMW</td>
<td>COLDSYS: A systems approach to preventing drug resistance in colon cancer</td>
<td>01/02/17</td>
<td>31/01/20</td>
</tr>
<tr>
<td>Wessels, L.F.A.</td>
<td>ZonMW</td>
<td>Targeting theHER2 receptor: finding biomarkers for optimal anti-HER2 treatment.</td>
<td>01/02/18</td>
<td>31/01/19</td>
</tr>
<tr>
<td>Zuur, C.L.</td>
<td>W.M. de Hoopstichting</td>
<td>Aanschaf en opzetten laboratoriummaterialen voor het onderzoeken van bloedaanmaak bij hoofd-hals kankerpatoienten voor en na behandeling.</td>
<td>01/04/18</td>
<td>30/09/21</td>
</tr>
<tr>
<td>Zwart, W.T.</td>
<td>A Sister’s Hope</td>
<td>Ex-vivo intervention of metastatic breast cancers for novel drug testing and development in endocrine therapy-resistance.</td>
<td>01/12/17</td>
<td>31/05/20</td>
</tr>
<tr>
<td>Zwart, W.T.</td>
<td>AVL Foundation</td>
<td>Integrative Androgen Receptor genomics as a readout for recurrence risk and treatment resistance of prostate cancer</td>
<td>01/09/17</td>
<td>31/01/19</td>
</tr>
<tr>
<td>Zwart, W.T.</td>
<td>EEG-CEC / EU Training network in drug discovery targeting TRIM Ubiquitin ligases in disease.</td>
<td>01/01/19</td>
<td>31/12/22</td>
<td></td>
</tr>
<tr>
<td>Zwart, W.T.</td>
<td>Stichting Oncode Institute</td>
<td>Oncode - Validation of a novel 9-gene-classifier to guide adjuvant treatment for prostate cancer</td>
<td>01/01/19</td>
<td>31/12/20</td>
</tr>
<tr>
<td>Zwart, W.T.</td>
<td>Stichting Oncode Institute</td>
<td>Oncode Zwart</td>
<td>01/09/17</td>
<td>31/08/22</td>
</tr>
<tr>
<td>Zwart, W.T.</td>
<td>The Mark Foundation for Cancer Research</td>
<td>Short-term 3D-printing-based cultures of metastatic breast cancer for tailored therapy selection.</td>
<td>01/12/18</td>
<td>30/04/20</td>
</tr>
<tr>
<td>Zwart, W.T.</td>
<td>ZonMW</td>
<td>Proteomic and genomic evaluation of metastatic breast cancer to facilitate personalized treatment selection</td>
<td>01/12/16</td>
<td>30/11/21</td>
</tr>
</tbody>
</table>