

Scientific Annual Report 2018

Introduction 12 Board members

16

| 16 | Neil Aaronson          | 36 | Jacqueline Jacobs   | 56 | Hein Te Riele           |
|----|------------------------|----|---------------------|----|-------------------------|
| 17 | Reuven Agami           | 37 | Kees Jalink         | 57 | Uulke Van der Heide     |
| 18 | Leila Akkari           | 38 | Jos Jonkers         | 58 | Michiel Van der Heijder |
| 19 | Roderick Beijersbergen | 39 | Marleen Kok         | 59 | Lonneke van de Poll     |
| 20 | Jos Beijnen            | 40 | Pia Kvistborg       | 60 | Wim van Harten          |
| 21 | Andre Bergman          | 41 | Tineke Lenstra      | 61 | Flora van Leeuwen en    |
| 22 | Rene Bernards          | 42 | Sabine Linn         |    | Matti Rookus            |
| 23 | Anton Berns            | 43 | Rene Medema         | 63 | Fred van Leeuwen        |
| 24 | Christian Blank        | 44 | Gerrit Meijer       | 64 | Maarten van Lohuizen    |
| 25 | Eveline Bleiker        | 45 | Daniel Peeper       | 65 | Jacco van Rheenen       |
| 26 | Gerben Borst           | 46 | Anastassis Perrakis | 66 | Bas van Steensel        |
| 27 | Jannie Borst           | 47 | Sven Rottenberg     | 67 | Olaf van Tellingen      |
| 28 | Thijn Brummelkamp      | 48 | Benjamin Rowland    | 68 | Marcel Verheij          |
| 29 | Karin de Visser        | 49 | Sanne Schagen       | 69 | Emile Voest             |
| 30 | Elzo de Wit            | 50 | Alfred Schinkel     | 70 | Jelle Wesseling         |
| 31 | William Faller         | 51 | Marjanka Schmidt    | 71 | Lodewyk Wessels         |
| 32 | John Haanen            | 52 | Ton Schumacher      | 72 | Lotje Zuur              |
| 33 | Michael Hauptmann      | 53 | Titia Sixma         | 73 | Wilbert Zwart           |
| 34 | Hugo Horlings          | 54 | Jan-Jakob Sonke     |    |                         |
| 35 | Heinz Jacobs           | 55 | Arnoud Sonnenberg   |    |                         |

| 76  | Division of<br>Diagnostic Oncology | 82  | Division of<br>Medical Oncology  | 88  | Division of<br>Pharmacy<br>and Biometrics |
|-----|------------------------------------|-----|----------------------------------|-----|-------------------------------------------|
| 94  | Division of<br>Radiation Oncology  | 100 | Division of<br>Surgical Oncology | 108 | Technology<br>Transfer Office             |
| 110 | Research Facilities                | 124 | Education in<br>Oncology         | 132 | Clinical<br>trials                        |
| 160 | Invited<br>speakers                | 162 | Research<br>projects             | 190 | Personnel<br>index                        |

Netherlands Cancer Institute Plesmanlaan 121 1066 CX Amsterdam The Netherlands www.nki.nl



Scientific Annual Report 2018



Director of Research René Medema

### Introduction

It is my pleasure to present the 2018 Scientific Annual Report of the Netherlands Cancer Institute, which contains an overview of our scientific discoveries and achievements. The Netherlands Cancer Institute is one of ten European Comprehensive Cancer Centers accredited by the Organisation of European Cancer Institutes (OECI), and the only Dutch center to officially carry this title.

The year 2018 started well for us, as the European Academy of Cancer Sciences had just designated our institute a Comprehensive Cancer Centre of Excellence for translational research. Cancer Research UK Cambridge and the Netherlands Cancer Institute are the first two centers in Europe to have received this designation.

The year also ended well. In November, an international committee of experts, led by Nobel Prize laureate Harold Varmus, visited the Netherlands Cancer Institute to assess the course and quality of our research institute. We are very pleased with the committee's extremely positive feedback on our research strategy, on the quality and impact of our research, and on the visionary outlook of our research leaders. The committee also applauded the increased number of active clinicians engaged in research since the 2015 review.

In 2018, we further developed our five strategic research themes, by appointing five pioneering theme leaders: Thijn Brummelkamp for Molecular Oncology, Rene Bernards for Personalized Medicine, John Haanen for Immunology and Immunotherapy, Jan-Jakob Sonke for Image-Guided Therapy and Lonneke van der Poll for the theme of Survivorship. Our scientific output has once again been both substantial and of excellent quality, thanks to all our highly talented, innovative and hard-working researchers. In 2018, our researchers published 669 scientific papers, some of which are highlighted below, and 23 of our PhD students defended their thesis at a one of the Dutch universities, in which 49 of our senior group leaders hold chairs.

In 2018, 23% of our patients were included in a clinical trial. Over the years, our hospital has built a large repository of patient data and a large collection of tumor and normal tissues. The Netherlands Cancer Institute specializes in innovative phase I/II trials that are run in close collaboration with our basic and translational research groups. This cross-fertilizing way of working has frequently led to new diagnostic tools or therapies. In 2018, the American medicines agency FDA has assigned the Breakthrough Therapy Designation to a combination therapy that has its roots in the Netherlands Cancer Institute.

To highlight the many practice-changing clinical innovations developed within the NKI that benefit cancer patients, the Board of Directors of the NKI has installed a new annual award: the Patient Impact Award. In December 2018, the MammaPrint team and the OVHIPEC team were its very first winners.

In February 2018, Oncode Institute was officially launched. This is an independent Dutch virtual institute, funded by the government and the Dutch Cancer Society, which is dedicated to understanding cancer and translating research into practice. At the start, 16 NKI group leaders were selected to establish an Oncode research group. Later in the year, two more NKI researchers joined Oncode.

As a comprehensive cancer center, we take our societal responsibility very seriously. In February, our institute was the first hospital in the Netherlands to lend its support to the criminal proceedings brought against the tobacco industry for deliberately damaging public health and for forgery. Unfortunately, the public prosecutor did not proceed with the case.

To conclude on a more positive note, 2600 enthusiastic visitors attended our Open Doors Day on the 6<sup>th</sup> of October, to take a look in our labs and our hospital and learn more about how we try to unravel and fight cancer.

Again, we are very grateful to the Dutch Ministry of Health, Welfare and Sport and to the Dutch Cancer Society (KWF) for their generous institutional funding (figure 1). Our funding is still in large part coming from external project grants, donations and short-term research agreements with third parties. Our principal investigators have continued to be very competitive in obtaining this type of funding. However, the relatively low ratio of core funding for our institute provides us with big challenges to maintain the underlying infrastructure.

#### HIGHLIGHTS

It is impossible to provide a complete overview of the total impact generated by our institute in 2018. Many of the highlights can be found in reports of the individual group leaders further on in this annual report and on our website. I here present just a few 2018 highlights of our five research themes.

#### MOLECULAR ONCOLOGY

#### How cancer cells help each other migrate

Cancer cells influence each other's metastatic behavior by exchanging biomolecules through extracellular vesicles (EVs). The group of Jacco van Rheenen characterized the content of these vesicles shed *in vivo* by two clones of melanoma tumors with distinct metastatic potential. Using intravital microscopy, they showed that cells from these distinct clones phenocopy their migratory behavior through EV exchange. They then showed that EVs which are shed into the tumor microenvironment, contain thousands of different proteins and RNAs, and many of these biomolecules are from interconnected signaling networks involved in cellular processes such as migration (*EMBO*, August 2018).

#### FIGURE 1

CORE RESEARCH FUNDING THE NETHERLANDS CANCER INSTITUTE - ANTONI VAN LEEUWENHOEK HOSPITAL BY THE DUTCH CANCER SOCIETY AND THE MINISTRY OF HEALTH, WELFARE AND SPORT IN THE PERIOD 2007-2018 IN MILLION EUROS.



• DUTCH CANCER SOCIETY

• MINISTRY OF HEALTH, WELFARE & SPORT\*

O TOTAL

\* EXCLUDED ARE THE REIMBURSEMENTS FOR INTEREST AND DEPRECIATION OF BUILDINGS

#### Kinetics and fidelity of repair of DNA double-stranded breaks

Eva Brinkman from the lab of Bas van Steensel developed a strategy to measure the kinetics of DSB repair for single loci in human cells. Using quantitative modeling of repaired DNA she could resolve the kinetics and fidelity of repair at specific sites in the human genome. Her data showed that repair of the DSBs tends to be error prone, due to classical and microhomology-mediated end joining pathways contribute to the erroneous repair. Estimation of their individual rate constants indicates that the balance between these two pathways changes over time and can be altered by additional ionizing radiation (*Mol Cell*, August 2018).

#### New rationale for p53 loss in cancer cells

Bente Benedict and Tanja van Harn from the Te Riele lab showed that  $G_1/S$  checkpoint failure in mitogen-starved cells lacking the retinoblastoma proteins pRB, p107 and p130, causes severe replication stress manifested by slow fork progression, reduced origin firing, DNA breakage and proliferative arrest. Unexpectedly, disruption of *Tp53* or its downstream target  $p21^{CIP1}$  restored origin firing, reduced DNA breakage and allowed mitogen-independent proliferation. Alleviation of replication-stress-induced DNA damage may thus explain the frequent co-occurrence of pRB and p53 pathway disruption in cancer (*Elife*, October 2018)

#### ERC Consolidator Grant for Benjamin Rowland

How are the meters of DNA arranged in our cell nucleus such that all individual genes can do their job? Chromosome biologist Benjamin Rowland started a new research project funded by the European Research Council (ERC) to find out how the minuscule cohesin ring ensures that the DNA is structured in the right way.

#### PRECISION MEDICINE

#### Exploiting drug resistance

Postdoc Liqin Wang et al. from Rene Bernards' lab searched for acquired vulnerabilities of cancer cells when *BRAF* mutant melanomas become resistant to the combination of BRAF and MEK inhibitors. They found that drug resistance is associated with increased levels of reactive oxygen species (ROS). Subsequent treatment of BRAF-inhibitor resistant melanoma cells with the histone deacetylase inhibitor vorinostat leads to a lethal increase in the already elevated ROS levels in drug-resistant cells. This causes selective apoptotic death of only the drug-resistant tumor cells. Treatment of BRAF inhibitor-resistant melanoma with vorinostat in mice resulted in dramatic tumor regression. In collaboration with Jos Beijnen and Jan Schellens a clinical study was performed, in which patients with advanced BRAF + MEK inhibitor-resistant melanoma were treated with vorinostat. Preliminary results indicate that vorinostat can indeed selectively ablate BRAF inhibitor-resistant tumor cells, providing clinical proof of concept for a novel therapy identified in the lab (*Cell*, May 2018).

#### Targeting tumor heterogeneity

Julia Boshuizen in the laboratory of Daniel Peeper developed, for the first time, an approach to target different cancer cell groups within tumors, based on their distinct treatment susceptibilities. She showed that such a rational combinatorial treatment, comprising an AXL antibody-drug conjugate with BRAF + MEK inhibitors, resulted in more durable responses in patient-derived melanomas (*Nature Medicine*, January 2018).

#### New insight into resistance to PARP inhibitors

PARP inhibitors have recently entered the clinic for the treatment of homologous recombination-deficient cancers. Despite their success, drug resistance is a clinical hurdle and the mechanisms of resistance are poorly understood. By combining genetic screens with multi-omics analysis of matched PARPi-sensitive and PARP-resistant BRCA2-mutated mouse mammary tumors, the Jos Jonkers group identified loss of PAR glycohydrolase (PARG) as a major resistance mechanism. Importantly, PARG inactivation exposes vulnerabilities that can be exploited therapeutically (*Cancer Cell*, June 2018).

#### Triple therapy prioritized

The American medicines agency FDA assigned the Breakthrough Therapy Designation to a combination therapy that has its roots in the Netherlands Cancer Institute, where René Bernards and colleagues discovered why colon cancer cells are resistant to BRAF inhibitors. This knowledge lies at the root of an international clinical study with promising interim results, based upon which the FDA announced to speed up the approval process of the used drug combination.

#### ERC Advanced Grant for Rene Bernards

Rene Bernards received an ERC Advanced Grant of 2.5 million euros for his research into a new approach to the treatment of cancer. This is based on a "one-two punch" sequential strategy in which a first drug is used to induce a state of senescence, a stable proliferation arrest, in the cancer cells. The second drug then selectively kills the senescent cancer cells. Bernards will identify drugs that can induce senescence in cancer cells and search for drugs that kill senescent cancer cells. These drugs will then be validated experimentally in pre-clinical cancer models to test their efficacy.

#### **IMMUNOTHERAPY**

#### Improving cisplatin response of breast cancer by targeting macrophages

Macrophages are frequently infiltrating human cancers, and their presence is associated with poor chemotherapy response. Camilla Salvagno in the laboratory of Karin de Visser revealed that targeting macrophages by CSF-1 receptor blockade enhances the anti-cancer efficacy of platinum-based chemotherapeutics in a transgenic mouse model for breast cancer. She mechanistically uncovered that CSF-1R inhibition stimulates intratumoral type I interferon signaling, which is essential for the therapeutic synergy between cisplatin and CSF-1R blockade. She also discovered that further elimination of immunosuppressive neutrophils was required to engage an efficacious anti-tumor immune response (*Nature Cell Biology*, in press 2018).

#### How CD4 T cells help killer T cells

The group of Jannie Borst published an authoritative review on how CD4 T cell help the cytotoxic T cell response to cancer, and discovered (with collaborators at Sanquin) a unique constellation of signaling pathways in regulatory CD4 T cells (*Nature Reviews Immunology*, July 2018)

#### 'Exhausted' T cells are not so exhausted after all

Researchers in the Ton Schumacher lab showed in a number of studies that "exhausted" or dysfunctional T cells actually form a highly active and dynamic group within the tumor. These cells, which are unable to kill tumor cells, do have the capacity to multiply. Their presence in the tumor helps the immune system better recognize tumor cells, which is an essential prerequisite for a good response to immunotherapy (*Nature*, June 2018; *Cell*, December 2018).

#### Training T cells in tumor organoids

Tumor organoids can now be used as a platform for studying the interaction between immune cells and tumor cells outside the patient's body. Krijn Dijkstra and Chiara Cattaneo from the group of Emile Voest have shown that it is possible to obtain T cells from the bloodstream of a patient and expand them in a dish together with a tumor organoid from the same patient. The immune cells develop the ability to kill the tumor cells and reduce organoid size, while leaving healthy control tissue of the same patient untouched (*Cell*, August 2018).

#### IMAGE-GUIDED INTERVENTIONS

#### First patient treated with MR-Linac

In September 2018, the NKI treated its first patient on the Elekta Unity MR-Linac system, a radiotherapy device in which an MRI scanner is integrated. This makes the Netherlands Cancer Institute the third hospital in the Netherlands to work with an MRI-guided radiation technique. Thanks to the integrated MRI scanner in the MR-Linac, MRI images can be made before and during radiation so that the tumor remains clearly visible. The image quality of the device is high. As a result, radiation can be more accurately focused on the tumor, resulting in less damage to the surrounding healthy tissue. This means that the radiation dose can be significantly increased or that patients less often need radiotherapy.

#### Prostate cancer: boosted EBRT therapy safe and feasible

Prostate cancer is the most frequently diagnosed cancer in men and the second most common cause of death due to cancer. External beam radiotherapy (EBRT) is the therapy of choice in the treatment of high-risk disease but there is a significant chance of local relapse.

The FLAME trial, a multi-center phase III trial randomized between a focal boost to the visible tumor inside the prostate to a dose of 95 Gy was given and compared to the standard treatment of 77 Gy to the gland. Toxicity analysis showed that the focal boost did not result in an increase in GU and GI toxicity when compared to the standard treatment.

#### **SURVIVORSHIP**

#### Second malignancies after cisplatin

Harmke Groot and Michael Schaapveld in the group of Flora van Leeuwen studied the second malignancy risk in a large Dutch cohort of testicular cancer survivors (n=5,848), treated in the cisplatin era (1976-2006). They showed, for the first time, that cisplatin is associated with a dose-dependent three- to five-fold increased risk of colorectal cancer and other gastrointestinal cancers. Cisplatin was also associated with increased risks of cancers of the lung, thyroid and urinary bladder (*Journal of Clinical Oncology*, 2018).

#### Online therapy alleviates menopausal symptoms

Vera Atema in the Neil Aaronson group demonstrated in a randomized controlled trial that an internet-based cognitive behavioral therapy (CBT) program, in both a selfmanaged and a guided form, significantly reduces cardinal menopausal symptoms in women with breast cancer who have experienced treatment-induced menopause. Compared with a usual care control group, the CBT groups showed significant clinical improvement over time in the perceived impact of hot flushes and night sweats and in the frequency of hot flushes, and in sleep quality. Such an internet-based intervention offers a convenient, accessible and relatively inexpensive means of addressing troublesome treatment side effects (*Journal of Clinical Oncology*, 2019).

#### Genetic susceptibility to radiation-induced breast cancer

Hodgkin lymphoma (HL) survivors have a strongly increased risk of breast cancer after chest radiotherapy (RT). Annemieke Opstal-van Winden in the Flora van Leeuwen group now demonstrated that genetic susceptibility contributes to radiation-induced breast cancer. A BC-PRS, consisting of 77 SNPs previously associated with breast cancer in the general population, also substantially increases the risk of breast cancer in chestirradiated HL survivors. In addition, the researchers identified 9 SNPs interacting with chest RT and the risk of breast cancer after HL and showed a statistically significant association of a PRS composed of these interaction SNPs with breast cancer risk after chest RT for HL. These results imply that the absolute risk of breast cancer due to irradiation would be even larger among women at high genetic risk, which is relevant for clinical risk prediction (*Blood*, 2018).

#### QUALITY OF RESEARCH

The quality of our research can be monitored in several ways. First of all, objective bibliometric parameters such as citations and impact of scientific articles published by NKI staff demonstrate that our scientific productivity has been steadily increasing over time (table 1). It is gratifying to note that we manage to maintain our position at the international forefront of cancer research.

Secondly, our prominent international standing in cancer research is reflected by the frequent invitations of our staff members to present at international meetings and in the awards and grants that they obtain. We score high on all these accounts. See the 'honors and appointments' section for the most prestigious grants and awards our researchers have received in the past year. The NKI is also part of a number of European networks for the most excellent centers in the field of cancer research and life sciences, including CancerCoreEurope and EULife.

#### HONORS AND APPOINTMENTS

The NKI does not award university degrees, but many of our staff members hold parttime chairs at Dutch universities, which allows them to award PhD degrees to graduate students who received their training at the Netherlands Cancer Institute. Currently, 49 staff members have professorships at one of the Dutch universities. In 2018, our researchers and clinicians won several prestigious awards. Epidemiologist Floor van Leeuwen was awarded the 17<sup>th</sup> Rosalind E. Franklin Award for Women in Science by the American National Cancer Institute in Maryland. Biologist Rene Bernards was elected Fellow of the American Association for Cancer Research. Junior group leader Tineke Lenstra was awarded the NVBMB-prize 2018 by the Netherlands Society for Biochemistry and Molecular Biology, for her work on DNA transcription. This is a prize for highly talented young researchers. PhD student Lindy Visser received the PALGA Award for her research on DCIS. PALGA is the national network and registry of pathology in the Netherlands. Clinician Wanda de Kanter won the GLCC Journalism Award 2018 for her antitobacco campaign in the media. Junior group leaders Leila Akkari and Tineke Lenstra have been selected to join Oncode Institute as junior investigators. Together with five other

#### TABLE 1

#### SHORT TERM CITATIONS AND IMPACT OF SCIENTIFIC ARTICLES PUBLISHED BY THE NETHERLANDS CANCER INSTITUTE RESEARCH STAFF 2004-2018

| PUBLICATION | PUBLICATIONS* | CITATIONS | CITATIONS/   | IMPACT |
|-------------|---------------|-----------|--------------|--------|
| YEAR        |               |           | PUBLICATIONS |        |
| 2004        | 348           | 5267      | 15,1         | 1882   |
| 2005        | 405           | 6350      | 15,7         | 2461   |
| 2006        | 435           | 6336      | 14,6         | 2608   |
| 2007        | 430           | 5605      | 13,0         | 2969   |
| 2008        | 442           | 5657      | 12,8         | 2590   |
| 2009        | 511           | 7904      | 15,5         | 3074   |
| 2010        | 481           | 8788      | 18,3         | 2841   |
| 2011        | 459           | 8651      | 18,8         | 3110   |
| 2012        | 573           | 9268      | 16,2         | 3333   |
| 2013        | 512           | 8989      | 17,6         | 3228   |
| 2014        | 596           | 9599      | 16,1         | 3935   |
| 2015        | 659           | 19618     | 29,8         | 5234   |
| 2016        | 793           | 15087     | 19,0         | 5344   |
| 2017        | 740           |           |              | 5927   |
| 2018        | 780**         |           |              | 6090** |

\* SINCE 2014 A NEW STANDARD WAS USED TO PERFORM THE CITATION AND IMPACT FACTOR ANALYSES. CONSEQUENTLY THE NUMBERS CAN DIFFER FROM THE PREVIOUS YEARS.

\*\* ANALYSIS WAS PERFORMED IN MARCH 2019. DATA CAN BE SUBJECT TO CHANGE.

#### TABLE 2

CLINICAL TRIALS PERFORMED AT THE NETHERLANDS CANCER INSTITUTE THAT WERE BASED ON THERAPEUTIC CONCEPTS DEVELOPED FROM OUR OWN FUNDAMENTAL AND TRANSLATIONAL RESEARCH PROGRAM (SELECTED FROM CLINICAL TRIALS THAT WERE ONGOING IN 2014 AND ONWARDS).

| AVL CODE | REFERENCE   | NOVEL TREATMENT                                                         | TUMOR TYPE                                                                         |
|----------|-------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| M06CRI   | 1-3         | Chemoradiotherapy + Surgery                                             | Resectable Gastric Cancer                                                          |
| P060VH   | 4,6         | Secondary Debulking with HIPEC                                          | Ovarian Canc                                                                       |
| P07CB    | 7,8         | Cognitive Behavioral Therapy & Physical<br>Exercise                     | Breast Cancer                                                                      |
| P08TIM   | 9           | Rapid Genetics                                                          | BRCA mutant Breast Cancer                                                          |
| M08PBI   | 10          | Partial Accelerated Preoperative Irradiation                            | Early Stage Operable Breast Cancer                                                 |
| MO9TNM   | 11-13       | Neo-adjuvant Chemotherapy                                               | Triple-Negative Breast Cancer                                                      |
| PO9PHY   | 14          | Physical Exercise                                                       | Breast & Colon Cancer                                                              |
| M09PB0   | 15          | FDG-PET-based Boosting RT                                               | Inoperable NSCLC                                                                   |
| N10DMY   | 16          | Dose reduction of preoperative RT                                       | Liposarcoma                                                                        |
| N11ORL   | 17          | Radiotherapy ± Cisplatin + PARPi                                        | Locally Advanced NSCLC                                                             |
| M11ART   | 18          | Cisplatin + Adaptive High Dose Radiotherapy                             | Locally Advanced Oropharynx, Oral<br>Cavity or Hypopharynx SCC                     |
| M11VOL   | 19          | MLD-based SBRT                                                          | Inoperable + Peripheral NSCLC                                                      |
| P11SIG   | 20,21       | Problem checklist                                                       | Breast & Colon Cancer                                                              |
| M11TCR   | 22          | MART-1 TCR gene therapy                                                 | Metastatic Melanoma                                                                |
| M12LGX   | 23          | EGFRI + BRAFI + PI3KI                                                   | Mutant BRaf Colorectal Cancer                                                      |
| M12PHA   | 24          | Hippocampus Avoidance PCI                                               | SCLC                                                                               |
| N12HYB   | 25          | Combined Stereotactic and Conventional<br>Fractionated RT               | Stage II-III NSCLC                                                                 |
| N12RES   | 26          | In vivo response assessment                                             | Liver and Colorectal Cancer                                                        |
| N12IGP   | 27          | Intra-operative fluorescence during prostate surgery                    | Prostate                                                                           |
| M13DPT   | 23          | EGFRi + BRAFi ± MEKi                                                    | Mutant BRaf Colorectal Cancer                                                      |
| M13DAP   | 28          | Pan-HERi + MEKi                                                         | Mutant KRas Colorectal Cancer                                                      |
| N13ORH   | 17          | Radiotherapy + PARPi                                                    | Laryngeal and HPV-Negative<br>Oropharyngeal SCC                                    |
| N13ORB   | 17          | Radiotherapy + PARPi                                                    | Locally Advanced Triple-Negative<br>Breast Cancer                                  |
| M13TNB   | 11-13,29-33 | Paclitaxel ± VEGFi                                                      | BRCA1-like Breast Cancer                                                           |
| M13PSN   | 34          | ICG-99mTc-nanocolloid for sentinel node<br>surgery                      | Prostate Cancer                                                                    |
| N13NAV   | 35          | Surgical Navigation                                                     | Colorectal Cancer                                                                  |
| M14TIL   | 36          | TIL vs. Ipilimumab                                                      | Metastatic Melanoma                                                                |
| M14LTK   | 28          | Pan-HERi + MEKi                                                         | Mutant KRas Colorectal Cancer                                                      |
| M14REV   | 37-39       | Carboplatin + PARPi                                                     | Advanced BRCA- Breast Cancer                                                       |
| M14POS   | 40,41       | Tamoxifen + PI3Ki                                                       | ER/PR+ and HER2- Breast Cancer                                                     |
| N14HPV   | 42,43       | DNA vaccination                                                         | HPV16+ Vulvar Neoplasia                                                            |
| N14RCS   | 44          | Smart tools during surgery                                              | Colorectal Cancer                                                                  |
| M14AFS   | 28          | Afatinib + Selumetinib                                                  | Advanced Mutant KRas, PIK3CA<br>wildtype Colorectal, NSCLC or<br>Pancreatic Cancer |
| M14WLC   | 23          | WNT974 + LGX818 + Cetuximab                                             | Mutant BRAF Colorectal Cancer with<br>Wnt Pathway mutations                        |
| N140PC   | 45          | Ipilumimab + Nivolumab                                                  | Melanoma                                                                           |
| M14PDP   | 46,47       | Genotype-directed dosing of Fluoropyrimidines                           | Various Neoplasms                                                                  |
| N14SUS   | 48,49       | Sentinel node mapping using SPECT                                       | Head and Neck Cancer                                                               |
| N14LMN   | 34,35,50,51 | Lymphatic mapping of the neck with ICG-<br>nanocolloid                  | Oral Cavity Malignancies                                                           |
| M14HSN   | 34,35,50,51 | Sentinel node mapping with ICG-99mTc-<br>nanocolloid                    | Bladder Cancer                                                                     |
| M14SEA   | 52          | Strengtening Exercises using the Swallowing<br>Exercise Aid             | Head and Neck Cancer                                                               |
| M14HUM   | 53          | Organoid Biobank for drug discovery                                     | Solid Tumors                                                                       |
| M14PRT   |             | Premolizumab + SBRT vs. premoluzimab                                    | Advanced/metastatic NSCLC                                                          |
| M15CRI   | 1-3         | Preoperative chemo vs chemoradiotherapy vs<br>chemo + chemoradiotherapy | Resectable Gastric Cancer                                                          |
| M15PAP   | 10          | Pre- vs postoperative accelerated partial breast irradiation            | Early stage breast cancer                                                          |
| N15MML   | 54          | Magnetic Marker localization to guide surgery                           | Non-palpable breast cancer                                                         |
| M15PAS   | 55,56       | Panopanib + RT                                                          | Non-metastatic Sarcoma                                                             |

| M15MSR  | 57 | DNA-PKi + Radiotherapy                                                | Advanced Solid Tumors       |
|---------|----|-----------------------------------------------------------------------|-----------------------------|
| N15DOP  | 58 | ModraDoc + hormone treatment + intensity-<br>modulated RT             | Early stage prostate cancer |
| M15 OLY | 59 | Hypofractionated focal ablative radiotherapy                          | Prostate cancer             |
| N15 IMP |    | Pembrolizumab vs intermittent dual MAPK<br>inhibition + pembrolizumab | B-Raf muant melanoma        |
| N16PZN  | 60 | Novel formulation of pazopanib                                        | Solid tumors                |
| M16HFL  | 59 | Hypofractionated focal ablative radiotherapy                          | Prostate cancer             |
| M160PN  | 45 | Neo-adjuvant Ipilumimab and Nivolumab                                 | Melanoma                    |
| N16UMB  |    | MR guided Adaptive Radiation Therapy.                                 | Solid tumors                |
| N16PRB  |    | Preoprative breast irradiation                                        | Breast Cancer               |
| N16STS  |    | Biobank of patient-derived xenografts of soft tissue sarcomas         | Soft tissue sarcomas        |
| N16NEON |    | Personalized adaptive T-cell therapy                                  | Various solid tumors        |
| N17MRB  |    | Monitoring RT-induced MRI changes of Brain<br>Tumors                  | Brain Tumors                |
| M17SDM  |    | Decision aid for breast cancer and DCIS patients                      | Breast Cancer               |

 Dikken JL et al. Neo-adjuvant chemotherapy followed by surgery and chemotherapy or by surgery and chemoradiotherapy for patients with resectable gastric cancer (CRITICS).
BMC Cancer 2011;11:329

2. Trip AK et al. Preoperative chemoradiotherapy in locally advanced gastric cancer, a phase I/II feasibility and efficacy study. Radiother Oncol. 2014;112:284-8

3. Trip AK et al. IMRT limits nephrotoxicity after chemoradiotherapy for gastric cancer. Radiother Oncol. 2014;112:289-94

4. Van de Vaart PJ et al. Intraperiton eal cisplatin with regional hyperthermia in advanced ovarian cancer: pharmacokinetics and cisplatin-DNA adduct formation in patients and ovarian cancer cell lines. Eur J Cancer 1998;34:148-154

5. Verwaal VJ et al. Randomized trial of cytoreduction and hyperthermic intraperitoneal chemotherapy versus systemic chemotherapy and palliative surgery in patients with peritoneal carcinomatosis of colorectal cancer. J Clin Oncol 2003;21:3737-3743

6. Van Driel WJ et al. The role of hyperthermic intraperitoneal intraoperative chemotherapy in ovarian cancer. Curr Treat Options Oncol 2015;16:14

7. Duijts SFA et al. Efficacy of cognitive behavioral therapy and physical exercise in alleviating treatmentinduced menopausal symptoms in patients with breast cancer: Results of a randomized controlled multicenter trial. J Clin Oncol 2012;30:4124-33 8. Mewes JC et al. Cost-effectiveness of cognitive behavioral therapy and physical exercise for alleviating treatment-induced menopausal symptoms in breast cancer patients. J Cancer Surviv 2015;9:126-35

9. Wevers MR et al. Impact of rapid genetic counselling and testing on the decision to undergo immediate or delayed prophylactic mastectomy in newly diagnosed breast cancer patients: Findings from a randomized controlled trial. Br J Cancer 2014;110:1081-7

**10. Van der Leij F et al.** Target volume delineation in external beam partial breast irradiation: less inter-observer variation with preoperative- compared to postoperative delineation. Radiother Oncol. 2014;110:467-70

11. Rodenhuis S et al. Efficacy of highdose alkylating chemotherapy in HER2/ neu-negative breast cancer. Ann Oncol. 2006;17:588-96

12. Vollebergh MA et al. An aCGH classifier derived from BRCA1-mutated breast cancer and benefit of high-dose platinum-based chemotherapy in HER2negative breast cancer patients. Ann Oncol. 2011;22:1561-70

13. Vollebergh MA et al. Genomic patterns resembling BRCA1- and BRCA2-mutated breast cancers predict benefit of intensified carboplatin-based chemotherapy. Breast Cancer Res. 2014:16:R47

14. Van Waart H et al. Effect of low intensity physical activity and high intensity physical exercise during adjuvant chemotherapy on physical fitness, fatigue and chemotherapy completion rates: Results of the PACES randomized clinical trial. J Clin Oncol. 2015;33:1918-27 15. Van Elmpt W et al. The PET-boost randomised phase II dose-escalation trial in non-small cell lung cancer. Radiother Oncol. 2012;104:67-71

**16. De Vreeze RS et al.** Effectiveness of radiotherapy in myxoid sarcomas is associated with a dense vascular pattern. Int J Radiat Oncol Biol Phys. 2008;72:1480-7

17. Verheij M et al. Novel therapeutics in combination with radiotherapy to improve cancer treatment: Rationale, mechanisms of action and clinical perspective. Drug Resist Updat 2010;13:29-43

18. Heukelom J et al. Adaptive and innovative Radiation Treatment FOR improving Cancer treatment outcomE (ARTFORCE); a randomized controlled phase II trial for individualized treatment of head and neck cancer. BMC Cancer 2013;13:84

**19. Peulen H et al**. Mid-ventilation based PTV margins in Stereotactic Body radiotherapy (SBRT): a clinical evaluation. Radiother Oncol. 2014;110:511-6

20. Eijzenga W et al. Effect of routine assessment of specific psychosocial problems on personalized communication, referrals and distress levels in cancer genetic counseling practice: A randomized controlled trial. J Clin Oncol. 2014;32:2998-3004

21. Eijzenga W et al. Routine assessment of psychosocial problems after cancer genetic counseling: Results from a randomized controlled trial. Clin Genetics. 2015;87:419-27

22. Gomez-Eerland R et al. Manufacture of gene-modified human T-cells with a memory stem/central memory phenotype. Hum GeneTher Methods. 2014;25:277-87 23. Prahallad A et al. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 2012;483:100-3

24. Van Kesteren Z et al. A practical technique to avoid the hippocampus in prophylactic cranial irradiation for lung cancer. Radiother Oncol. 2012;102:225-7

25. Grills IS et al. A collaborative analysis of stereotactic lung radiotherapy outcomes for early-stage non-small-cell lung cancer using daily online cone-beam computed tomography image-guided radiotherapy. J Thorac Oncol. 2012;7:1382-93

**26. Spliethoff JW et al**. Monitoring of tumor response to Cisplatin using optical spectroscopy. Transl. Oncol. 2014;7:230-9

27. Buckle et al. Tumor bracketing and safety margin estimation using multimodal marker seeds: a proof of concept. J Biomed Opt. 2010;15:056021

28. Sun C et al. Intrinsic resistance to MEK inhibition in KRAS mutant lung and colon cancer through transcriptional induction of ERBB3. Cell Rep. 2014;7:86-93

29. Rottenberg S et al. Impact of intertumoral heterogeneity on predicting chemotherapy response of BRCA1-deficient mammary tumors. Cancer Res 2012;72:2350-2361

30. Wessels LF et al. Molecular classification of breast carcinomas by comparative genomic hybridization: a specific somatic genetic profile for BRCA1 tumors. Cancer Res 2002;62:7110-7117 **31. Van Beers EH et al.** Comparative genomic hybridization profiles in human BRCA1 and BRCA2 breast tumors highlight differential sets of genomic aberrations. Cancer Res 2005;65:822-827

32. Joosse SA et al. Prediction of BRCA1-association in hereditary non-BRCA1/2 breast carcinomas with array-CGH. Breast Cancer Res Treat 2009;116:479-489

33. Lips EH et al. Quantitative copy number analysis by Multiplex Ligationdependent Probe Amplification (MLPA) of BRCA1-associated breast cancer regions identifies BRCAness. Breast Cancer Res 2011;13:R107

34. Van der Poel et al. Intraoperative laparoscopic fluorescence guidance to the sentinel lymph node in prostate cancer: clinical proof of concept of an integrated functional imaging approach using a multimodal tracer. Eur Urol. 2011;60:826-33

**35. KleinJan GH et al.** Optimisation of fluorescence guidance during robotassisted laparoscopic sentinel node biopsy for prostate cancer. Eur Urol. 2014;66:991-8

**36. Kvistborg P et al.** TIL therapy broadens the tumor-reactive CD8(+) T cell compartment in melanoma patients. Oncoimmunology 1:409-418

37. Rottenberg S et al. High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc. Natl. Acad. Sci. USA 2008;105:17079-84

**38. Fong PC et al.** Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009;361:123-34

**39. Oonk AM et al.** Clinical correlates of 'BRCAness' in triple-negative breast cancer of patients receiving adjuvant chemotherapy. Ann Oncol. 2012;23:2301-5

40. Beelen K et al. PIK3CA mutations, phosphatase and tensin homolog, human epidermal growth factor receptor 2, and insulin-like growth factor 1 receptor and adjuvant tamoxifen resistance in postmenopausal breast cancer patients. Breast Cancer Res. 2014;16:R13

**41. Beelen K et al.** Phosphorylated p-70S6K predicts tamoxifen resistance in postmenopausal breast cancer patients randomized between adjuvant tamoxifen versus no systemic treatment. Breast Cancer Res. 2014;16:R6 **42. Kenter GG et al.** Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N Engl J Med. 2009;361(19):1838-47

**43. Bins AD et al.** A rapid and potent DNA vaccination strategy defined by in vivo monitoring of antigen expression. Nat Med. 2005;11:899-904

44. Nachabé R et al. Diagnosis of breast cancer using difuse optical spectroscopy from 500 to 1600 nm: comparison of classification methods. J Biomed Opt. 2011;16:087010

45. Larkin J et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N Engl J Med. 2015;373:23-34

**46. Bosch TM et al.** Rapid detection of the DPYD IVS14+1G→A mutation for screening patients to prevent fluorouracil-related toxicity. Mol Diagn Ther. 2007;11:105-8

47. Deenen MJ et al. Upfront Genotyping of DPYD\*2A to Individualize Fluoropyrimidine Therapy: A Safety and Cost Analysis. J Clin Oncol. 2016;34:227-34

48. Brouwer OR et al. Lymphoscintigraphy and SPECT/CT in multicentric and multifocal breast cancer: does each tumour have a separate drainage pattern? Results of a Dutch multicentre study (MULTISENT) Eur J Nucl Med Mol Imaging. 2012:39:1137-43

**49. Collarino A et al**. The use of SPECT/ CT for anatomical mapping of lymphatic drainage in vulvar cancer: possible implications for the extent of inguinal lymph node dissection. Eur J Nucl Med Mol Imaging. 2015;42:2064-71

50. Van den Berg NS et al. Multimodal surgical guidance during sentinel node biopsy for melanoma: combined gamma tracing and fluorescence imaging of the sentinel node through use of the Hybrid Tracer indocyanine green-(99m)Tcnanocolloid. Radiology. 2015;275:521-9

51. Brouwer OR et al. A hybrid radioactive and fluorescent tracer for sentinel node biopsy in penile carcinoma as a potential replacement for blue dye. Eur Urol. 2014;65:600-9

52. Kraaijenga SA et al. Effects of Strengthening Exercises on Swallowing Musculature and Function in Senior Healthy Subjects: a Prospective Effectiveness and Feasibility Study. Dysphagia. 2015;30:392-403 53. Weeber F et al. Preserved genetic diversity in organoids cultured from biopsies of human colorectal cancer metastases. Proc Natl Acad Sci U S A. 2015;112:13308-11

54. Schermers et al. Feasibility of magnetic marker localization for non-palpable breast cancer. Breast 2017;33:50-56

**55. Haas RL.** Present and future of radiotherapy before and after surgery for sarcoma patients. Eur J Surg Oncol. 2014;40:1595-7

56. Haas RL et al. Preoperative radiotherapy for extremity soft tissue sarcoma; past, present and future perspectives on dose fractionation regimens and combined modality strategies. Radiother Oncol. 2016;119:14-21

57. Hodzic J et al. A cell-based high-throughput screening assay for radiation susceptibility using automated cell counting. Radiat Oncol. 2015;10:55

58. Moes et al. Pharmaceutical development and preliminary clinical testing of an oral solid dispersion formulation of docetaxel (ModraDoc001) Int J Pharm. 2011;28;420(2):244-50

59. Lips IM et al. Single blind randomized phase III trial to investigate the benefit of a focal lesion ablative microboost in prostate cancer (FLAMEtrial); study protocol for a randomized controlled trial. Trials 2011;12:55

60. Sparidans RW et al. Liquid chromatography-tandem mass spectrometric assay for therapeutic drug monitoring of the tyrosine kinase inhibitor pazopanib in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci. 2012;905:137-40 talented female scientists, they were selected out of 56 applicants, based on their track record, research focus and potential to contribute to the mission of Oncode.

Several NKI researchers were awarded prestigious research grants in 2018. In December, the Dutch Cancer Society (KWF) awarded a subsidy of 2.8 million euros to professor Winette van der Graaf and dr. Olga Husson for research into the treatment and counselling of young adults with cancer. In total, 17 new research projects received financial support of the Dutch Cancer Society in 2018. Professors Rene Bernards and Emile Voest received a one million dollar grant to join the new Pancreatic Cancer Collective, a strategic partnership of the Lustgarten Foundation and Stand Up To Cancer (SU2C). Rene Bernards received an ERC Advanced Grant for research into drug resistance and Benjamin Rowland received an ERC consolidator grant. Julia Houthuijzen and Ineke Brouwer both received a VENI grant from the Dutch Society for Scientific Research (NWO), and Faria da Silva and Abdelghani Mazouzi were both awarded an EMBO fellowship.

Next to the special grants mentioned above several other NKI postdocs and group leaders have received several competitive grants from national and international organizations. Staff of the NKI also fulfilled numerous functions in national and international organizations, on boards of scientific journals, as members of study sections, of site visit committees, and as organizers or co-organizers of scientific meetings, workshops and conferences.

#### OUTLOOK AND ACKNOWLEDGEMENTS

For the last decades, our Institute has been at the international forefront of cancer research and innovative cancer treatments. It has been able to maintain that position, despite the difficult economic situation of the last few years. We have been very successful in obtaining external research grants and I am convinced that we will continue to do so. Provided that we can match this with a healthy ratio of core funding, I am convinced that the Netherlands Cancer Institute can continue to deliver important breakthroughs that will prove beneficial in the treatment of cancer, particularly in a time when our ever-growing molecular understanding of cancer meets up with a new generation of anti-cancer drugs that target well-defined nodal points in the cancer cell. This calls for a more individualized treatment of cancer, in which molecular pathology in the form of genetic and/or immunological fingerprinting of the tumor is extensively used in making clinical decisions of how to treat the individual patient. Success in this area will critically depend on a close collaboration between basic and clinical research and success in this area requires that we further optimize the links that exist between research and clinic. The fact that the Netherlands Cancer Institute has integrated its research and clinic in a single Comprehensive Cancer Center provides us with the ideal setting to facilitate this collaboration, and the examples of therapeutic concepts that we have brought to the clinic (table 2) provide solid proof of the added advantage of this integral model. We are actively recruiting new principal investigators with highly creative and innovative research programs aimed at groundbreaking research, to uncover new insights in cancer biology, develop new tools to study cancer, and to develop novel therapeutic strategies that can benefit patients.

I want to end by thanking all of our employees and everyone who supported us. Since its foundation in 1913, our organization has received enormous support from our highly-motivated employees, volunteers and sponsors. I also want to thank the Dutch Cancer Society (KWF Kankerbestrijding) for their institutional support and the Ministry of Health, Welfare and Sport, which provides a substantial core grant to our Institute and has provided the funds to renovate our research facilities. I also want to thank the many individuals that provide us with financial, moral and practical support. And last but not least, I would like to extend my sincere gratitude to all of our patients willing to participate in our clinical studies; they are vital to the progress that we can make.

René Medema Director of Research



Chairman of Board of Governors T de Swaan Patron Her Royal Highness Princess Beatrix of the Netherlands

## **Board members**

Board of Directors

> RH Medema Chairman and Director of Research

EE Voest Medical Director

M van der Meer Director of Organisation, Operations and Management

Scientific Advisory Council

> RH Medema Chairman

LFA Wessels Secretary

ACJ van Akkooi

TR Brummelkamp

HGAM van Luenen

MK Schmidt

EE Voest

Board of Governors

> T de Swaan President

EH Swaab Vice-president

GH Blijham

LJ Hijmans van den Bergh

JHJ Hoeijmakers

AM Jongerius

JMJM van Krieken

International Scientific Advisory Board

> A Ashworth Director of the UCSF Helen Diller Family Comprehensive Cancer Center, at the University of California, San Francisco

T de Lange Leon Hess Professor, The Rockefeller University, New York, USA

SM Gasser Director Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland

SP Jackson Head of Cancer Research UK Laboratories, The Gurdon Institute, University of Cambridge, United Kingdom

A Musacchio Honorary Professor, Max-Planck Institute of Molecular Physiology, Dortmund, Germany

R Nusse Professor of Developmental Biology, Stanford University, Stanford, USA

HL Ploegh Professor of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA

SN Powell Chairman, Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, USA

IF Tannock Daniel Bergsagel Professor of Medical Oncology, Princess Margaret Hospital and University of Toronto, Toronto, Canada

K Vousden Professor at The Francis Crick Institute, London, UK National Scientific Advisory Board

> DD Breimer Professor of Pharmacology, Leiden University

JL Bos Professor of Molecular Cancer Research, Utrecht University

EGE De Vries Professor of Medical Oncology, University of Groningen

JHF Falkenburg Professor of Experimental Hematology, Leiden University

CG Figdor Professor of Experimental Immunology, Radboud University Nijmegen

P Lambin Professor of Radiation Oncology, Maastricht University

A van Oudenaarden Professor of Quantitative Biology of Gene Regulation, Utrecht University

CJH van de Velde Professor of Surgical Oncology, Leiden University







Neil Aaronson

Group leader Division Psychosocial Research and Epidemiology

Neil Aaronson PhD Senior group leader Jacobien Kieffer MSc Senior statistical analyst

Marieke van Leeuwen PhD Post-doc Carla Agasi-Idenburg MSc PhD student Vera Atema MSc PhD student Lisanne Hummel MSc PhD student Marie-Anne van Stam MSc PhD student Marieke ten Tusscher MSc Project manager Evalien Veldhuijzen MSc Project

manager

#### Selected publications

Atema V, van Leeuwen M, Kieffer JM, Oldenburg HSA, van Beurden M, Gerritsma MA, Kuenen MA, Plaisier PW, Lopes Cardozo AMF, van Riet YEA, Heuff G, Rijna H, van der Meij S, Noorda EM, Timmers GJ, Vrouenraets BC, Bollen M, van der Veen H, Bijker N, Hunter MS, Aaronson NK. Efficacy of Internet-Based Cognitive Behavioral Therapy for Treatment-Induced Menopausal Symptoms in Breast Cancer Survivors: Results of a Randomized Controlled Trial. J Clin Oncol (in press)

Hummel SB, van Lankveld JJDM, Oldenburg HSA, Hahn DEE, Kieffer JM, Gerritsma MA, Kuenen MA, Bijker N, Borgstein PJ, Heuff G, Cardozo AMFL, Plaisier PW, Rijna H, van der Meij S, van Dulken EJ, Vrouenraets BC, Broomans E, Aaronson NK. Internet-Based Cognitive Behavioral Therapy Realizes Long-Term Improvement in the Sexual Functioning and Body Image of Breast Cancer Survivors. J Sex Marital Ther 2018;44(5):485-496

Van Stam MA, Aaronson NK, et al. Patient-reported outcomes following treatment of localised prostater cancer and their association with regret about treatment choices. Eur Urol Oncol 2018 (in press)

# Behavioral interventions in clinical oncology and Healthrelated quality of life assessment

This research line has two primary foci: (1) development and testing of behavioral and psychosocial interventions to reduce symptom burden and improve the HRQL of patients with cancer; and (2) development and use of health-related quality of life (HRQOL) assessments in clinical research and clinical practice.

# Efficacy of internet-based cognitive behavioral therapy (iCBT) on treatment-Induced menopausal symptoms in breast cancer survivors

In this randomized, controlled trial, we randomly assigned 254 BC survivors to a therapist guided or a self-managed iCBT group or a waiting-list control group. Compared with the control group, both iCBT groups reported a significant decrease in the perceived impact of HF/NS (p<.001, ES=.63 and.56) and improvement in sleep quality (p<.001, ES=.57 and .41). The guided group also reported significant improvement in overall levels of menopausal symptoms (p=.003, ES=.33), and night sweats frequency (p<.0012, ES=.64). At longer-term (6-month) follow-up, the effects remained significant with smaller ES, and also included significantly reduced frequency of hot flushes. iCBT, with or without therapist support, has salutary effects on the perceived impact and frequency of HF/NS, overall levels of menopausal symptoms and sleep quality.

#### Sustained effects of Internet-based cognitive behavioral therapy (iCBT) on sexual functioning of breast cancer survivors

We evaluated the long-term efficacy of iCBT) for sexual dysfunctions in 84 breast cancer survivors (BCS). The positive immediate post-intervention effects of the intervention observed in our randomised controlled trial on overall sexual functioning, sexual desire, sexual arousal, vaginal lubrication, discomfort during sex, sexual distress and body image at immediate post-treatment were maintained at 3- and 9-month follow-up. Although sexual pleasure decreased during follow-up, it did not return to baseline levels. Our findings provide evidence that iCBT has a sustained, positive effect on sexual functioning and body image of BCS with a sexual dysfunction.

## Patient-reported outcomes following treatment of localized prostate cancer and their association with regret about treatment choices

In this prospective, observational study we documented: (1) differences in physical and psychosocial patient-reported outcomes (PROs) following radical prostatectomy, external beam radiotherapy, brachytherapy, and active surveillance; and (2) how these PROs and other factors are associated with treatment decision regret. The sample included 434 men who completed validated PRO measures at baseline (pre-treatment) and 3, 6 and 12 months post-treatment. At one year follow-up, those men who had received: (1) radical prostatectomy reported significantly (p<0.01) more urinary incontinence, worse sexual function, more hormonal/masculinity-related symptoms, and less emotional distress; (2) external beam radiotherapy reported significantly worse sexual function, more hormonal/masculinity-related symptoms, and more physical distress; and (3) brachytherapy reported significantly more urinary obstruction and irritation symptoms, compared to patients under active surveillance. Decision regret was not significantly different across treatment groups. At one year follow-up 23% of the patients reported clinically relevant decision regret, which was associated with hormonal-related symptoms, educational level, and positive surgical margins.



#### Reuven Agami

Division head, group leader Division of Oncogenomics

Reuven Agami PhD Group leader Gözde Korkmaz PhD Senior post-doc Fabricio Loayza Puch PhD Senior post-doc Alejandro Piñeiro Ugalde PhD Post-doc Julien Champagne PhD Post-doc Yuval Malka PhD Post-doc Abhijeet Pataskar PhD Post-doc Ruigi Han PhD student Itamar Kozlovski PhD student Li Li PhD student Rui Lopez PhD student Behzad Mombeini PhD student Jane Sun PhD student Remco Nagel PhD Technical staff

## Selected publications

Han R, Li L, Ugalde AP, Tal A, Manber Z, Barbera EP, Chiara V, Elkon R and Agami R. Functional CRISPR screen identifies AP1-associated enhancer regulating FOXF1 to modulate oncogene-induced senescence. Genome Biol 2018;19(1):118

Li L, van Breugel P, Loayza-Puch F, Ugalde AP, Korkmaz G, Messika-Gold N, Han R, Lopes R, Barbera EP, Teunissen H, de Wit E, Soares R, Nielsen B, Holmstrom K, Martinez-Herrera D, Huarte M, Louloupi A, Drost J, Elkon R and Agami R. LncRNA-OIS1 regulates DPP4 activation to modulate senescence induced by RAS. Nucleic Acids Res 2018:46(8):4213-4227

Lopes R, Korkmaz G, Revilla S, van Vliet R, Nagel R, Custers L, Kim Y, van Breugel P, Zwart W, Moumbeini B, Manber Z, Elkon R, Agami R. CUEDC1 is a primary target of ERalpha essential for the growth of breast cancer cells. Cancer Lett. 2018;436:87-95

# Uncovering novel vulnerabilities of cancer

#### Introduction

Our main research objective is to identify novel cellular vulnerabilities that can be exploited for cancer therapies. For this purpose, we developed, and are still developing, innovative genomic and genetic tools. Key targets are non-coding RNAs, mRNA translation, and regulatory DNA elements such as enhancers and chromatin domains. In particular, we employ novel and unbiased functional genetic screening approaches, perform mechanistic studies to understand their connection with the cancerous phenotype, and use this information for the development of innovative cancer therapeutic approaches.

#### We report the following advance in 2018:

## (A) Tumour-specific amino acid vulnerability uncovered by differential ribosome codon reading (Diricore)

Treating cancer with amino acid deprivation schemes showed limited success so far. Only in the case of acute lymphoblastic leukemia a combined treatment of L-Asparaginase with chemotherapy increased patient cure to ~95%. Attempts to broaden this treatment to solid cancer have failed up to now. In 2016, we have developed differential ribosome profiling technology (Diricore) to uncover treatment-induced cellular amino acid shortages. In 2018, we used this technology, in combination with a genome-wide CRISPR-Cas9 functional genetic screen, to uncover resistant mechanisms to L-Asparaginase treatment mechanisms. Blocking these resistant mechanisms leads to sensitization of solid tumors to L-Asparaginase treatment.

#### (B) Functional genetic screens of regulatory DNA elements

Functional characterization of non-coding elements in the human genome is a major genomic challenge and the maturation of genome-editing technologies is revolutionizing our ability to achieve this task. In 2016 we initiated a CRISPR-Cas9-based genetic approach to functionally annotate tumor suppressor and oncogenic regulatory DNA elements. In 2018 we continue to use this technology to identify key players in cellular senescence and ER-alpha driven breast cancers. # Oncogene-induced senescence (OIS), a cellular state of irreversible proliferation arrest that is enforced following excessive oncogenic activity, is a major barrier against cancer transformation; therefore, bypassing OIS is a critical step in tumorigenesis. By applying genome-wide profiling of enhancers we identified the transcription factor AP-1 as a major regulator of the transcriptional program induced by OIS. Using CRISPR-Cas9 screening targeting senescence-induced AP-1-enhancers, we identified a novel genetic cascade mediated by AP-1 and FOXF1 genes that controls OIS.

# Breast cancer is the most prevalent type of malignancy in women with  $\sim$ 1.7 million new cases diagnosed annually, of which the majority express ER-alpha, a ligand-dependent transcription factor. Genome-wide chromatin binding maps suggest that ER $\alpha$  may control the expression of thousands of genes, posing a great challenge in identifying functional targets. Using our CRISPR-Cas9 functional genetic screening approach we characterized novel key regulators of ER-alpha mitogenic pathway.

#### (C) A role for long non-coding RNAs in cellular senescence

Long non-coding RNAs (IncRNAs) are transcripts longer than 200 nt without a protein-coding capacity. Functional studies showed that deregulated IncRNA expression promote tumorigenesis and metastasis and that IncRNAs may exhibit tumor-suppressive and oncogenic function. We used a loss of function genetic screen targeting the differentially expressed IncRNAs in OIS, and identified IncRNA-OIS1 as a IncRNA required for OIS. Detailed studies indicated the associated mechanism of action. We showed that IncRNA-OIS1 links oncogenic induction and senescence with optimal induction of the tumor suppressor DPP4. This pathway may be important for cancer as well as aging.

A



Leila Akkari

Group leader Division Immunology

Leila Akkari PhD Group leader Luuk van Hooren PhD Post-doc Serena Vegna PhD Post-doc Christel Ramirez MSc PhD student Jeremy Tessier MSc PhD student Shanna Handgraaf MSc Technical staff

## Macrophage dynamics in cancer progression and response to treatment

Our laboratory is interested in identifying vulnerabilities in the heterotypic communication between cancer cell and immune cell that can be targeted therapeutically. We study the microenvironment-mediated mechanisms of tumor maintenance, progression and resistance to therapeutic intervention.

## Unraveling the function of myeloid cells during glioma therapeutic response to standard of care therapy

A main focus in our group is to study the role of tumor infiltrating bone marrow derived macrophages (BMDM) and tissue resident microglia (MG) in glioblastoma multiforme using multiple murine models of the disease. The genetically engineered mouse models we employ develop from *nestin*+ glial progenitors, and are based on loss of the tumor suppressors *p53*, *Pten* or *Cdkn2a* combined with PDGFR signaling activation, mirroring mutations found in human gliomas. We found that therapeutic intervention with radiotherapy and temozolomide has different, albeit limited effect on prolonging survival of these animals depending on the genetic make-up of cancer cells. We identified transcriptional changes in BMDM/MG macrophage subpopulations during the course of treatment, that we additionally validated using proteomics analyses of bulk gliomas pre and post treatment. These changes include acquisition of a neural degeneration phenotype, rewiring brain macrophages to support glioma relapse post treatment. Our current work now focuses on identifying which signaling pathway activation underlie these changes, in order to target them pharmacologically and genetically and enhance the effect of radio/chemotherapy in aggressive gliomas.

#### Optimizing the combination between radio- and immunotherapy in glioblastoma

Incorporating anti-PD1 T-cell immunotherapy (IT) to the current standard of care treatment in glioblastoma has not yielded promising results in clinical trials. The lack of insights into the optimal timing and sequence of IT in relation to radiotherapy (RT) may be the cause of these failed clinical trials so far. In collaboration with Dr Gerben Borst, we are investigating the efficacy of a concurrent as opposed to an adjuvant IT. Our preliminary results show a survival benefit in the adjuvant compared to the concurrent setting potentially due to the delayed appearance of immunosuppressive components in the adjuvant setting. Importantly, we collaborate with Dr Dieta Brandsma and neurosurgeons at the Slotervaart and VUMC hospitals to obtain primary and recurrent human GBM, to identify additional alterations in the immune contexture of recurrent disease, including macrophage and T cell phenotype.

## Analyses of the tumor microenvironment dynamics in hepatocellular carcinoma (HCC) initiation and progression

We have developed multiple HCC murine models using the relevant oncogenic drivers of this disease, by taking advantage of hydrodynamic gene delivery and the Sleeping Beauty-mediated somatic integration in mouse hepatocytes *in vivo*. In collaboration with Dr Rene Bernards' lab, we have used a subset of these models to successfully test novel pro-senescence therapy. Our analyses of the tumor microenvironment showed that the cancer cell genetic background strongly influences the immune cell landscape and that macrophages showed the largest differences in content in these models of HCC. These findings are encouraging us to therapeutically target macrophage populations in liver cancer.



#### Roderick Beijersbergen

Group leader Division Molecular Oncology

Roderick Beijersbergen PhD Group leader

Lorenzo Bombardelli PhD Post-doc Kathy Jastrzebski PhD Post-doc Hanneke van Eden PhD student Cor Lieftink MSc Bioinformatician Ben Morris Technical staff Wouter Nijkamp Technical staff Martin de Rooii Technical staff

Selected publications

Jastrzebski K, Thijssen B, Kluin RJC, de Lint K, Majewski IJ, Beijersbergen RL, Wessels LFA. Integrative modeling identifies key determinants of inhibitor sensitivity in breast cancer cell lines. Cancer Res. 2018;78(15):4396 -4410

Wang C, Jin H, Gao D, Lieftink C, Evers B, Jin G, Xue Z, Wang L, Beijersbergen RL, Qin W, Bernards R. Phospho-ERK is a biomarker of response to a synthetic lethal drug combination of sorafenib and MEK inhibition in liver cancer. J Hepatol. 2018;69(5):1057-1065

Wang C, Jin H, Gao D, Wang L, Evers B, Xue Z, Jin G, Lieftink C, Beijersbergen RL, Qin W, Bernards R. A CRISPR screen identifies CDK7 as a therapeutic target in hepatocellular carcinoma. Cell Res. 2018;28(6):690-692

## Cancer specific dependencies

Our research continues to evolve around the discovery of regulators of crucial pathways deregulated in cancer, genotype specific dependencies and synthetic lethal interactions that can be explored as drug targets in precision therapy. To achieve these goals, we develop and apply functional genomic technologies including large scale RNAi and CRISPR/CAS9 screening. Besides CRISPR-based gene-editing, we apply CRISPR-based transcriptional activation, -repression and -base-editing screening technologies. With the ability to efficiently manipulate genomes in mammalian cells, we have started to generate screening models based on sensors that report gene-transcription, protein activation or pathway regulation. These advanced tools will allow for the discovery of novel components and pathways involved in cancer relevant phenotypes.

## Identification of synthetic lethal interactions with mutations in the SWI/SNF chromatin remodeling complex

CRISPR-based screening provides a powerful way to identify synthetic lethal interactions. We have screened a panel of cell lines characterized by different mutations in members of the SWI/ SNF chromatin remodeling complex. Inactivating mutations in members of the SWI/SNF chromatinremodeling complex have been identified in a variety of cancer types with a frequency of up to 50%. Genes frequently found mutated in these cancers are ARID1A, ARID1B, SMARCA2, SMARCA4 and PBRM1. It has been proposed that mutation or loss of a specific component can result in the formation of other SWI/SNF complexes that either compensate for the loss of specific subunits, or that the residual altered complex may have a direct role in tumorigenesis. The targeting of residual SWI/SNF complexes as therapeutic strategy has been demonstrated by the synthetic lethal interactions between ARID1A mutation and ARID1B loss and between SMARCA4 mutation and SMARCA2 loss. Synthetic lethal interactions can also be the consequence of compensation by other chromatin mechanisms with antagonistic action e.g. EZH2 up-regulation in the context of SMARCB1 loss and targeted inhibition of EZH2 may therefore present a therapeutic opportunity for SMARCB1 mutant cancers. We have performed CRISPR drop-out screen in this panel of cell lines using an sgRNA library targeting ~500 genes involved in chromatin modification. In addition, we have used a set of MCF10A isogenic cell lines with the different SWI/SNF mutations. From these screens we have identified a number of potential synthetic lethal interactions and we are currently studying these novel interactions in more detail.

#### MAPK pathway hyper-activation as strategy to treat resistant cancers

Drug resistance is the largest factor limiting the success of targeted treatment. BRAF<sup>V600E</sup>mutant melanomas are strongly driven by MAPK signaling. This dependency is illustrated by the effectiveness of MAPK pathway inhibition using either single (BRAF) inhibitors or combinations of BRAF and MEK inhibitors. However, treatment with MAPK pathway inhibitors almost invariably leads to outgrowth of resistant disease in which both genomic and non-genomic mechanisms cooperate to restore MAPK pathway output to sufficient levels to compensate for the effect of the BRAF and MEK inhibitors. However, MAPK pathway output levels need to be tightly controlled as too much leads to anti-proliferative signals. This is illustrated by the observation that resistant melanoma cells become sensitive to withdrawal of the inhibitor(s), a phenomenon referred to as drug addiction. This suggests that hyper-activation of the MAPK pathway in these resistant tumors represents a vulnerability that is exposed upon drug withdrawal. Indeed, we have shown that hyperactivation of the MAPK pathway using Prostratin, a PKC and MAPK pathway activator, results in enhanced cell death after BRAF/MEK inhibitor withdrawal in resistant BRAF-mutant melanoma cells. Although prostratin can be explored for clinical application, we have set out to identify negative regulators such as phosphatases, which upon inhibition, also result in deregulation and hyperactivation of the MAPK pathway. With the identification of additional mechanisms, we aim to identify other means to control the level of MAPK pathway output under specific circumstances. This insight could to lead to potential targets that can be explored to kill resistant melanoma cells upon drug withdrawal with potentially a more preferable therapeutic window than MAPK pathway activators such as Prostratin.

E



#### Jos Beijnen

Group leader Division Pharmacy & Pharmacology

Jos Beijnen PhD Group leader Joost van den Berg PhD Academic staff Thomas Dorlo PhD Academic staff Jeroen Hendrikx PhD Academic staff Alwin Huitema PhD Academic staff Bastiaan Nuijen PhD Academic staff Cynthia Nijenhuis PhD Academic staff Hilde Rosing PhD Academic staff Bart Jacobs PhD Hospital pharmacistin-training

Lotte van Andel MSc PhD Post-doc Hedvig Arnamo MSc PhD student Rene Boosman MSc PhD student Maaike Bruin MSc PhD student Maarten van Eijk MSc PhD student Marie-Rose Flint-Crombag MSc PhD student

Steffie Groenland MSc PhD student Maikel Herbrink MSc PhD student Paniz Heydari MSc PhD student Julie Jansen MSc PhD student Eveline van Kampen MSc PhD student Jonathan Knikman MSc PhD student Sven de Krou MSc PhD student Laura Kuijsten MSc PhD student Merel van Nuland MSc PhD student Semra Palic MSc PhD student Jeroen Roosendaal MSc PhD student Ignace Roseboom MSc PhD student Luka Verrest MSc PhD student Aurelia de Vries Schultink MSc PhD

Joke Beukers Technical staff Niels de Vries Technical staff Abadi Gebretensae Technical staff Michel Hillebrand Technical staff Ciska Koopman Technical staff Luc Lucas Technical staff Saskia Scheij Technical staff Bas Thijsen Technical staff Matthijs Tibben Technical staff Joke Schol Technical staff Maaike van Zon Technical staff Nikkie Venekamp Technical staff Rhianne Voogd MSc Technical staff

## Pharmaceutical research: drug manufacturing – bioanalysis – pharmacokinetics

Our research programs focus on drug manufacturing including cellular immunotherapies, bioanalysis and pharmacokinetics of (anticancer) drugs for both preclinical and clinical projects.

#### Drug manufacturing

We support more than 20 mono- and (international) multi-center clinical trials (*e.g.* DRUP, POSEIDON, SUBITO, SENSOR) with drug manufacturing, packaging and distribution. In-house manufacturing of vorinostat capsules and oral solid dispersion tablet formulations of docetaxel (ModraDoc006) and paclitaxel (ModraPac005) is performed for ongoing clinical studies. Research to develop and/or to improve oral formulations of anticancer agents is continued by the introduction in 2019 of a new technique: *hot melt extrusion*. In 2018, we continued the production of Tumour Infiltrating Lymphocytes (TIL) infusions for metastatic melanoma patients treated in the first multi-center phase III trial with TIL therapy in the world. Previously produced DNA vaccines for HPV induced malignancies are currently tested by the Gynaecology department and promising results have been observed. <sup>gym</sup>Tc-PSMA radiopharmaceuticals for imaging of prostate cancer are under development in the department of Nuclear Medicine under our supervision.

#### Bioanalytical method development and implementation in pharmacokinetic studies

Plasma pharmacokinetics and tissue distribution of capecitabine, irinotecan, vinorelbine, ribociclib, palbociclib, abemaciclib and galunisertib were measured for preclinical studies. Less invasive sampling techniques, like Dried Blood Spots (DBS) and Volumetric Absorptive Microsampling (VAMS) were successfully developed for everolimus. In a mass balance study we found SGI-110, a prodrug of decitabine, to be rapidly metabolized and excreted in urine. The metabolic pathway of SGI-110 has now been elucidated and new metabolites have been identified. A metabolite profiling study with lurbinectedin (PM01183) with structural elucidation of metabolites revealed extensive metabolism of the drug. We analysed capecitabine and all its metabolites in a large, multi-centre, prospective genotyping study. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) assays for the anti-hormonal drugs abiraterone, its active metabolite  $\Delta$ (4)-abiraterone, anastrozole, bicalutamide, endoxifen, enzalutamide and its active metabolite N-desmethyl enzalutamide, and exemestane were successfully developed, validated and implemented in our Therapeutic Drug Monitoring (TDM) program. This year we have received more than 5,000 samples for TDM analysis. New LC-MS/MS equipment including a hyphenated LC-MS Q-TOF platform is installed in the beginning of 2019.

#### Pharmacokinetic and Pharmacodynamics (PK/PD) modelling and simulation

For paclitaxel it was shown in a large retrospective study that older age does not have a relevant effect on its pharmacokinetics. A semi-mechanistic framework to predict the effects of pregnancy on the pharmacokinetics of selected anticancer agents has been developed and is currently validated. We implemented TDM for all novel tyrosine kinase inhibitor drugs in clinical practice. In this program we reported patients with severe toxicity on the standard dose of pazopanib who could safely and effectively be treated with pazopanib with an up to 8-fold lower dose based on measured plasma levels. Furthermore, it has been shown that elderly treated with kinase inhibitors do not have relevantly higher plasma concentration or lower dose intensity. Our program on treatment optimization of the repurposed anticancer PI3K/Akt inhibitor miltefosine for the neglected tropical parasitic disease leishmaniasis has been largely extended, with various clinical PK/PD studies initiated in 2018 in India, Bangladesh, Sudan and Kenya, funded partially through H2020. For <sup>177</sup>Ludotatate, a PK/PD model is under development in collaboration with the department of Nuclear Medicine. PK/PD modelling was also the basis for the introduction of fixed dosing of all monoclonal antibodies in our clinical practice.



André Bergman

Group leader Division Oncogenomics

André Bergman MD PhD Group leader Sushil Badrising MD PhD student Bianca Cioni MSc PhD student Jeroen Kneppers MSc PhD student Simon Linder MSc PhD student Rebecca Louhanepessy MD PhD student Suzan Stelloo MSc PhD student Marit Vermunt MD PhD student Anniek Zaalberg MSc PhD student Yanyun Zu MSc PhD student

## Selected publications

Cioni B, Nevedomskaya E, Melis MHM, van Burgsteden J, Stelloo S, Hodel E, Spinozzi D, de Jong J, van der Poel H, de Boer JP, Wessels LFA, Zwart W, Bergman AM. Loss of androgen receptor signaling in prostate cancerassociated fibroblasts (CAFs) promotes CCL2- and CXCL8-mediated cancer cell migration. Mol Oncol. 2018;12(8):1308-1323

Stelloo S, Nevedomskaya E, Kim Y, Hoekman L, Bleijerveld OB, Mirza T, Wessels LFA, van Weerden WM, Altelaar AFM, Bergman AM, Zwart W. Endogenous androgen receptor proteomic profiling reveals genomic subcomplex involved in prostate tumorigenesis. Oncogene. 2018;37(3):313-322

Stelloo S, Nevedomskaya E, Kim Y, Schuurman K, Valle-Encinas E, Lobo J, Krijgsman O, Peeper DS, Chang SL, Feng FY, Wessels LFA, Henrique R, Jerónimo C, Bergman AM, Zwart W. Integrative epigenetic taxonomy of primary prostate cancer. Nat Commun. 2018;9(1):4900

# How the microenvironment affects prostate carcinogenesis

Our lab has an interest in the the interaction between normal prostate cells and prostate cancer. The prostate cancer microenvironment consists of stromal and immune cells recruited to the microenvironment. There is abundant evidence that these cells play a crucial role in the initiation and progression of prostate caner. In contrast to the tumor cells, the stroma and infiltratred immunecells in the tumor microenvironment consists of normally regulated cells and might hold promise for clinical valuable biomarkers and drug targets.

## Functionality of Androgen receptor expression in human prostate cancer associated fibroblasts

Androgen Receptor (AR) signaling is essential for the development of the prostate and for prostate cancer development. Not only normal and malignant epithelial prostate cells express the AR, but also cells in the prostate cancer microenvironment, including Cancer Associated Fibroblasts (CAFs). CAFs were isolated from biopsies of cancer-affected areas in prostatectomies and cultured in vitro. The isolated cells express various CAF markers and the AR. The AR bound to the chromatin upon testosterone, which suggests transcriptional activity. Exposure of prostate cancer cells to medium of testosterone stimulated fibroblasts, resulted in decreased migration mediated by CCL2 and CXCL8.

#### Androgen receptor signaling in prostate cancer associated macrophages

Multiple macrophage differentiations have been described, including inflammation associated M1 and cancer promoting M2 macrophages. The amount and differentiation of infiltrating macrophages proved to be prognostic factors for prostate cancer development. Prostate cancer cells express the AR and its ligand testosterone is the main driver of prostate cancer cell growth. Immunohistochemical studies showed co localization of AR and the pan-macrophage marker CD68 in human prostate cancer samples suggesting that macrophages express AR. Moreover, single cell mRNA sequencing of myeloid (CD14+) cells isolated from human prostate cancer biopsies showed AR expression. Further studies showed that AR in macrophages regulates the expression of multiple cytokines that stimulate prostate cancer cell migration and invasion. AR in macrophages also stimulated differentiation into M2. These results suggest that inhibition of AR in macrophages is a novel mechanism of action of androgen receptor inhibitors.

#### Lesion of origin of metastatic prostate cancer

The prostate of a patient diagnosed with prostate cancer, contains an average of five genetically different prostate cancer lesions. It is commonly assumed that the largest lesion is also the one that metastasizes and therefore is the source of potential lethal disease. Various focal therapies aim to destroy the largest prostate cancer lesion only, as an organ sparing curative treatment. However, there is no data supporting this assumption. We selected FFPE prostatectomy specimen with associated pelvic lymph node metastases. The various prostate cancer foci in the prostatectomy specimen and the lymph node metastases were identified and DNA was isolated. Copy number aberrations, allowed us to identify the prostate cancer lesion of origin of the metastasis with great certainty. A significant number of metastases did not originate from the largest prostate cancer lesion, but from smaller lesions.

#### Myeloid cell populations in human prostate cancer

Macrophages are among the most abundant non-cancerous cells in the tumor microenvironment and relatively recent studies introduced the concept of different subtypes of macrophages that are able to influence tumor progression. The overall aim of this project is to assess the phenotype of the myeloid cells compartment and their secreted factors in the tumor microenvironment of human prostate cancer. Myeloid cell populations are quantified in human prostate cancer specimen. Moreover, macrophages are isolated from biopsies from the cancer affected peripheral zone of human prostates and phenotypically characterized by single cell sequencing.

B



#### René Bernards

Group leader Division Molecular Carcinogenesis

René Bernards PhD Group leader Katrien Berns PhD Academic staff Begona Diosdado MD PhD Post-doc Haojie Jin PhD Post-doc Rodrigo Leite de Oliveira PhD Post-doc Sara Mainardi PhD Post-doc Arnout Schepers PhD Post-doc Cun Wang PhD Post-doc Zheng Xue PhD Post-doc Fleur Jochems MSc PhD student Josephine Kahn MSc PhD student Antonio Mulero Sanchez MSc PhD student

Joao Neto MSC PhD student Ziva Pogacar MSC PhD student Tonci Sustic MSC PhD student Liqin Wang MSC PhD student Annemiek Bes-Gennissen Technical staff

Astrid Bosma Technical staff Marielle Hijmans MSc Technical staff

# Selected publications

Mainardi S, Mulero-Sánchez A, Prahallad A, Germano G, Bosma A, Krimpenfort P, Lieftink C, Steinberg JD, de Wit N, Gonçalves-Ribeiro S, Nadal E, Bardelli A, Villanueva A, Bernards R. SHP2 is required for growth of KRAS-mutant non-smallcell lung cancer in vivo. Nat Med. 2018;24(7):961-967

Wang C, Jin H, Gao D, Wang L, Evers B, Xue Z, Jin G, Lieftink C, Beijersbergen RL, Qin W, Bernards R. A CRISPR screen identifies CDK7 as a therapeutic target in hepatocellular carcinoma. Cell Res. 2018;28:690-2

Wang L, Leite de Oliveira R, Huijberts S, Bosdriesz E, Pencheva N, Brunen D, Bosma A, Song J-Y, Zevenhoven J, Los-de Vries GT, Horlings H, Nuijen B, Beijnen JH, Schellens JHM, Bernards R. An Acquired Vulnerability of Drug-Resistant Melanoma with Therapeutic Potential. Cell. 2018;173:1413-25

### **Functional genomics**

My group uses genome-wide functional genetic approaches to identify powerful drug combinations, new drug targets and mechanisms of resistance to cancer drugs. We aim to bring our discoveries to the clinic quickly in close collaboration with the clinicians in our affiliated hospital.

#### Pro-senescence therapies for the treatment of cancer

Induction of senescence represents a promising strategy for the treatment of cancer, especially when such pro-senescence therapy is combined with a second drug that selectively kills senescent cancer cells (senolytic agent). Through a genetic screen identifying pro-senescence effectors, we found that inhibition of CDC7 induces senescence selectively in *TP53* mutant liver cancer cells. Using a chemical screen, we found that inhibition of mTOR is effective in causing apoptotic cell death only in senescent HCC cells. In multiple in vivo liver cancer models we found that a combination of CDC7 and mTOR inhibitors results in dramatic synergistic inhibition of tumor growth. Our data indicate that a pro-senescence therapy combined with a senolytic drug can be effective for treatment of liver cancer (see figure).

#### Collateral sensitivity of drug resistant cancers

Drug resistance comes at a fitness cost that can lead to novel vulnerabilities of the drug resistant cancer cells. We searched for acquired vulnerabilities when *BRAF* mutant melanomas become resistant to the combination of BRAF and MEK inhibitors. We found that treatment drug resistant melanoma cells with the histone deacetylase inhibitor vorinostat resulted in a lethal increase in the already elevated levels of Reactive Oxygen Species in drug-resistant cells, causing apoptotic death of only the drug resistant tumor cells. Treatment of BRAF inhibitor-resistant melanoma with vorinostat in mice results in a dramatic tumor regression. In collaboration with professors Beijnen and Schellens a clinical study was performed in which patients with advanced BRAF+MEK inhibitor resistant melanoma were treated with vorinostat. Preliminary results from this study indicate that vorinostat can indeed selectively ablate BRAF inhibitor-resistant tumor cells, providing clinical proof of concept for the novel therapy identified in the laboratory. More generally, these data highlight that studying how cancer cells acquire resistance to targeted cancer drugs may be fruitful to identify novel vulnerabilities that can be exploited therapeutically.

#### PTPN11 as a drug target in RAS mutant cancers

It is well-established that *KRAS* mutant tumors are insensitive to inhibition of upstream growth factor receptor signaling. Indeed, inhibition of the protein tyrosine phosphatase PTPN11, which links receptor tyrosine kinase signaling to the RAS-RAF-MEK-ERK pathway, was shown to be ineffective in *KRAS* mutant cancer cell lines. Our data indicate that PTPN11 inhibition in *KRAS* mutant NSCLC cells under growth factor-limiting conditions in vitro results in a senescence response. In vivo, inhibition of PTPN11 in *KRAS* mutant NSCLC also provokes a senescence response, which is exacerbated by MEK inhibition. Our data identify PTPN11 inhibition as an unexpected vulnerability of *KRAS* mutant NSCLC cells that remains undetected in cell culture, which can be exploited therapeutically. We aim to test a combination of PTPN11 and MAPK inhibitors in *KRAS* mutant tumors in the clinic in the course of 2019.



A one-two punch model for cancer therapy based on induction of senescence.

A first drug induces senescence in cancer cells, followed by a second drug that selectively kills senescent cancer cells.



#### Anton Berns

Group Leader Division Molecular Genetics

Anton Berns PhD Group Leader Paul Krimpenfort PhD Staff member Jitendra Badhai PhD Post-doc Rajith Bhaskaran PhD Post-doc Giustina Ferone PhD Post-doc Ekaterina Semenova PhD Post-doc Hilda de Vries PhD Post-doc Jan Paul Lambooij Technical staff Jan van der Vliet Technical staff John Zevenhoven Technical staff

Selected publications

Adami H-O, Berns A, Celis JE, de Vries E, Eggermont A, Harris A, et al. European Academy of Cancer Sciences - position paper. Mol Oncol. 2018;12(11):1829-37

Kas SM, de Ruiter JR, Schipper K, Schut E, Bombardelli L, Wientjens E, Drenth AP, de Korte-Grimmerink R, Mahaken S, Philips C, Smith PD, Klarenbeek S, van de Wetering K, Berns A, Wessels LF, and Jonkers J. Transcriptomics and Transposon Mutagenesis Identify Multiple Mechanisms of Resistance to the FGFR Inhibitor AZD4547. Cancer Res. 2018;78:5668-79

Nagel R, Avelar AT, Aben N, Proost N, van de Ven M, van der Vliet J, Cozijnsen, M, de Vries H, Wessels L, and Berns A. Inhibition of the replication stress response is a synthetic vulnerability in SCLC that acts synergistically in combination with cisplatin. Mol. Cancer Therapeutics, 2019 (in press)

### Mouse models of thoracic cancers

We use the mouse as a model organism to study the role of oncogenes and tumor suppressor genes in lung cancer and mesothelioma development. By utilizing recombination-mediated switching and taking advantage of somatic gene transfer methods and genome editing techniques we alter the expression of multiple oncogenes and tumor suppressor genes in a tissue-specific fashion permitting accurate modeling of tumorigenesis as it is observed in man.

#### Small Cell Lung Cancer

We identified several SCLC subtypes in mouse models in which *Mycl* or *Nfib* was overexpressed with concomitant loss of *Rb* and *Trp53* in lung epithelial cells. These include CDH1-high peripheral primary and aggressive CDH1-negative centrally located secondary tumor lesions. Cisplatin treatment preferentially eliminates the latter, thus revealing a striking differential response. Using a combined transcriptomic and proteomic approach, we observed a marked reduction in proliferation and metabolic rewiring following cisplatin-treatment, and found evidence for a unique metabolic and structural profile defining intrinsically cisplatin-resistant populations. This offers perspectives for new combination therapies that might also hold promise for treating human SCLC, given the very similar response of both mouse and human SCLC to cisplatin. In a functional genome-wide screen in which all individual genes were knocked out to identify novel vulnerabilities of SCLC. The stress response machinery appeared particularly important in SCLC. By the use of Chk1 and ATR inhibitors we showed that SCLC cells are more sensitive to these inhibitors than non-transformed cells. Furthermore, these inhibitors acted synergistically with either etoposide and cisplatin. VE822 mediated inhibition of ATR in combination with cisplatin also outperforms the combination of cisplatin with etoposide *in vivo*.

#### Malignant Mesothelioma

Malignant Mesothelioma (MM) is one of the most lethal human malignancies of the thoracic cavity that can present as three different subtypes: epithelioid, sarcomatoid and biphasic. We have developed a mouse model of malignant mesothelioma (MM) based on the disruption of the *Bap1*, *Nf2*, and the *Cdkn2ab*, tumour suppressor loci that are also frequently mutated in human MM. Inactivation of all three genes loci in the mesothelial lining of the thoracic cavity leads to a highly aggressive primarily epithelioid MM with a modest response to frontline therapy similar as observed in man. *Bap1* deletion alone does not cause MM but dramatically accelerates MM development when combined with *Nf2* and *Cdkn2ab* disruption. The accelerated tumour development is accompanied by increased Polycomb repression and EZH2-mediated redistribution of H2K27me3 towards promoter sites, with concomitant activation of the PI3K, MAPK, and Hippo pathways. Early passage MM cells with inactivated BAP1 from these mice are hypersensitive to EZH2 inhibition. Moreover, dual inhibition of EZH2(GSK126) and FGFR(AZD4547) leads to strong synergistic lethality in these cells. Therefore, the autochthonous mouse model described here is particularly suited to explore and validate new treatment regimens for MM.

To assess whether the cell-of-origin is an important determinant of the mesothelioma subtype we inactivated *Nf2* and *Trp53* in cells of the mesothelial lining of *Cdkn2a*-deficient mice cells *in vitro* and *in vivo*. Cloned *in vitro* switched mesothelial cells showed distinct protein profiles reminiscent of the three tumor subtypes and gave rise to the distinct tumor subtypes upon *in vivo* grafting. Their expression profiles align with the cognate mesothelioma subtypes of human patients. We also showed that restricting tumor suppressor inactivation to subsets of cells in the mesothelial lining *in vivo* using lentiviral vectors expressing iCre from distinct promoters did give rise to a distinct MM subtype distribution supporting the notion that the cell-of-origin is a critical factor in dictating the tumor subtype of MM.

B



#### **Christian Blank**

Group leader Division Molecular Oncology & Immunology

Christian Blank MD PhD Group leader Trieu Van My PhD Post-doc Esmee Hoefsmit MSc PhD student Ruben Lacroix MSc PhD student Disha Rao MSc PhD student Irene Reijers MD PhD student Lisette Rozeman MD PhD student Mesele Valenti Technical staff

## Selected publications

Blank CU, Rozeman EA, Fanchi LF, Sikorska K, van de Wiel B, Kvistborg P, Krijgsman O, van den Braber M, Philips D, Broeks A, van Thienen JV, Mallo HA, Adriaansz S, Ter Meulen S, Pronk LM, Grijpink-Ongering LG, Bruining A, Gittelman RM, Warren S, van Tinteren H, Peeper DS, Haanen JBAG, van Akkooi ACJ, Schumacher TN. Neoadjuvant versus adjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma. Nat Med. 2018;24(11):1655-1661

Eggermont AMM, Blank CU, Mandala M, Long GV, Atkinson V, Dalle S, Haydon A, Lichinitser M, Khattak A, Carlino MS, Sandhu S, Larkin J, Puig S, Ascierto PA, Rutkowski P, Schadendorf D, Koornstra R, Hernandez-Aya L, Maio M, van den Eertwegh AJM, Grob JJ, Gutzmer R, Jamal R, Lorigan P, Ibrahim N, Marreaud S, van Akkooi ACJ, Suciu S, Robert C. Adjuvant Pembrolizumab versus Placebo in Resected Stage III Melanoma N Engl J Med. 2018;378(19):1789-1801

Lacroix R, Rozeman EA, Kreutz M, Renner K, Blank CU. Targeting tumor-associated acidity in cancer immunotherapy. Cancer Immunol Immunother. 2018;67(9):1331-1348

## Understanding resistance upon immunotherapy

We aim to identify mechanisms of tumor immune escape and to develop therapeutic protocols to combine cancer immunotherapy with targeted and other therapies. Tumor immune escape mechanisms include inhibitory molecules on tumor cells or on antigen presenting cells and immune regulatory cells in the tumor environment. Also, their spatial relationship within the tumor will be crucial to determine the relevance of individual immune inhibitory cell infiltrates. The functional characterization of inhibitory molecules, exploration of their inhibition and the examination of possible synergy with small molecule-based targeted and other therapies may help in designing novel approaches to improve cancer immunotherapy.

#### Alteration of immune infiltrates to improve the outcome upon checkpoint inhibition

Targeted therapy does not only alter tumor signaling pathways, but also the tumor environment. Thus, it is crucial to simulate targeted therapies in immune-competent mouse models for cancer. Previously, we have tested combined targeting of the MAPK and the PI3K pathways (selective BRAF, MEK, PI3K and mTOR inhibitors) in murine melanoma. We found that short-term intermittent combination of BRAF and MEK inhibition was superior to all other targeted combinations when combined with PD-1 blockade. This has led to a phase 1b trial testing several intermittent combinations in melanoma patients (IMPemBra, NCT02625337), that was presented as late braking abstract at this year's ESMO annual meeting.

Currently, we are testing new approaches to alter the skewing towards low regulatory T cell content in tumors, more resistant T cells in the hostile tumor environment and improving the presence of antigen presenting cells within the tumor.

#### Biomarker identification for personalized immunotherapy

Immunotherapies like CTLA-4 or PD-1/PD-L1 blockade have revolutionized the treatment of late stage melanoma. Analyzing patients treated neoadjuvant with CTLA-4 plus PD-1 blockade allows extensive biomarker analyses, due to the tumor surgery after the immunotherapy. In these patients, we found, and confirmed in a second larger cohort of patrients, that an interferon-gamma RNA signature, was associated with response to the therapy. None of the patients that had favorable signatures has relapse so far, possibly being the first step toward personalized immunotherapies and subsequent testing of alternative combinations in signature unfavorable patients.



#### **Eveline Bleiker**

Group leader Division Psychosocial Research and Epidemiology

Eveline Bleiker PhD Group leader Jacobien Kieffer PhD Technical staff Ellen Engelhardt PhD Post-doc Aleksandra Berezowska PhD Post-doc Jacqueline ter Stege MSc PhD student Danielle Starreveld MSc PhD student Kasper Overbeek MD PhD student Pernilla Scheelings MSc Jr researcher Marianne Kuenen Research assistant Miranda Gerritsma MSc Research Jessie de Geus MSc Research

assistant

#### Selected publications

Brédart A, I...J, Bleiker E, Kulis D, Bonnetain F, Aaronson NK; EORTC Quality of Life Group. et al. Phase III study of the European Organisation for Research and Treatment of Cancer satisfaction with cancer care core questionnaire (EORTC PATSAT-C33) and specific complementary outpatient module (EORTC OUT-PATSAT7). Eur J Cancer Care. 2018;27(1)

Menko, FH, Stege JA ter, Kolk L van der, Jeanson K, Schats W, Ait Moha D, Bleiker EMA. The uptake of presymptomatic genetic testing in hereditary breast-ovarian cancer and Lynch syndrome: a systematic review of the literature and implications for clinical practice. Fam Cancer. 2019;18(1):127-135

Starreveld DEJ, Daniels LA, Valdimarsdottir HB, Redd WH, Geus J de, Ancoli-Israel S, Lutgendorf S, Korse CM, Kieffer JM, Leeuwen FE van, Bleiker EMA. Light therapy as a treatment of cancer-related fatigue in (non-)Hodgkin lymphoma survivors (SPARKLE trial): study protocol of a multicenter randomized controlled trial. BMC Cancer 2018;18(1):880

# Psychosocial oncology in clinical genetics and supportive care

This psychosocial oncology group is concentrating on survivorship and supportive care in individuals with cancer, and those at high risk of developing cancer because of a family history of cancer or an inherited gene mutation. The overall aim of the research is to improve the quality of life and quality of care.

#### **Clinical genetics**

#### Whole body-MRI for carriers of a TP53 mutat-ion

Li-Fraumeni syndrome is a rare cancer predisposition syndrome characterized by a high lifetime risk of developing different tumors including sarcomas, breast cancer, brain tumors, and leukemia and is associated with germline mutations in the *TP53* gene. In our LiFe-Guard study, we assess the diagnostic yield, the false-positive rate, and the burden of an annual surveillance program including whole-body magnetic resonance imaging (WB-MRI). In the initial round of our annual surveillance program, including 56 *TP53* mutation carriers, malignancies were detected in approximately 7% of patients. This detection rate comes at the expense of many false-positives and increased levels of distress. However, almost all (97%) reported that the benefits of the annual screening outweigh the burden.

#### Survivorship and supportive care

## Supporting women in making a well-informed decision about breast reconstruction: the development and evaluation of an online decision aid (TANGO-project)

In 2015, funding was received from Alpe d'HuZes/ KWF for a five-year study which aims to develop and implement an interactive, online, patient decision aid (pDA) for women who have to decide on breast surgery and reconstruction. Decisions about breast reconstruction are complex and largely depend on patients' personal preferences. We developed the online pDA, consisting of six modules with information about the reconstructive options, pros and cons of the options and the most frequent complications. The pDA also includes experiences of other patients and value clarification exercises that stimulate women to weigh the options. Currently, a randomized controlled trial runs in eight hospitals and has enrolled 209 women being treated for breast cancer or ductal carcinoma in situ, undergoing ablative surgery. In 2019, when 250 women are enrolled, data on the effectiveness of the decision aid will be analyzed.

## Improving sleep quality, psychosocial functioning, and cancer related fatigue with light therapy (SPARKLE-study)

Cancer related fatigue is a frequently reported symptom in survivors of (non-) Hodgkin lymphoma (40-60%). This fatigue impacts on the quality of life, even years after diagnosis. A novel and promising intervention to treat this symptom is *light therapy*. During a 4-week light therapy intervention, patients are exposed to bright white light every morning for 30 minutes. The SPARKLE-study (financially supported by the KWF) is a multi-center RCT which investigates the efficacy of this intervention in (non-)Hodgkin survivors. We also explore possible working mechanisms, including changes in sleep quality, psychological variables, biological circadian rhythms, circadian activity rhythms, and/or inflammation markers that have been identified as correlates and potential causes of fatigue. In 2018 we have included 93 participants in the study, stemming from 10 hospitals. In 2019, we will continue to recruit patients until 160 participants are enrolled in the study.



#### Gerben Borst

Group leader Division Cell Biology

Gerben Borst MD PhD Group leader Beatriz Gomez Solsona MSc PhD student Eline Hessen MD PhD student Paul Slangen MSc PhD student Mariska van Geldorp Technical staff

## Selected publications

Barazas M, Gasparini A, Huang Y, Küçükosmanoğlu A, Annunziato S, Bouwman P, Sol W, Kersbergen A, Proost N, de Korte-Grimmerink R, van de Ven M, Jonkers J\*, Borst GR\*, Rottenberg S\*. Radiosensitivity is an acquired vulnerability of PARPiresistant BRCA1-deficient tumors, Cancer Res. 2018 \*shared senior and corresponding authorshin

Bibault JE, Franco P, Borst GR, Van Elmpt W, Thorwhart D, Schmid MP, Rouschop KMA, Spalek M, Mullaney L, Redalen KR, Dubois L, Verfaillie C, Eriksen JG. Learning radiation oncology in Europe: Results of the ESTRO multidisciplinary survey. Clin Transl Radiat Oncol. 2018

Jelvehgaran P, de Bruin DM, Salguero FJ, Borst GR, Song JY, van Leeuwen TG, de Boer JF, Alderliesten T, van Herk M. Feasibility of using optical coherence tomography to detect acute radiation-induced esophageal damage in small animal models. J Biomed Opt. 2018;23(4):1-12

## Optimizing treatment strategies for brain tumors, and uncovering irradiation escapes mechanisms

#### Optimizing the timing and duration of targeted agents in relation to the RT Immunotherapy

Local radiation causes significant alterations in the tumor microenvironment that are thought to boost immunity. However, the working mechanism, optimal timing and sequence of immunotherapy (IT) in relation to radiotherapy (RT) are still unknown. In collaboration with the Akkari group we are investigating the efficacy of concurrent versus the adjuvant IT approach in a pro-neural glioblastoma mouse model.

#### Cell cycle interfering agents

Mitotic enrichment has previously been clinically tested as radiosensitizing strategy with cytotoxic agents (e.g. high dose vincristine). However, both the compound(s) used and the application strategy were inappropriate and we want to revive mitotic enrichment as radiosensitizing strategy for glioblastoma patients with better agents and scheduling. In collaboration with the van Tellingen group we are currently evaluating the feasibility to introduce one of the candidate drugs in a clinical trial.

#### Uncovering and exploiting new interphase effects of Tumor Treating Fields (TTF)

Tumor Treating Fields (TTF) is an FDA approved modality of anticancer treatment for glioblastoma (GBM) patients. TTF is a local treatment using alternating electric fields that are delivered via insulated transducers. These electric fields are thought to specifically target dividing cells by interfering in various processes that regulate the mitotic progression. Our preliminary data uncovered additional effects of TTF in the interphase that appear to significantly contribute to the antineoplastic effects of TTF in GBM cells. Importantly, these effects are targetable with different small molecule inhibitors. We are currently studying the outcome in vitro combining TTF with interphase interfering drugs.

# Optimizing of the MRI guided imaging in patients with brain metastases and primary tumors

Previously, we observed that brain metastases can undergo significant shifts and target volume changes in short time intervals. What the effect is of these shifts is unknown and we are currently studying the dose coverage changes due to these shifts and volume changes.

Radiotherapy is also the mainstay treatment for glioblastoma patients and for these patients even less is known about tumor shifts and target volume changes during fractionated radiotherapy. This information is of paramount importance because dose escalation studies are ongoing defining the target volume on the MRI that is made after surgery and before radiotherapy. Also for this group of patients we study the effect of changes on the dose coverage of the tumor to optimize the timing of the MRI.

#### Characterizing effects of radiotherapy in BCRA1-deficient mammary tumors

The Rottenberg group has previously shown that the K14cre;Brca1F/F;p53F/F (KB1P) mouse model for BRCA1-mutated breast cancer is useful to study basic mechanisms of drug resistance. Interestingly, we found that this model escapes radiotherapy by acquiring resistance and formation of metastases. In collaboration with the van Rheenen, Jonkers and Rottenberg groups we are using state of the art assays and tools (e.g. single cell sequencing, cell cycle analysis, intra-vital microscopy) to further elucidate the underlying mechanisms of radioresistance.



#### Jannie Borst

Division head, group leader Division Immunology

Jannie Borst PhD Group leader Inge Verbrugge PhD Associate staff scientist Yanling Xiao MD PhD Associate staff scientist Victoria Iglesias Guimarais PhD Post-doc Sander de Kivit PhD Post-doc Jara Palomero Gorrindo PhD Post-doc Tomasz Ahrends MSc PhD student Nikolina Babała MSc PhD student Julia Busselaar MSc PhD student Elselien Friilink MSc PhD student Mark Mensink MSc PhD student Andryi Volkov MSc PhD student Xin Lei MD Research Associate Astrid Bovens MSc Technical staff Irene van der Haar Àvila MSc Technical staff

Paula Kroon PhD Technical staff Evert de Vries BSc Technical staff Tom de Wit MSc Technical staff

## Selected publications

Bąbała N, Bovens A, de Vries E, Iglesias-Guimarais V, Ahrends T, Krummel MF, Borst J\*, Bins AD\*. Subcellular localization of antigen in keratinocytes dictates delivery of CD4+ T cell help for the CTL response upon therapeutic DNA vaccination into the skin. Cancer Immunol Res. 2018;6:835-847

Borst J, Ahrends, T, Bąbała N, Melief CJ, and Kastenmuller W. CD4\* T-cell help in cancer immunology and immunotherapy. Nat Rev Immunol. 2018;18: 635-647

Cuadrado E, van den Biggelaar M\*, de Kivit S\*, Chen Y, Slot M, Doubal I, Meijer A, van Lier RAW, Borst J\*, Amsen D\*. Quantitative proteomics reveals mechanisms to protect cellular identity in human regulatory T cells. Immunity. 2018;48:1046-1059

# Molecular mechanisms that govern the T-cell response

Our work is inspired by the desire to improve immunotherapy of cancer. We focus on T cells and dendritic cells (DCs), costimulatory and coinhibitory receptors and their downstream signaling pathways. Our work is carried out in mouse models and in matching mouse and human cellular systems *in vitro*.

#### CD4 T cell help for the CTL response

We have recently put forward a model in which cytotoxic T lymphocyte (CTL) priming in lymphoid organs takes place in two steps. In the first step of priming, CD4 T cells and CD8 T cells are activated separately by different (migratory) DC types that have been activated by innate stimuli. In the second step of priming, CD4 T cells and CD8 T cells find their respective antigens on the same, lymph node resident DC. In this cellular interaction, CD4 T-cell help for the CTL response is delivered, which optimizes CTL effector and memory differentiation. The CD27/CD70 costimulatory system is key in "help" delivery (Ahrends et al., Cancer Res. 2016, Immunity 2017). We argue that "help" for the CTL response can be exploited to optimize anti-tumor immunity by a variety of strategies (Borst et al., Nat. Rev. Immunol 2018). We are translating our findings in mouse models to the human situation currently.

In collaboration with Aduro Biotech Europe and Merck, we have brought an agonistic antibody to the CD27 costimulatory receptor into clinical phase 1-2 testing in the beginning of 2018, including at our own clinic at the AVL. This is the result of over a decade of preclinical work with dr. Hans van Eenennaam and his team, who also developed Pembrolizumab.

#### Human DC function

Associate staff scientist Dr Yanling Xiao drives a research line on the homeostatic development of mouse and human DCs from hematopoietic progenitors. She has developed protocols to generate human DCs from these progenitor populations in good yield. The team has developed an *in vitro* DC-T cell culture system, which proves that these *in vitro* generated DCs can crosspresent cell-associated tumor antigen and crossprime tumor specific CTL responses. With this system, we can identify tumor-specific CD8 T cells in human blood. We aim to develop this assay into a tool for clinical diagnostics.

In collaboration with the team of Dr Ron Kerkhoven at the Genomics Core Facility, Dr Xiao has pioneered TotalSeq single cell sequencing (Biolegend) at the NKI to study the composition of the *in vitro* generated DC population and to compare it to defined and functionally distinct DC subsets isolated from human blood or bone marrow.

#### Understanding regulatory T cells

Regulatory CD4 T cells (Tregs) are hallmarked by the expression of the Foxp3 transcription factor that installs all their unique characteristics. Tregs are an important target in cancer immunotherapy, since they impede anti-tumor immune responses. We aim to define unique, targetable vulnerabilities of Tregs. A large proteomics study has revealed that human Treg identity is defined by adaptations in multiple signaling pathways that act downstream of the TCR, costimulatory- and cytokine receptors (Cuadrado et al. Immunity 2018). We have recently completed a study in collaboration with prof Celia Berkers (Utrecht University) that includes metabolomic analysis. We have found that human thymic Tregs and conventional CD4 T cells differentially respond to CD28 and TNF receptor family costimulation. Specifically, we find that thymic Tregs can make a glycolytic switch to support rapid proliferation, but require specific costimulatory input to do so and handle glycolytic intermediates in a different way than conventional CD4 T cells do.



Thijn Brummelkamp

Group leader Division Biochemistry

Thijn Brummelkamp PhD Group leader Astrid Fauster PhD Post-doc Lisa Landskron Post-doc Abdelghani Mazouzi PhD Post-doc Gian-Luca McLelland Post-doc Danielle Bianchi PhD student Joppe Nieuwenhuis PhD student Jacqueline Staring PhD student Elmer Stickel PhD student Nicolaas Boon Technical staff Lisa van den Hengel Technical staff

## Selected publications

Bigenzahn JW, Collu GM, Kartnig F, Pieraks M, Vladimer GI, Heinz LX, Sedlyarov V, Schischlik F, Fauster A, Rebsamen M, Parapatics K, Blomen VA, Müller AC, Winter GE, Kralovics R, Brummelkamp TR, Mlodzik M, Superti-Furga G. LZTR1 is a regulator of RAS ubiquitination and signaling. Science, 2018;362(6419):1171-1177

Jangra RK, Herbert AS, Li R, Jae LT, Kleinfelter LM, Slough MM, Barker SL, Guardado-Calvo P, Román-Sosa G, Dieterle ME, Kuehne AI, Muena NA, Wirchnianski AS, Nyakatura EK, Fels JM, Ng M, Mittler E, Pan J, Bharrhan S, Wec AZ, Lai JR, Sidhu SS, Tischler ND, Rey FA, Moffat J, Brummelkamp TR, Wang Z, Dye JM, Chandran K. Protocadherin-1 is essential for cell entry by New World hantaviruses. Nature, 2018;563(7732):559-563

Staring J, van den Hengel LG, Raaben M, Blomen VA, Carette JE, Brummelkamp TR. KREMEN1 Is a Host Entry Receptor for a Major Group of Enteroviruses. Cell Host Microbe. 2018;23(5):636-643.e5

### **Experimental Biomedical Genetics**

Using a classical genetic approach, we mutate the DNA of an organism and study the consequences. We use two improvements to apply this approach to human biology with high precision and throughput: the use of haploid human cells and the application of deep sequencing to measure the effects of millions of mutations in parallel. We apply this approach to study how genes collaborate to affect phenotypes and to link new genes to human disease.

#### Regulators of Molecular Phenotypes

As key executers of biological processes, the activity and abundance of proteins is subjected to extensive regulation. Using mutagenesis in haploid human cells we have developed an approach to couple genomic mutations to protein measurements within individual cells. Using this approach, which is both sensitive and scalable, genes can be identified that regulate any quantifiable protein phenotype in haploid human cells. Besides known regulators this also points out new genetic connections: the E3 ligase subunit KCTD5 was identified as new regulator of the AKT signaling pathway, CMTM6 as a new component of the PD1-PDL1 axis and Vasohibins were recognized as the long-sought tubulin detyrosinating enzymes.

In the future the ability to link genes to protein phenotypes using deep sequencing will enable us to build a genetic wiring map for haploid human cells. To better understand how genes collaborate we also study two types of genetic interactions that: synthetic lethality and genetic suppression.

#### **Pathogen Portals**

Our group studies viral families that cause the most-deadly human infections (Filovirus [e.g. Ebola virus], Arenavirus [e.g. Lujo virus], Bunyavirus [e.g. Hanta virus] as well as the most frequent human infections (Picornavirus [e.g. rhinovirus]). We use haploid genetics to gain insight into the entry tactics of these pathogens into human cells.

Genetic screens revealed that our mechanistic understanding of virus entry was incomplete, notably at the step that involves escape from the endo-lysosomal compartment. For Ebola and Lassa virus we revealed a 'receptor switch' to an intracellular transmembrane protein, recognized deep in the endo-lysosomal compartment. For Picornaviruses we identified PLA2G16 and demonstrated recruitment of this host factor to the perforated endosomal membrane. Loss of PLA2G16 led to a virus-resistance phenotype that could be reverted by ablation of a pathway previously linked to the clearance of intracellular bacteria. Thus, infection by picornaviruses involves two competing processes triggered by viral membrane perturbation: activation of a pore-activated clearance pathway and recruitment of a phospholipase to enable genome escape.

Studies on Coxsackie A and New World Hanta viruses identified new virus entry receptors at the cell surface. Haploid genetic screens identified the WNT-pathway component Kremen-1 as a critical host factor for infection, a finding that could be validated in mouse models deficient for KREMEN. Remarkably, Kremen-1 functions as entry receptor for a large subgroup of Coxsackie A viruses for which entry receptors remained unknown. In collaboration with other research groups PCDH1 was identified as entry receptor for New World Hantaviruses, a finding for which the relevance could be shown using blocking antibodies and PCDH1-deficient hamsters generated using CRISPR-CAS9.



#### Karin de Visser

Group leader Division Tumor Biology & Immunology

Karin de Visser PhD Group leader Ewald van Dyk PhD Post-doc Hannah Garner PhD Post-doc Anni Laine PhD Post-doc Lorenzo Spagnuolo PhD Post-doc Antoinette van Weverwijk PhD Postdoc

Noor Bakker MSc PhD student Olga Blomberg MSc PhD student Danique Duits MSc PhD student Kevin Kos MSc PhD student Camilla Salvagno MSc PhD student Max Wellenstein MSc PhD student Tisee Hau BSc Technical staff Chris Klaver MSc Technical staff Lisanne Raeven MSc Technical staff Kim Vrijland MSc Technical staff

# Selected publications

Salvagno C, Ciampricotti M, Tuit S, Hau C-S, van Weverwijk A, Coffelt SB, Kersten K, Vrijland K, Kos K, Ulas T, Song J-Y, Ooi C-H, Rüttinger D, Cassier PA, Jonkers J, Schultze JL, Ries CH and de Visser KE. Therapeutic targeting of macrophages enhances chemotherapy efficacy by unleashing type I interferon response. Nat Cell Biol 2018 (provisionally accepted)

Blomberg OS, Spagnuolo L, de Visser KE. Immune regulation of metastasis: mechanistic insights and therapeutic opportunities. Dis Model Mech. 2018;11(10)

Wellenstein MD, de Visser KE. Cancer-Cell-Intrinsic Mechanisms Shaping the Tumor Immune Landscape. Immunity. 2018;48(3):399-416

## Impact of the immune system on metastatic breast cancer and therapy response

Metastasis formation and unresponsiveness to conventional therapies are the challenges in cancer therapy that urgently need solutions. We focus on the immune system and its influence on breast cancer metastasis and therapy responsiveness. Through mechanistic understanding of the crosstalk between the immune system and cancer cells, we aim to contribute to the design of novel immunomodulatory strategies to fight metastatic breast cancer.

#### Improving response to platinum-based chemotherapy by targeting macrophages

Poor chemotherapy response is a major obstacle to successful cancer treatment. There is a growing realization that the immune system influences the success of chemotherapy, however, the exact underlying mechanisms are largely unknown. Utilizing mouse tumor models that faithfully recapitulate human breast tumorigenesis, we discovered that targeting macrophages by CSF-1 receptor (CSF-1R) blockade enhances the anti-cancer efficacy of platinum-based chemotherapeutics. We mechanistically uncovered that CSF-1R inhibition stimulates intratumoral type I interferon signaling which is essential for the therapeutic synergy between cisplatin and CSF-1R blockade. Further elimination of immunosuppressive neutrophils was required to engage an efficacious anti-tumor immune response that further improved therapeutic benefit of cisplatin (Salvagno et al. accepted for publication in Nature Cell Biology). These findings illustrate the importance of breaching multiple layers of immunosuppression during cytotoxic therapy to engage anti-tumor immunity in breast cancer.

#### Impact of the genetic makeup of breast cancer on pro-metastatic inflammation

Cancer-associated systemic inflammation is strongly linked with poor disease outcome in cancer patients. For example, high neutrophil-to-lymphocyte ratios in blood of cancer patients are associated with increased metastasis, and we (Coffelt et al. Nature 2015) and others have previously demonstrated that neutrophils promote metastasis formation in mouse tumor models. Given the emerging interest in immunomodulatory therapies for cancer, it is crucial to understand the mechanisms by which tumors shape the systemic immune landscape. In collaboration with Jos Jonkers (Division of Molecular Pathology), we uncovered the impact of the genetic makeup of breast cancer on pro-metastatic inflammation. We have revealed a novel role for p53 as a key regulator of systemic inflammation in breast cancer. Mechanistically, p53 loss in cancer cells induces paracrine stimulation of tumor-associated macrophages, which elicits an inflammatory cascade leading to the systemic accumulation of neutrophils, which facilitates metastasis formation (Wellenstein et al. in revision). These insights illustrate the importance of the genetic makeup of cancer cells in dictating pro-metastatic systemic inflammation, and set the stage for personalized immune intervention strategies for cancer patients.

#### Translating our findings to breast cancer patients

In collaboration with medical oncologist Marleen Kok (NKI) we have established an extensive immunomonitoring program to perform in-depth profiling of the immune landscape in fresh blood samples of patients with different subtypes of breast cancer. Through these analyses, we validate the findings from our pre-clinical studies in patients, and we hope to gain a deeper understanding of the complex cancer-immune crosstalk in breast cancer patients.

Ľ



#### Elzo de Wit

Group leader Division Gene Regulation

Elzo de Wit PhD Group leader Luca Braccioli PhD Post-doc Koen Flach PhD Post-doc Ningqing Liu PhD Post-doc Teun van den Brand MSc PhD student Michela Maresca MSc PhD student Marijne Schijns MSc PhD student Robin van der Weide MSc PhD student Hans Teunissen BSc Technical staff

Selected publications

Kaaij LJT, van der Weide RH, Ketting RF, de Wit E. Systemic Loss and Gain of Chromatin Architecture throughout Zebrafish Development. Cell Rep. 2018;24(1):1-10.e4

Allahyar A, Vermeulen C, Bouwman BAM, Krijger PHL, Verstegen MJAM, Geeven G, van Kranenburg M, Pieterse M, Straver R, Haarhuis JHI, Jalink K, Teunissen H, Renkens IJ, Kloosterman WP, Rowland BD, de Wit E, de Ridder J, de Laat W. Enhancer hubs and loop collisions identified from single-allele topologies. Nat Genet. 2018;50(8):1151-1160

Geeven G, Teunissen H, de Laat W, de Wit E. peakC: a flexible, non-parametric peak calling package for 4C and Capture-C data. Nucleic Acids Res. 2018;46(15):e91

### Genome dynamics and function

Our research centers around the question: how are genes regulated within the context of the three-dimensional genome? We use a combination of genetic and acute perturbation experiments in combination with genomics tools to understand how distal regulatory elements (e.g. enhancers) contribute to the regulation of genes. In addition to implementing and developing genomics methods we also develop software for the analysis of chromosome conformation capture data. Last year we published peakC, which is a non-parametric peak caller for 4C and Capture-C data. In addition, we are actively developing a user-friendly package for the analysis of Hi-C data, called GENOVA. With it, users can generate publication quality figures. These and other computational biology methods assist us into answering fundamental questions with respect to 3D genome organization and expression.

#### An unexpected link between the 3D genome and epigenome

Together with the Rowland lab we have analyzed how loss of architectural proteins affect the 3D genome. Importantly, we have found that a change in 3D genome architecture is associated with a strong change in the epigenetic landscape. For instance, by knocking out MED12 we find a loss of chromatin loops and a concomitant increase in heterochromatin. On the other hand, an increase in chromatin loops, resulting from the knock-out the cohesin release factor WAPL, is associated with an almost complete loss of heterochromatin domains. The increase of heterochromatin is associated with an expected loss of expression. However, in the absence of WAPL, MED12 is no longer required for the expression of these genes. We have therefore uncovered how chromatin loops can contribute to the regulation of gene expression.

#### Cohesin cooperates with pluripotency factors to maintain pluripotency

In order to better understand the order of events upon loss of factors that affect chromatin loop formation, we have generated an acute depletion line for Wapl in mouse embryonic stem cells. Upon depletion of Wapl, these cells start to differentiate, suggesting that the 3D genome plays an important role in the maintenance of pluripotency. We find that the cohesin complex, which is regulated by Wapl, is bound at the same sites as pluripotency transcription factors, such as Nanog and Sox2. Paradoxically, upon the stabilization of cohesin on chromatin, these cohesin binding sites are lost. This is accompanied by a loss of small self-interacting chromatin domains. Our results show that dynamic cohesin cooperates with lineage-specific transcription factors in the maintenance of the pluripotent state.

#### The 3D cancer genome

An exciting new avenue of research that we are pursuing is the organization of the 3D genome in cancer. Until now detailed information about the 3D genome in tumor samples is lacking. Together with the Zwart lab we have started to investigate the 3D genome in metastatic breast cancer samples. We have found that there is considerable diversity in the 3D genome between different tumors. We are now trying to understand how this relates to gene expression, chromatin landscape, treatment outcome and survival.



#### William Faller

Group leader Division Oncogenomics

William Faller PhD Group leader Joana Silva PhD Post-doc Ferhat Alkan PhD Post-doc Eric Pinto Barbera MSc PhD student Rob van der Kammen BSc Technical staff

#### Publication

Huels DJ, Bruens L, Hodder MC, Cammareri P, Campbell AD, Ridgway RA, Gay DM, Solar-Abboud M, Faller WJ, Nixon C, Zeiger LB, McLaughlin ME, Morrissey E, Winton DJ, Snippert HJ, van Rheenen J, Sansom OJ. Wht ligands influence tumour initiation by controlling the number of intestinal stem cells. Nat Commun. 2018;9(1):1132

## RNA translation and mTOR signaling in mouse models of cancer

The main interest of our lab is the role that mTOR signaling and RNA translation play in normal and cancer cells. In particular we are focused on the stem cell populations in the intestine, and cancers of the same organ. We study this using genetically modified mouse models (GEMMS), and 3d organoid culture, which allow us to maintain the complexity of the organ, while still providing tractable systems to study. In particular, these tools allow us to genetically modify our genes of interest, providing an opportunity to delineate the role of various signaling pathways in normal cells, and how they are corrupted by the oncogenic process.

#### RNA translational elongation in colon cancer

The Adenomatous polyposis coli (Apc) gene is lost in around 80% of human colorectal cancers (CRCs), and acts to drive Wnt signaling. We have previously shown that in a mouse model of CRC, translation elongation is increased following Apc deletion. Furthermore, this increase is required for the cancer cells to proliferate. We are now trying to understand what RNAs are regulated like this, and what determines whether an RNA is regulated in this manner or not. For example, we have seen that after Apc deletion, Cyclin D2 is decreased by translation elongation, while Cyclin D3 is increased. When we delete these genes in the mouse intestine using the VillinCre<sup>ERT2</sup>, they have opposing effects, with loss of Cyclin D2 promoting Wnt-driven proliferation, and loss of Cyclin D3 inhibiting it. This suggests that these highly homologous proteins have opposite roles after Apc deletion, with Cyclin D2 acting as a tumour suppressor, and Cyclin D3 acting as an oncogene. This surprising finding also seems to be recapitulated in human data, with high expression of Cyclin D2 or Cyclin D3 correlating with good and poor prognosis respectively. We are now confirming this hypothesis in a cancer model, and working to understand why and how these proteins are regulated in such an opposing manner.

#### mTOR and RNA translation in intestinal stem cells

Stem cells are the drivers of CRC development and resistance to therapy, and understanding this population of cells is a major focus of the lab. We have shown that following inhibition of mTOR we get a change in stem cell populations, with the appearance of a rare population with distinct characteristics. These characteristics include alterations in metabolism, protein synthesis and proliferation. Strikingly, it appears that these cells maintain the ability to activate mTOR signaling, even in the presence of mTOR inhibitors. This resistance to mTORC1 silencing is reminiscent of *in vivo* colonic adenomas that are driven by Kras activation, suggesting that MAPK signaling may result in the appearance of this stem cell population, which is inherently resistant to mTOR inhibition. We are now working to understand the function of these cells in the normal intestine and cancer, and the role that they play in the resistance to therapy.



#### John Haanen

Group leader Division Immunology

John Haanen MD PhD Group Leader Joost van den Berg PhD Academic staff Raquel Gomez MSc Technical staff Saskia Scheij Technical staff Rhianne Voogd MSc Technical staff Maaike van Zon Technical staf

#### Publications

Dijkstra KK, Cattaneo CM, Weeber F, Chalabi M, van de Haar J, Fanchi LF, Slagter M, van der Velden DL, Kaing S, Kelderman S, van Rooij N, van Leerdam ME, Depla A, Smit EF, Hartemink KJ, de Groot R, Wolkers MC, Sachs N, Snaebjornsson P, Monkhorst K, Haanen J, Clevers H, Schumacher TN, Voest EE. Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell. 2018;174(6):1586-1598

Rohaan MW, van den Berg JH, Kvistborg P, Haanen JBAG. Adoptive transfer of tumor-infiltrating lymphocytes in melanoma: a viable treatment option. J Immunother Cancer. 2018;6(1):102

Scheper W, Kelderman S, Fanchi LF, Linnemann C, Bendle G, de Rooij MAJ, Hirt C, Mezzadra R, Slagter M, Dijkstra K, Kluin RJC, Snaebjornsson P, Milne K, Nelson BH, Zijlmans H, Kenter G, Voest EE, Haanen JBAG, Schumacher TN. Low and variable tumor reactivity of the intratumoral TCR repertoire in human cancers. Nat Med. 2018

# Immunotherapy, immunomonitoring and production facility

This research line is aimed at developing novel T-cell based immunotherapies that can be applied in cancer patients. The focus is on patients with solid tumors, especially melanoma, renal cell carcinoma, and HPV-associated cancers. These immunotherapies comprise DNA based vaccines and T-cell products, including Tumor Infiltrating Lymphocytes (TILs) and genetically modified peripheral blood T cells. GMP production of these therapeutic agents takes place in the Biotherapeutics Unit (BTU), situated in the hospital pharmacy. A second objective concerns immunomonitoring, primarily to evaluate the effects of novel immunotherapies. These studies are conducted together with the Schumacher, Kvistborg and Blank lab at the NKI-AVL and with national and international collaborators.

#### Highlights 2018

In collaboration with Sanquin and one European cancer center in Copenhagen, Denmark, we are continuing our international, randomized controlled phase III trial in stage IV melanoma patients, comparing Tumor Infiltrating Lymphocytes (TIL) with standard of care for second line treatment. Enrollment of patients started in October 2014. Up to date 67 patients have been randomized. Materials (liquid and tumor biopsies) are being collected for translational research. We have established additional funding from KWF to open new clinical centers to increase recruitment.

In pre-clinical studies, we have developed highly immunogenic and safe HPV 16 E6- and E7containing DNA vaccines for which we have produced GMP grade vaccines. These vaccines are currently been tested in a phase I clinical trial (Prof G Kenter, gynaecologic oncologist and coworkers). Patients with HPV 16-positive Vulvar Intraepithelial Neoplasia Grade III (VIN III) are vaccinated using a novel and potent intradermal DNA vaccination strategy. Immunomonitoring is being performed by us, and vaccine induced E6 and E7 directed T cell responses have been detected directly *ex vivo* in blood to monitor the immunogenicity of these therapeutic vaccines.

Together with a third party and the Voest lab, we are working on strategies to extract tumor reactive cells from the blood as novel treatment option.

In addition, we have an exciting collaboration with NEON therapeutics (Cambridge, MA), in which we develop new T cell therapies directed against patient specific neo-antigens. For this collaboration, large scale optimization runs are currently ongoing.



#### Michael Hauptmann

Group leader Division Psychosocial Research and Epidemiology

Michael Hauptmann PhD Group leader Katarzyna Jóźwiak PhD Academic staff Sander Roberti MSc PhD student Doug Stram MSc PhD student John Zavrakidis MSc Junior researcher

## Selected publications

Groot HJ, Lubberts S, de Wit R, Witjes JA, Kerst JM, de Jong IJ, Groenewegen G, van den Eertwegh AJM, Poortmans PM, Klumpen H, van den Berg HA, Smilde TJ, Vanneste BGL, Aarts MJB, Incrocci L, van den Bergh ACM, Jóźwiak K, van den Belt-Dusebout AW, Horenblas S, Gietema JA, van Leeuwen FE, Schaapveld M. Risk of solid cancer after treatment for testicular germ cell cancer in the platinum era. J Clin Oncol, 2018;36(4):2504-2513

Lubin JH, Hauptmann M, Blair A. Indirect adjustment of relative risks of an exposure with multiple categories for an unmeasured confounder. Ann Epidemiol 2018;28(11):801-807

Meulepas JM, Ronckers CM, Smets AMJB, Nievelstein RAJ, Gradowska P, Lee C, Jahnen A, van Straten M, de Wit MY, Zonnenberg B, Klein WM, Merks JH, Visser O, van Leeuwen FE, Hauptmann M. Radiation Exposure From Pediatric CT Scans and Subsequent Cancer Risk in the Netherlands. J Natl Cancer Inst 2018

## **Biostatistics**

The group investigates statistical techniques for modelling the association between radiation exposure and the risk of cancer and cardiovascular disease and develops efficient designs and analytic methods for studies of predictive biomarkers to improve personalized medicine. Moreover, the group provides statistical expertise and training to investigators from the hospital and the research laboratories on basic, pre-clinical, clinical and epidemiological research.

#### Cancer risk after diagnostic medical radiation exposure

Computed tomography (CT), a strong diagnostic tool, delivers higher radiation doses than most imaging modalities. As CT use has increased rapidly, radiation protection is important, particularly among children. For a nationwide retrospective cohort of 168 394 children who received one or more pediatric CT scans in a Dutch hospital between 1979 and 2012, we obtained cancer incidence, vital status, and confounder information by record linkage with external registries. The estimated annual number of pediatric CT scans in the Netherlands increased from 7,731 in 1990 to 26,023 in 2012. Mean cumulative bone marrow doses were 9.5 mGy at the end of follow-up, and leukemia risk (excluding myelodysplastic syndrome) was not associated with cumulative bone marrow dose (44 cases). Cumulative brain dose was on average 38.5 mGy and was statistically significantly associated with risk for malignant and nonmalignant brain tumors combined (ERR/100 mGy: 0.86, 95% confidence interval = 0.20 to 2.22, P = 0.002, 84 cases). These results indicate that CT-related radiation exposure increases brain tumor risk, and we estimate that the approximately 10,000 annual head CT scans among Dutch children lead to one brain tumor case annually attributed to radiation. Careful justification of pediatric CT scans and dose optimization, as are customary in many hospitals, are essential to minimize risks (Meulepas et al, JNCI in press). Johanna Meulepas received her PhD in 2018 for this work.

#### Indirect adjustment of relative risks for unmeasured confounders

In observational epidemiologic studies, there is often concern that an unmeasured variable might confound an observed association. Investigators can assess the impact from such unmeasured variables on an observed relative risk (RR) by utilizing externally sourced information and applying an indirect adjustment procedure. Although simple and easy to use, this approach applies to exposure and confounder variables that are binary. Other approaches eschew specific values and provide only bounds on the potential bias. For both multiplicative and additive RR models, we developed formulae for indirect adjustment of observed RRs for unmeasured potential confounding variables when there are multiple categories. In addition, we suggest an alternative strategy to identify the characteristics that the confounder must have to explain fully the observed association. We use examples involving studies of pediatric computer tomography scanning and leukemia and nuclear radiation workers and smoking to demonstrate that with externally sourced information, an investigator can assess whether confounding from unmeasured factors is likely to occur (Lubin et al, Am J Epidemiol 2018).

#### Statistical collaboration

Statistical collaboration in projects of other groups included pre-clinical studies on biological mechanisms, evaluations of determinants of disease occurrence as well as clinical studies of prognosis and clinical trials for treatment comparisons.

The group offered statistical training, including a one-week course on Basic Medical Statistics and several half-day workshops on specific methodologic challenges such as sample size calculation, interaction analysis, missing data.

Н


#### **Hugo Horlings**

Group leader Division of Molecular Pathology

Hugo Horlings MD PhD Clinical group leader Iris Nederlof PhD student Michiel de Maaker Technical staff

# Selected publications

Li H, van der Leun AM, Yofe I, Lubling Y, Gelbard-Solodkin D, van Akkooi ACJ, van den Braber M, Rozeman EA, Haanen JBAG, Blank CU, Horlings HM, David E, Baran Y, Bercovich A, Lifshitz A, Schumacher TN, Tanay A, Amit I. Dysfunctional CD8 T Cells Form a Proliferative, Dynamically Regulated Compartment within Human Melanoma. Cell. 2018

Sobral-Leite M, Van de Vijver K, Michaut M, van der Linden R, Hooijer GKJ, Horlings HM, Severson TM, Mulligan AM, Weerasooriya N, Sanders J, Glas AM, Wehkamp D, Mittempergher L, Kersten K, Cimino-Mathews A, Peters D, Hooijberg E, Broeks A, van de Vijver MJ, Bernards R, Andrulis IL, Kok M, de Visser KE, Schmidt MK. Assessment of PD-L1 expression across breast cancer molecular subtypes, in relation to mutation rate, BRCA1-like status, tumor-infiltrating immune cells and survival. Oncoimmunology. 2018;7(12)

Wang L, Leite de Oliveira R, Huijberts S, Bosdriesz E, Pencheva N, Brunen D, Bosma A, Song JY, Zevenhoven J, Los-de Vries GT, Horlings HM, Nuijen B, Beijnen JH, Schellens JHM, Bernards R. An Acquired Vulnerability of Drug-Resistant Melanoma with Therapeutic Potential. Cell. 2018;173(6):1413-1425. e14

### **Computational pathology**

Last year, I finished my translational and applied cancer research fellowship from the Dutch Cancer Society (KWF 2014-2018). During this fellowship I focused on the use of molecular biomarkers in daily practice of pathology to refine the diagnosis and treatment of breast and ovarian cancer. This fellowship gave me opportunities to obtain extensive skills in the application of large scale and high throughput genomics technologies in clinical settings, which will be essential for a pathologist to empower precision medicine. This fellowship has been in collaboration with; 1) the Department of Pathology of Antoni van Leeuwenhoek; 2) laboratory of professor René Bernards at the Netherlands Cancer institute; 3) laboratory of professor David Huntsman at the Centre for Translational and Applied Genomics (CTAG), British Columbia Cancer Agency in Vancouver and 4) laboratory of professor Howard Chang at Stanford University, USA.

Together with professor Huntsman's team we investigated the impact of *FOXL2* mutation testing in a large cohort of Adult Granulosa Cell Tumor of the ovary (AGCT) diagnosed previously by conventional histology and immunohistochemistry. *FOXL2* mutation is a pathognomonic defining feature of AGCT and is not seen in other tumors, in particular other ovarian cancers. FOXL2 mutation testing was used to stratify 336 AGCTs from three European centers into three categories: 1) FOXL2 mutant molecularly defined AGCT (MD-AGCT) (n = 256 of 336), 2) FOXL2 wild-type AGCT (n = 17 of 336), 3) misdiagnosed other tumor types (n = 63 of 336). The overall and disease-specific survival of the misdiagnosed cases was lower than in the MD-AGCTs (P < .001). The historical, pre-molecular data underpinning our clinical understanding of AGCT was likely skewed by inclusion of misdiagnosed cases, and future management strategies should reflect the potential for surgical cure and long survival even after relapse [JNCI, 2016 Jun 13;108(11)].

#### Computational Pathology to empower precision medicine

I was recruited as a "junior" clinical group leader at the Netherlands Cancer Institute. My lab will have a strong translational theme and we will focus on the development of Computational Pathology approaches that combines clinical, pathology and genomics data with image analysis of the tumor to study cancer-immune interactions and their consequences modulating therapeutic sensitivity and tumor progression in breast and ovarian cancer patients. We will train powerful computers to recognize tumor and their microenvironment by annotating pathology samples from the clinic. We will analyze different regions within tumor samples from time of diagnosis, relapse and metastasis and combine it with data describing RNA, DNA and protein sequences of single cells to explore the impact of intra-tumor heterogeneity upon cancer immunity and progression. Combining these image-based quantitative results with genetic analysis of the cancer-immune interactions can be complementary or offer entirely new explanations to identity biomarkers to predict response to conventional chemotherapy, targeted or immunotherapy in women with breast and ovarian cancer.

#### Translational research in Immunotherapy Trials

We will collaborate with medical oncologists and basic scientist to perform translational research in clinical trials with the goal to discover and validate biomarkers that will empower personalized predictions concerning response to treatment. For example, last year in collaboration with the group of Marleen Kok we performed translational research of an Adaptive phase II randomized noncomparative trial of nivolumab after induction treatment in Triple-Negative Breast Cancer (TNBC) patients: *TONIC-trial*. We also support basic scientist to translate their fundamental research into clinical applications. For example, we contributed in 2017 to the discovery of CMTM6/4 as protein regulators of PD-L1 and last year we assessed CMTM6 expression in melanoma and lung cancer patients treated with immunotherapy to evaluate CMTM6 and PD-L1 expression as potential biomarker for response to immunotherapy.



#### Heinz Jacobs

Group leader Division Immunology

Heinz Jacobs PhD Group leader Mir Farshid Alemdehy PhD Post-doc Muhammad Assad Aslam MSc PhD student Alessandra Buoninfante MSc PhD student Daniel de Groot MSc PhD student Bas Pilzecker MSc PhD student

Ronak Shah MSc PhD student Aldo Spanjaard MSc PhD student Paul van den Berk BSc Technical staff

> Selected publications

Aslam MA, Alemdehy MF, Pritchard CEJ, Song J-Y, Muhaimin FI, Wijdeven RH, Huijbers IJ, Neefjes J, and Jacobs H. Towards an understanding of C9orf82 protein/CAAP1 function. PLoS One. 2019; 14:e0210526

Buoninfante OA, Pilzecker B, Aslam MA, Zavrakidis I, van der Wiel R, van de Ven M, van den Berk PCM, and Jacobs H. Precision Cancer Therapy: Profiting from Tumor Specific Defects in the DNA Damage Tolerance System. Oncotarget. 2018; 9:18832-18843

Buoninfante OA. Physiological and Pharmacological Relevance of DNA Damage Tolerance. PhD Thesis, University of Amsterdam, July 5<sup>th</sup> 2018

# Programming Mutagenesis and Epigenetics in Lymphocyte Biology

Lymphocytes and their precursors are licensed to transiently activate specific mutation pathways that enable efficient remodeling of antigen-receptor genes. To generate the enormous diversity of clonotypic antigen receptors, specific DNA lesions are generated and resolved in an error-prone fashion at defined stages of lymphocyte development. These lymphocyte specific characteristics provide ideal model systems to study not only the role of DNA damage response (DDR) and DNA damage tolerance (DDT) pathways in resolving specific DNA lesions and shaping the immunoglobulin (lg) repertoire but also in maintaining genome stability and tissue homeostasis.

Our research activities are focused on two subjects:

- (i) DNA damage tolerance (DDT) in physiology and precision cancer medicine
- (ii) Genetic and epigenetic regulation of lymphocyte development and differentiation

DNA damage tolerance defects uncover a novel early erythroid-committed progenitor DNA damage tolerance (DDT) enables DNA replication in the presence of replication roadblocks. DDT is regulated by PCNA<sup>K164</sup> ubiquitination and REV1. We now discovered that DDT is an essential capacity of the DNA damage response network. By intercrossing PcnaK164R mutant and Rev1KO mice, DDT was found essential for mammalian life. A compound mutation rendered hematopoietic stem cells (HSCs) and their precursors genetically unstable, instigating a pathological premature ageing process where the associated HSC depletion culminated in a severe, embryonic-lethal anemia. Single cell RNA-sequencing of the remaining HSCs and progenitors identified the earliest erythroid-committed progenitor (ECP). In line, this novel subset strictly depends on the erythroid transcription factor KIf1. In conclusion, DDT is an essential activity within the DNA damage response network that co-determines central biological processes like stem cell fitness, tissue homeostasis, and ageing.

#### DOT1L: A key epigenetic regulator in T-lymphocyte development and differentiation

This joint-project is executed in close collaboration with dr. Fred van Leeuwen in the Division of Gene Regulation. Differentiation is tightly associated with epigenetic changes, which to a large extent are based on posttranslational histone modifications resulting in specific alterations of the chromatin structure. The dynamic changes of the epigenetic landscape associated with T cell development and differentiation are no exception to this rule. DOT1L is a unique, conserved epigenetic writer that selectively methylates histone H3K79. As ablation of *DOT1L* is embryonic lethal, we use T-lineage specific *DOT1L* ablation and inhibition to study the impact of altered H3K79 methylation dynamics in the well-defined pathways of T cell development and differentiation. Our results identified H3K79 methylation as a key barrier towards terminal T cell differentiation. Ongoing studies address the functional potential of T cells lacking DOT1L as well as the mechanism by which the absence of H3K79 methylation drives T cell differentiation.

J



#### **Jacqueline Jacobs**

Group leader Division Oncogenomics

Jacqueline Jacobs PhD Group leader Aurora Cerutti PhD Post-doc Santiago Hernández Pérez PhD Post-doc Inge de Krijger MSc PhD student Zeliha Yalçin MSc PhD student Judit Serrat MSc Technical staff



Dev H, Chiang TW#, Lescale C#, de Krijger I#, Martin AG, Pilger D, Coates J, Sczaniecka-Clift M, Wenming Wei, Ostermaier M, Herzog M, Lam J, Shea A, Demir M, Wu Q, Yang F, Fu B, Lai Z, Balmus G, Belotserkovskaya R, Serra V, O'Connor MJ, Bruna A, Beli P, Pellegrini L, Caldas C, Deriano L\*, Jacobs JJL\*, Galanty Y\* and Jackson SP\*. Shieldin complex promotes DNA end-joining and counters homologous recombination in BRCA1-null cells. Nat Cell Biol. 2018;20(8):954-965 #these authors contributed equally \*co-corresponding authors

Barazas M, Annunziato S, Pettitt SJ, de Krijger I, Ghezraoui H, Roobol SJ, Lutz C, Frankum J, Song F, Brough R, Evers B,Gogola E, Bhin J, van de Ven M, van Gent DC, Jacobs JJL, Chapman R, Lord CJ, Jonkers J and Rottenberg S. The CST complex mediates endprotection at double-strand breaks and promotes PARP inhibitor sensitivity in BRCA1-deficient cells. Cell Rep. 2018;23(7):2107-2118

Simonetta M, de Krijger I, Serrat J, Moatti N, Fortunato D, Hoekman L, Bleijerveld OB, Altelaar AFM, Jacobs JJL. H4K2Ome2 distinguishes prereplicative from post-replicative chromatin to appropriately direct DNA repair pathway choice by 53BP1-RIF1-MAD2L2. Cell Cycle. 2018;17(1):124-136

### **Telomere and Genome Integrity**

Tight control of DNA repair is critical in maintaining genome integrity and in preventing or treating pathology, but the underlying processes are not well understood. As a consequence, we lack important knowledge about the causes underlying cancer development and the consequences of DNA-damaging anti-cancer therapies. Our work focuses on (erroneous) DNA damage response and repair activities at telomeres and DNA double-strand breaks (DSBs) and how they contribute to cancer and aging by causing cell death, cell senescence, loss of genome integrity or genomic instability. Our research is in large part directed by functional genetic screens or proteomics-based approaches aimed at identifying critical new factors, complemented with in-depth mechanistic follow-up and candidate-driven approaches.

#### DNA repair control at telomeres and DNA DSBs

The main mechanisms by which cells repair DSBs are non-homologous end-joining (NHEJ) and homology-directed repair (HDR). These operate mutually exclusive and are activated by 53BP1 and BRCA1, respectively. The appropriate choice for engaging these repair pathways is critical for genome stability and is believed to be regulated at the level of DNA end-resection. End-resection strongly inhibits NHEJ while committing to HDR. A few years ago, we performed a functional genetic screen that helped us identify MAD2L2, a.k.a. REV7, as an unexpected factor that promotes NHEJ and inhibits HDR at telomeres and DSBs by inhibiting 5' DNA end-resection downstream of 53BP1/RIF1. Thereby MAD2L2 contributes to DNA repair pathway choice between NHEJ and HDR and to the synthetic lethality of BRCA1-deficient cancer cells treated with PARP inhibitors, with MAD2L2-loss causing PARP inhibitor resistance by restoring HR. How MAD2L2, lacking known enzymatic activities itself, acts to inhibit resection was unclear.

We therefore further investigated how MAD2L2 operates in DNA repair control by investigating the protein complexes that MAD2L2 engages in. We identified a previously uncharacterized protein, SHLD2 (FAM35A), as a novel interactor of MAD2L2 that we found to functionally resemble MAD2L2 with respect to its role in DNA repair pathway choice. In a collaborative effort with other research groups we established that SHLD2 and another previously uncharacterized protein SHLD1, together with MAD2L2, form a complex called Shieldin. Shieldin protects DNA ends against excessive resection, thereby promoting repair by NHEJ and counteracting HDR.

Loss of Shieldin factors makes BRCA1-deficient cells resistant to PARP inhibitors, but increases their sensitivity to cisplatin, suggesting how defining the SHLD1/2 status of BRCA1-deficient tumours might aid patient stratification and yield new treatment opportunities. In collaborative work with the Jonkers and Rottenberg labs at the NKI we also implicated the CST complex in DNA repair pathway choice and PARP-inhibitor sensitivity.

Furthermore, we addressed how DNA repair pathway choice is controlled in concert with the DNA replication machinery, such that during S-phase, when NHEJ and HR pathways are both active and un-replicated and replicated DNA regions co-exist, HR only operates on replicated regions of the genome. We found that replication-associated dilution of H4K20me2 distinguishes pre-replicative from post-replicative chromatin to locally direct the NHEJ-promoting 53BP1/RIF1 complex to pre-replicative chromatin and the HR-promoting BRCA1 protein to post-replicative chromatin.



#### Kees Jalink

Division head (ad int.), group leader Division Cell Biology

Kees Jalink PhD Group leader Bram van den Broek PhD Academic staff Rolf Harkes PhD Post-doc Leila Nahidi PhD Post-doc Jeffrey Klarenbeek MSc Technical staff

Selected publications

Argenzio E, Klarenbeek J, Kedziora KM, Nahidiazar L, Isogai T, Perrakis A, Jalink K, Moolenaar WH, Innocenti M. Profilin binding couples chloride intracellular channel protein CLIC4 to RhoA-mDia2 signaling and filopodium formation. J Biol Chem. 2018;293(50):19161-19176

Kamermans A, Planting KE, Jalink K, van Horssen J, de Vries HE. Reactive astrocytes in multiple sclerosis impair neuronal outgrowth through TRPM7-mediated chondroitin sulfate proteoglycan production. Glia. 2019;67(1):68-77

Kuipers AJ, Middelbeek J, Vrenken K, Pérez-González C, Poelmans G, Klarenbeek J, Jalink K, Trepat X, van Leeuwen FN. TRPM7 controls mesenchymal features of breast cancer cells by tensional regulation of SOX4. Biochim Biophys Acta Mol Basis Dis. 2018;1864(7):2409-2419

### **Biophysics of Cell signaling**

We use advanced microscopy and spectroscopy techniques to study cell signaling events and cytoskeletal dynamics with high spatial and temporal resolution. Our expertise is predominantly in advanced functional imaging and Super Resolution microscopy. Functional imaging techniques like FRET, FLIM and FCCS aim to provide information about the **function** of molecules, rather than just static images of their position within the cell. We also develop methods, hard- and software for various advanced microscopy applications. These techniques are used in research projects in our group as well as in collaborations within and outside our institute.

#### High-content screening

Conventional microscopy screens typically entail low-resolution, static images of a treatment endpoint. In high content screening, we aim to bring the full power of live-cell confocal microscopy to the screens. We have completed a screen of 300 candidate genes that have been selected for playing a possible role in determining the dynamics of the intermediate filament network. Highquality time-lapse recordings of HaCaT cells expressing YFP-tagged keratin-14 were obtained and analyzed for a number of morphometric and dynamic parameters. An analysis method capable of detecting the peculiar continuous inward movement of tangential keratin fibers was devised, and the most interesting candidates were followed up upon in collaboration with Dr. R. Windoffer at Aachen University.

#### FLIM imaging on wide-field and confocal microscopes

This year saw important progress in fast Fluorescence Lifetime Imaging (FLIM) in our lab. FLIM records the fluorescence lifetime of a fluorophore, i.e. the average time that a fluorophore remains in the excited state following excitation and is an intrinsically quantitative method to detect molecular interactions in living cells. Collaborating with industry and with leading laboratories in Delft and Amsterdam, an innovative toggling camera was constructed and integrated on a wide-field microscope in the lab. We also developed the necessary new paradigms and algorithms to operate it. FLIM is used in our lab for studies into the heterogeneity of signal transduction pathways, in particular, to understand cellular factors that affect the kinetics of signaling of the second messenger cAMP,  $IP_3$  and ERK signaling.In May we completed a 2-year intense collaboration with Leica, a leading manufacturer of advanced microscopy equipment. In response to our analysis of certain shortcomings in previous generation instrumentation, Leica developed the FALCON system, capable of detecting FLIM much faster, and virtually free of detection artifacts. We intensely  $\alpha$ - and  $\beta$ -tested hardware and algorithms and provided valued feedback. As a result, we now have an extremely advanced confocal FLIM microscope at our disposal, which – due to our feedback – possesses exactly the functionality we need for our work.

#### Marrying functional imaging with high-content screening

This year we hope to finish setting up the FLIM microscope for screening purposes. This will allow us to study cell dynamic cellular events, such as signaling, metabolism and chromosome segregation efficiently using genetic (either genome-wide or gene subsets) or small-molecule screening. We conduct screens to identify gene products involved in receptor desensitization by reading out signals in the *Galpha-q* and *Galpha-s* pathways. Screening of the effects of dynamic perturbations is also automated, both implemented by flexible micro-fluid administration of agonists and by optogenetic perturbations.

J



#### Jos Jonkers

Division head, Senior group leader Division of Molecular Pathology

Jos Jonkers PhD Group leader Jinhvuk Bhin PhD Post-doc Peter Bouwman PhD Senior post-doc Julia Houthuijzen PhD Post-doc Arne Nedergaard Kousholt PhD Post-doc Frank Rolfs Post-doc Daniel Zingg PhD Post-doc Stefano Annunziato MSc PhD student Chiara Brambillasca MSc PhD student Lisette Cornelissen MSc PhD student Julian de Ruiter MSc PhD student Stefan Hutten PhD student Sjors Kas MSc PhD student Catrin Lutz PhD student Ana Moises Da Silva PhD student Sarah Moser PhD student Mariana Paes Dias PhD student Emilia Pulver PhD student Koen Schipper MSc PhD student Roebi de Bruijn MSc Bioinformatician Hanneke van der Gulden Technical staff Ingrid van der Heijden Technical staff Ellen Wientiens Technical staff Madelon Badoux Research assistant Anne Paulien Drenth Research assistant

Anna Gandaglia Research assistant Eva Schut-Kregel Research assistant Eline van der Burg Research assistant Julia Yemelyanenko Research assistant

# Selected publications

Barazas M, L...I, Jonkers J, Rottenberg S. The CST complex mediates end protection at doublestrand breaks and promotes PARP inhibitor sensitivity in BRCA1-deficient cells. Cell Rep. 2018;23(7):2107-2118

Gogola E, I...1, Jonkers J, Rottenberg S. Selective loss of PARG restores PARylation and counteracts PARP inhibitor-mediated synthetic lethality. Cancer Cell. 2018;33(6):1078-1093

### Mouse models of breast cancer

My group studies human breast cancer development and progression, as well as therapy response and resistance, in genetically engineered mouse models (GEMMs) and patient-derived tumor xenograft (PDX) models. To this end, we have developed mouse models for BRCA1/2-associated breast cancer and invasive lobular carcinoma (ILC). We are using these models to (1) study tumor cell-intrinsic and -extrinsic mechanisms of breast cancer development and progression; (2) develop novel therapeutic strategies for prevention and treatment of breast tumors; (3) study mechanisms of acquired resistance to targeted therapeutics.

#### Driver genes in BRCA1-associated breast cancer

We have used our GEMMs of BRCA1-associated breast cancer to identify candidate driver genes in recurrent DNA copy number aberrations (CNAs). Cross-species comparison of CNAs in human and mouse BRCA1-deficient mammary tumors, combined with iterative *in vivo* validation of candidate drivers, identified loss of RB and amplification of MYC and MCL1 as drivers of BRCA1-associated breast cancer. Moreover, MCL1 inhibition potentiated the *in vivo* efficacy of the PARP inhibitor (PARPi) olaparib, underscoring the therapeutic potential of this combination for treatment of BRCA1-associated cancer patients with poor response to PARPi monotherapy.

#### Therapy resistance in BRCA-deficient breast cancer

BRCA1/2-deficient cancers are defective in homologous recombination repair and therefore hypersensitive to DNA-damaging agents, including platinum drugs and PARP inhibitors (PARPi). However, these treatments do not result in tumor eradication and eventually resistance develops. To study mechanisms of PARPi resistance, we combined functional genetic screens in BRCA1/2deficient cells with multi-omics analysis of PARPi-resistant tumors from our GEMMs and PDX models of BRCA-deficient breast cancer. These studies have shown that PARPi resistance can be induced by loss of factors that block DNA end resection (53BP1, REV7, and members of the CST complex and the newly identified Shieldin complex). PARPi resistance in BRCA2-deficient tumors was found to be driven by loss of the poly(ADP-ribose) glycohydrolase PARG.

#### Therapy resistance in ILC

We used *in vivo* Sleeping Beauty (SB) transposon mutagenesis to screen for genes conferring *in vivo* resistance to the FGFR inhibitor AZD4547 in ILC. This approach identified several known and novel resistance mechanisms to FGFR inhibition, including mutations in FGFR2, overexpression of MET, inactivation of RASA1 and activation of the drug-efflux pump ABCG2. Notably, ABCG2 and RASA1 were only identified from *de novo* transposon insertions acquired during AZD4547 treatment, demonstrating the utility of *in vivo* insertional mutagenesis for identifying therapy resistance mechanisms.

#### In vitro and in vivo models of DCIS

Ductal Carcinoma In Situ (DCIS) was virtually unknown before the advent of breast screening, yet now accounts for 25% of all 'breast neoplasms' detected. This increased detection rate has resulted in overtreatment since many DCIS lesions will not progress into invasive breast cancer. Better insight into the biology of DCIS is required to distinguish indolent lesions from potentially hazardous ones. To this end, we are generating genetically engineered and patient-derived rodent models of DCIS. These approaches will enable the identification of DCIS driver genes and yield models to study disease progression and response to targeted therapeutics.



#### Marleen Kok

Group leader Division Molecular Oncology & Immunology

Marleen Kok MD PhD Group Leader Iris Nederlof MD PhD student Leonie Voorwerk MD PhD student Marieke Bruggeman MSc Technical staff

Chris Klaver MSc Technical staff

Selected publications

Agahozo A, Hammerl D, Debets R, Kok M, van Deurzen C. Tumor infiltrating lymphocytes and ductal carcinoma in situ of the breast: friends or foes? Mod Pathol, 2018;31(7):1012-1025

Kok M, Winer E, Loi S. Passion for immune checkpoint blockade in breast cancer? Comments on Impassion 130. Ann Oncol, 2018

Sobral-Leite M, Van de Vijver K, Michaut M, van der Linden R, Hooijer G, Horlings H, Severson T, Mulligan A, Weerasooriya N, Sanders J, Glas A, Wehkamp D, Mittempergher L, Kersten K, Cimino-Mathews A, Peters D, Hooijberg E, Broeks A, Andrulis I, van de Vijver M, Bernards R, Kok M, de Visser K, Schmidt M. PD-L1 expression and the immune landscape of breast cancer molecular subtypes. Oncoimmunology 2018;7(12)

## Improving breast cancer immunotherapy

Cancer immunotherapy, especially PD1-blockade, has resulted in durable anti-tumor responses in a subgroup of breast cancer patients. However, the overall response rates are still modest and more clinical and translational research is vital to bring this treatment strategy to the clinic. Using innovative clinical trial approaches as well as applying state-of-the-art knowledge from fundamental cancer immunology and biology, we work on i) the identification of those breast cancer patients that will benefit from immunotherapy, and ii) a better understanding of the interactions between breast cancer and tumor-associated as well as circulating immune cells in order to develop novel immunomodulatory strategies.

#### Modulation of the tumor microenvironment to improve response to PD-1 blockade

The response rate of triple negative breast cancer (TNBC) patients to PD-1 blockade is low, highlighting an urgent clinical need for strategies that render the TNBC tumor microenvironment (TME) more sensitive to PD-1 blockade. Immunomodulatory mechanisms have been proposed for both chemotherapy and irradiation, but it has not been established whether these therapies may improve efficacy of PD-1 blockade by favorably changing the TME. Patients with metastatic TNBC were randomized to anti-PD1 without induction or to one of four induction treatments, consisting of irradiation or a two-week low-dose regimen of cyclophosphamide, cisplatin or doxorubicin, all followed by anti-PD-1. The majority of clinical responses were observed on anti-PD1 in the cisplatin and doxorubicin induction cohorts. After doxorubicin and cisplatin induction, we detected an upregulation of immune-related genes, involved in PD-1/PD-L1, and T-cell cytotoxicity pathways. This was supported by enrichment among upregulated genes related to inflammation, JAK-STAT and TNFα-signaling after doxorubicin. In addition, we observed a trend towards increased T-cell infiltration, measured using T-cell receptor (TCR) sequencing, after doxorubicin. Together, the data suggest that short-term doxorubicin and cisplatin may induce a more favorable TME and increase the likelihood of response to PD-1 blockade in TNBC. Results have been presented at ASCO 2018 (J Clin Oncol 36, no. 15\_suppl, 1012).

#### Immune-related invasive lobular breast cancer

Recently, genomic profiling showed that within invasive lobular breast cancer (ILC) an 'immunerelated' subtype exists. Besides, in a previously established mouse model for mILC, a synergistic effect of platinum and checkpoint inhibitors was observed (dr Karin de Visser group). Currently we are investigating the efficacy and immunomodulatory capacity of PD-1 blockade in combination with platinum agents in patients with metastatic ILC.

#### Systemic immune characteristics in breast cancer patients

There is now substantial evidence from preclinical studies that suppressive immune cells and soluble immune mediators can blunt the anti-cancer T cells response. Right now the key question is whether this immunosuppressive phenomenon is present in breast cancer patients and whether it is important for response to immunotherapy. In collaboration with the group of dr Karin de Visser we have set up a pipeline for comprehensive analyses of these systemic immunosuppressive components using high-dimensional flow cytometry combined with functional assays on fresh material from breast cancer patients.



#### **Pia Kvistborg**

Group leader Division Molecular Oncology and Immunology

Pia Kvistborg PhD Group leader Anastasia Gangaev PhD student Steven Ketelaar PhD student Kelly Hoefakker MSc Technical staff Sanne Patiwael Technical staff

# Selected publications

Blank CU, Rozeman EA, Fanchi LF, Sikorska K, van de Wiel B, Kvistborg P, Krijgsman O, van den Braber M, Philips D, Broeks A, van Thienen JV, Mallo HA, Adriaansz S, Ter Meulen S, Pronk LM, Grijpink-Ongering LG, Bruining A, Gittelman RM, Warren S, van Tinteren H, Peeper DS, Haanen JBAG, van Akkooi ACJ, Schumacher TN. Neoadjuvant versus adjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma. Nat Med. 2018;24(11):1655-1661

Kvistborg P, Yewdell JW. Enhancing responses to cancer immunotherapy. Science. 2018;359(6375):516-517

Schumacher TN, Scheper W, Kvistborg P. Cancer Neoantigens. Annu Rev Immunol. 2018

### T cells in cancer

#### Immunocompetence in cancer

It is well known that the tumor microenvironment can be highly immunosuppressive and render intra-tumor T cells dysfunctional. Furthermore, there is evidence suggesting that this suppression is not restricted to the tumor site but can also occur systemically. Such immune deviation has for instance been demonstrated by looking at dendritic cells isolated from peripheral blood of cancer patients with various types of solid tumors. However, we currently lack knowledge regarding systemic dysfunction of T cells in cancer patients. We are investigating this issue by comparing the state of T cells from stage IV, stage III melanoma patients and healthy donors. To allow this direct comparison between a similar set of T cell reactivities, we will focus on virus-specific T cells specific for EBV, CMV and Influenza A. Our experimental approach is to conjugate our in-house made pMHC multimers with oligo-barcodes so that we can obtain information regarding TCR sequence, gene expression profiles and antigen-specificity on a single cell level.

#### T cell functionality and antigen-specificity

A main research line in our group is to investigate the functional difference between T cells specific for e.g., self-antigens and tumor-specific mutated antigens. Multiple factors can play a role in such potential differences including the T cell receptor (TCR) repertoire available for recognition of a given antigen. For most self-antigens, the high-affine repertoire is expected to be deleted during thymic selection whereas for antigens such as neo-antigens central tolerance is not expected. Such imprinted differences in T cell states are likely to influence the responsiveness to immunotherapies such as checkpoint targeting therapies. Therefore, we are investigating the change in T cell states upon checkpoint targeting therapies focusing on T cell responses with different antigenspecificities. Such knowledge can be utilized to design novel treatment strategies. To address this question, we are identifying antigen-specific T cell responses towards shared self-antigens, neo-antigens and viral antigens so that we can isolate the cells and obtain transcriptome profiles. We are investigating the tumor specific T cell response across multiple malignancies including melanoma, lung cancer, mesothelioma, head & neck carcinoma, bladder cancer and ovarian cancer.



#### Tineke Lenstra

Group leader Division Gene Regulation

Tineke Lenstra PhD Group leader Ineke Brouwer PhD Post-doc Biljana Atanasovska PhD Post-doc Heta Patel BSc PhD student Gert-Jan Kuijntjes PhD student Aleksandra Balwierz PhD Technical staff Wim Pomp Technical specialist

#### Publication

Van Welsem T, Korthout T, Ekkebus R, Morais D, Molenaar TM, van Harten K, Poramba-Liyanage DW, Sun SM, Lenstra TL, Srivas R, Ideker T, Holstege FCP, van Attikum H, El Oualid F, Ovaa H, Stulemeijer IJE, Vlaming H, van Leeuwen F. Dotl promotes H2B ubiquitination by a methyltransferaseindependent mechanism. Nucleic Acids Res. 2018;46(21):11251-11261

## Transcription dynamics in single cells

Gene expression is tightly regulated to ensure that genes are transcribed in the right cell at the right time. Single-cell studies have shown that cells in a population can show considerable heterogeneity in gene expression, and that even at steady state concentrations of individual RNAs and proteins randomly fluctuate from one moment to the next. This stochastic heterogeneity can influence essential cell-fate decisions, and can also contribute to heterogeneity in tumours. We use cutting-edge single-molecule imaging approaches to visualize transcription fluctuations in living cells, in order to understand the mechanisms and regulation of transcription dynamics in single cells.

#### Understanding the mechanisms of transcriptional bursting

Previous studies on transcription dynamics have shown that genes are often not transcribed in a continuous fashion, but show transcriptional bursting, with periods of gene activity followed by periods of inactivity. Transcriptional bursting is a conserved property that occurs from bacteria to yeast to human cells. However, the origin and regulators of bursting remain largely unknown. Our lab uses a single-molecule RNA labeling technique to directly visualize and measure transcriptional bursts in both yeast and mammalian cells to understand how different levels of regulation control bursting.

#### Transcription factor dwell time controls burst size

Using a combination of *in vitro* and *in vivo* single-molecule imaging approaches, we directly correlated binding of a transcription factor (TF) with the transcriptional bursting kinetics of its target genes in living yeast cells. We find that the TF dwell times depends on the affinity of the binding site and sets the transcriptional burst size. Using a novel imaging platform, we simultaneously tracked TF binding and transcription at one locus, revealing the timing and correlation between TF binding and transcription. Our data support a model where multiple polymerases initiate during a burst as long as the TF is bound to DNA, and a burst terminates upon TF dissociation.

#### The effect of chromatin on bursting

Nucleosome binding in the promoter region of genes can affect the accessibility and binding dynamics of transcriptional regulators to DNA binding sites, which may regulate bursting. We have setup assays to conditionally change the nucleosome promoter structure by dynamically depleting nucleosome remodeling complexes from the nucleus. Several complexes were identified that influence transcriptional bursting, which we are currently characterizing further. To correlate bursting changes with chromatin changes, we are collaborating with John van Noort's lab in Leiden University, to develop a technique to measure the nucleosome composition on single gene templates isolated from cells. Together these experiments will reveal how chromatin structure determines transcriptional bursting.

#### Bursting of neighboring genes

Closely positioned genes may affect each other's transcription, for example by propagation of supercoils generated by transcription. We have setup an dual-color imaging assay technique to simultaneously monitor bursting of divergent and tandem gene pairs in the same cell. We showed that transcriptional bursts of divergent genes are correlated, and that transcription of one gene increases transcription of its divergent neighbour. We are currently using different perturbation approaches to determine the mechanism of this correlation.

L



#### Sabine Linn

Group leader Division Molecular Pathology

Sabine Linn MD PhD Group leader Leonora de Boo MD PhD student Vincent de Jong MD PhD student Dinja Kruger MD PhD student Annelot van Rossum MD PhD student Sonja Vliek MD PhD student Mark Opdam Technical Staff



Dackus G, Jozwiak K, Sonke GS, van der Wall E, van Diest PJ, Hauptmann M, Siesling S and Linn SC. Optimal adjuvant endocrine treatment of ER+/ HER2+ breast cancer patients by age at diagnosis: A population-based cohort study. Eur J Cancer 2018;90:92-101

Kruger DT, Beelen KJ, Opdam M, Sanders J, van der Noort V, Boven E and Linn SC. Hierarchical clustering of activated proteins in the PI3K and MAPK pathways in ER-positive, HER2negative breast cancer with potential therapeutic consequences. Br J Cancer 2018;119(7):832-839

Van Rossum A, Kok M, van Werkhoven E, Opdam M, Mandjes I, van Leeuwen-Stok A, van Tinteren H, Imholz A, Portielje J, Bos M, van Bochove A, Wesseling J, Rutgers E, Linn S, Oosterkamp H; MATADOR Trialists' Group. Adjuvant dosedense doxorubicin-cyclophosphamide versus docetaxel-doxorubicincyclophosphamide for high-risk breast cancer: First results of the randomised MATADOR trial (BOOG 2004-04). Eur. J. Cancer 2018:102:40-48

# Molecular dissection of cancer by differential drug sensitivity

In the clinic, we mainly use anticancer drugs based on outcomes of clinical trials that have been carried out in the general breast and ovarian cancer population, whereas little is known about the molecular mechanisms underlying differential drug sensitivity. The focus of our research line is to unravel these molecular mechanisms and develop tests that will guide treatment decisions in the clinic and ultimately improve survival. For this purpose, we use several genome-wide approaches and molecular techniques, in order to dissect the mechanisms that divide clinically well-defined cohorts of breast and ovarian cancer patients into resistant and sensitive to a particular drug. We have a close collaboration with the groups of Jos Jonkers and Jacco van Rheenen, who use genetically engineered mouse models for breast cancer, to study differential chemo sensitivity in a controlled fashion. In addition, we collaborate with the group of Wilbert Zwart, particularly focusing on molecular mechanisms underlying endocrine therapy resistance.

A second research line focuses on prognostic molecular classifiers for adjuvant systemic treatment advice in breast cancer.

#### Differential benefit of adjuvant taxanes

The MATADOR trial (ISRCTN61893718) randomized 664 patients between 6 cycles adjuvant docetaxel-doxorubicin-cyclophosphamide  $(T_{75}A_{50}C_{500})$  and 6 cycles dose-dense AC (dd $A_{60}C_{600}$ ). We employed RNA-sequencing data of pretreatment tumor samples to investigate the association between expression levels and recurrence-free survival via a data-driven and a biology-driven approach using hallmark gene sets and tumor cell deconvolution. The data-driven approach did not yield predictive information, while the biology-driven approach did. Overall, both treatments were equally effective. However, specific phenotypes fared better after either TAC, or ddAC. These findings require validation.

#### Molecular mechanisms underlying sensitivity to high dose alkylating agents

Our institute previously described characteristic DNA copy number aberrations (CNAs) of *BRCA1*and *BRCA2*-mutated breast cancers. We called these profiles BRCA-like profiles that can be derived from any platform assessing DNA CNAs. We are currently exploring the predictive potential of these genomic scars in several clinical trials utilizing DNA damaging agents. In addition, we are collecting more data on putative resistance modifiers, such as XIST and 53BP1.

#### Netherlands Breast Cancer Project

In collaboration with the Netherlands Cancer Registry (NKR) and UMCU we have initiated a project to find answers for clinical and translational research questions that will never be answered anymore through prospective clinical trials. For this, we make use of the NKR, where data of over 150,000 breast cancer patients has been stored with clinical follow-up. The ultimate aim is to combine clinical with molecular data of tumor material that has been traced back through the Dutch nationwide surgical pathology registry.

We have recently generated RNA-sequencing data for  $\pm 450$  triple negative breast cancers of women aged 40 years or younger at diagnosis. All were node-negative. Median follow-up is 17 years. In the Netherlands, before 1999, NO patients did not receive adjuvant chemotherapy. Hence, these patients are all systemic treatment naïve. We shall develop a prognostic classifier for this group of patients.



#### Rene Medema

Group leader Division Cell Biology

Rene Medema PhD Group leader Lenno Krenning PhD Research associate Jonne Raaijmakers PhD Research associate Femke Feringa PhD Post-doc Apostolos Menegakis PhD Post-doc Jeroen van den Berg MSc PhD student Anoek Friskes MSc PhD student Anna Gonzalez Manjon MSc PhD student Louise Janssen MSc PhD student Lisa Koob MSc PhD student Mar Soto MSc PhD student Xabier Vergara MSc PhD student Rob Klompmaker Technical staff

# Selected publications

**Chantal Vaarting** Technical staff

Feringa FM, Raaijmakers JA, Hadders MA, Vaarting C, Macurek L, Heitink L, Krenning L, Medema RH. Persistent repair intermediates induce senescence. Nat Commun. 2018;9:3923

Janssen LME, Averink TV, Blomen VA, Brummelkamp TR, Medema RH, Raaijmakers JA. Loss of Kif18A Results in Spindle Assembly Checkpoint Activation at Microtubule-Attached Kinetochores. Curr Biol. 2018;28:2685-96

Van den Berg J, A GM, Kielbassa K, Feringa FM, Freire R, Medema RH. A limited number of double-strand DNA breaks is sufficient to delay cell cycle progression. Nucleic Acids Res. 2018;46:10132-44

# Cell cycle checkpoints and chromosome segregation

The research in the Medema group aims to gain a better understanding of the cellular response to classic anti-cancer drugs that damage the DNA or perturb mitotic spindle assembly. The group uses the knowledge that is generated to define and experimentally test new anti-cancer strategies.

In our work on the DNA damage response we have been trying to understand how the fate of a cell with damaged DNA is determined. We would like to obtain answers to questions like: how many breaks are required to impose a cell cycle arrest, how many breaks are required to produce a permanent cell cycle arrest, and does it matter where in the genome these breaks occur? The answers to these important questions might help us understand and predict the response of a tumor to DNA damaging agents that are commonly used in the treatment of cancer.

In 2018 we published our first paper using a new tool we have developed in the lab that consists of a CRISPR/Cas9-based system that permits us to efficiently introduce DSBs at defined sites in the genome. Using this system, we can ask how many breaks are needed to produce a cell cycle arrest, and resolve if it matters where in the genome such breaks occur. In this first paper we showed that a guide RNA targeting only a single site in the human genome is sufficient to trigger a checkpoint response that is potent enough to delay cell cycle progression. Abrogation of this checkpoint leads to aneuploid progeny (van den Berg et al., Nucleic Acids Res, 2018).

In addition, using ionizing radiation, we showed that the decision to withdraw from the cell cycle in G2 is induced through delayed processing of double strand breaks. We showed that stalled HRmediated repair results in high levels of resected DNA and enhanced ATR-dependent signaling, allowing p21 to rise to levels at which it drives cell cycle exit (Feringa et al., Nat Commun, 2018). These data imply that cells have the capacity to discriminate breaks that can be repaired from breaks that are difficult to repair at a time when repair is still ongoing.

In our work addressing the process of chromosome segregation we made use of the haploid genetic screens developed by the Brummelkamp lab to identify synthetic lethal and synthetic viable interactions with spindle assembly checkpoint components Mad1 and Mad2. This allowed us to show that Bub1 is required for chromosome alignment and only has a minor contribution in checkpoint signaling (Raaijmakers et al., Cell Reports, 2018). In addition, we were able to resolve a longstanding debate in the field, namely that lack-of-tension across the kinetochores is sufficient to directly activate the spindle assembly checkpoint (Janssen et al., Curr. Biol., 2018).



#### Gerrit Meijer

Group leader Division Diagnostic Oncology

Gerrit Meijer MD PhD Group leader Beatriz Carvalho PhD Principal investigator **Remond Fijneman PhD Principal** investigator Janneke van Denderen PhD Academic staff Linda Bosch PhD Senior post-doc Meike de Wit PhD Senior post-doc Sanne Martens-de Kemp PhD Post-doc Gosia Komor MSc PhD student Meta van Lanschot MD PhD student Iris van 't Erve PhD student Mariska Bierkens PhD Senior technical staff Anne Boliin Technical staff

Pien Delis-van Diemen Technical staff Alex Henneman PhD Technical staff Annemieke Hiemstra MSc Technical staff

Brenda Hijmans PhD Technical staff Margriet Lemmens Technical staff Pauline van Mulligen MA Technical staff Brian Severins Technical staff Marianne Tijssen Technical staff Menno de Vries MSc Technical staff

> Selected publications

Komor MA, et al. Consensus molecular subtype classification of colorectal adenomas. J Pathol. 2018;246(3):266-276

Van den Broek E, et al. MACROD2 expression predicts response to 5-FUbased chemotherapy in stage III colon cancer. Oncotarget. 2018;9(50):29445-2945

Van Lanschot MCJ, et al. Molecular profiling of longitudinally observed small colorectal polyps: A cohort study. EBioMedicine. 2019;39:292-300

# Translational Gastrointestinal Oncology

Translating disease biology into new diagnostic applications holds great promise for improving outcome for patients. We characterize gastrointestinal pre-malignant and malignant lesions at DNA, RNA, and protein level by tumor profiling using -omics techniques, in order to stratify patient groups and arrive at individually tailored therapies, as well as for biomarker development to improve colorectal cancer screening. Disease biology is studied using pre-clinical model systems such as organoid cultures. Clinical validation is performed by making use of large series of patient sample collections derived from screening programs and multi-center clinical trials. To facilitate the logistics that are needed for these validation studies we are involved in several (inter)national research infrastructure programs.

#### Early detection of colorectal cancer

The current Dutch population-wide screening program uses the immunochemical fecal occult blood screening test (FIT). Although efficient, FIT still misses approximately 30% of carcinomas and 70% of pre-malignant lesions. We aim to unravel the biology of adenoma to carcinoma progression, identify biomarkers and clinically validate new biomarker-based tests. We gained more insight into the relation between morphologically-defined advanced adenomas and molecularly-defined high-risk adenomas, which are likely to progress to cancer. Candidate biomarkers for early detection were validated in large collections of clinically well-characterized tumor and stool/FIT samples. Within the MOCCAS (MOlecular stool testing for Colorectal CAncer Surveillance) study, an interim analysis on the performance of molecular markers supports the notion that use of these markers could lead to less surveillance colonoscopies.

#### **Patient stratification**

Cancer is a heterogeneous disease. By DNA-, RNA-, and protein-profiling it becomes feasible to stratify patients according to their molecular tumor profile, and to optimize treatment for individual patients. The minute amounts of tumor material in liquid biopsies (i.e. blood samples), which can be obtained longitudinally and more easily compared to tissue biopsies, are also amenable to these assays.

Knowledge about the prevalence of chromosomal breakpoints in CRC is limited, and the impact of these genomic aberrations on patient outcome is poorly understood. MACROD2 is frequently affected by chromosomal breaks. We determined its predictive value in stage II and III CRC. In parallel, we collect blood samples in several nation-wide CRC studies, to investigate whether DNA mutation analysis of circulating cell-free DNA can be applied as biomarkers to better determine who to treat, how to treat, and when to treat CRC patients.

#### Translational research infrastructure

To improve translation 'from bench to bedside', logistics and data stewardship of clinical studies need to be optimized: data must be FAIR (Findable, Accessible, Interoperable and Reusable). The Health Research Infrastructure (Health-RI) offers services for sustainable management of research data. Locally, we are loading clinical, biobanking, and molecular data from multiple TGO studies in the data integration platforms tranSMART and cBioPortal. Internationally, we align our data management with initiatives such as Cancer Core Europe and AACR GENIE.

M



#### **Daniel Peeper**

Division head, group leader Division Molecular Oncology & Immunology

Daniel Peeper PhD Group leader Oscar Kriigsman PhD Senior post-doc Thomas Kuilman PhD Senior post-doc Astrid Alflen Post-doc Xiangjun Kong PhD Post-doc Pierre Lévy PhD Post-doc Maarten Ligtenberg PhD Post-doc Alexandra Terry Post-doc Tushar Tomar PhD Post-doc Georgi Apriamashvili MSc PhD student Julia Boshuizen MD MSc PhD student Juliana De Carvalho Neme Kenski MSc PhD student Xinyao Huang MSc PhD student Sofía Ibáñez Molero PhD student Chun-Pu Lin PhD student Sebastiaan Schieven PhD student Alex van Vliet PhD student David Vredevoogd MSc PhD student Beaunelle de Bruiin MSc Technical staff Nils Visser BSc Technical staff

# Selected publications

Kluin RJC, Kemper K, Kuilman T, de Ruiter JR, Iyer V, Forment JV, Cornelissen-Steijger P, de Rink I, Ter Brugge P, Song JY, Klarenbeek S, McDermott U, Jonkers J, Velds A, Adams DJ, Peeper DS, Krijgsman O. XenofilteR: computational deconvolution of mouse and human reads in tumor xenograft sequence data. BMC Bioinformatics. 2018;19(1):366

Boshuizen J, Koopman LA, Krijgsman O, Shahrabi A, van den Heuvel EG, Ligtenberg MA, Vredevoogd DW, Kemper K, Kuilman T, Song JY, Pencheva N, Mortensen JT, Foppen MG, Rozeman EA, Blank CU, Janmaat ML, Satijn D, Breij ECW\*, Peeper DS\* (\*co-corresponding), Parren PWHI. Cooperative targeting of melanoma heterogeneity with an AXL antibodydrug conjugate and BRAF/MEK inhibitors. Nature Med. 2018 ;24(2):203

### Functional genomics for cancer and immune cell therapy

#### Introduction

We use function-based, genome-wide experimental strategies to develop rational combinatorial cancer treatment, targeting both cancer and immune cells. By screening for novel therapeutic targets and predictive biomarkers, we aim to achieve more durable clinical responses for patients. On the one hand, we are increasing our understanding of how cancer cells rewire their signaling networks, to expose and exploit new pharmacologically tractable tumor susceptibilities, also in the context of immunotherapy. On the other hand, we are manipulating various cell types from the patient's own immune system to boost their specific cytotoxicity towards tumor cells. With these function-based approaches, we develop new rational combinatorial therapies, which simultaneously eliminate the patients' tumors and harness their immune system.

#### Targeting tumor heterogeneity

Intratumor heterogeneity is a key factor contributing to therapeutic failure and, hence, cancer lethality. Heterogeneous tumors commonly show partial therapy responses, allowing for the emergence of drug-resistant clones that often express high levels of the receptor tyrosine kinase AXL. In melanoma, AXL-high cells are resistant to MAPK pathway inhibitors, whereas AXL-low cells are sensitive to these inhibitors, rationalizing a differential therapeutic approach. In collaboration with Genmab, which developed an AXL antibody-drug conjugate (Enapotamab vedotin, comprising a human AXL antibody linked to a microtubule-disrupting agent), we demonstrated that Enapotamab vedotin and MAPK pathway inhibitors cooperatively inhibited melanoma growth. Furthermore, by inducing AXL transcription, BRAF/MEK inhibitors potentiated the efficacy of Enapotamab vedotin. These findings provide proof of concept for the premise that rationalized combinatorial targeting of distinct populations in heterogeneous tumors may improve therapeutic effect, and merit clinical validation of Enapotamab vedotin in both treatment-naive and drug-resistant cancers in mono- or combination therapy.

#### Xenofilter

Mouse xenografts from (patient-derived) tumors (PDX) or tumor cell lines are widely used as models to study various biological and preclinical aspects of cancer. However, analysis of their RNA and DNA profiles is challenging, because they comprise sequencing reads not only from the grafted human cancer but also from the murine host. Therefore, we developed the open-source R-package XenofilteR, which separates mouse from human sequence reads based on the number of discordant base pairs between the reads and the reference genome. XenofilteR removes >99.9% of mouse reads from the sequence profiles while retaining SNPs and somatic mutations of human origin, thereby outperforming currently available tools. Therefore, XenofilteR is a very useful tool for all studies utilizing PDX, facilitating translational research.

#### Developing systems to integrate targeted and immunotherapy

Notwithstanding clinical advances, it is clear that large groups of patients will not durably benefit from immunotherapy, mostly because of resistance. Therefore, in collaboration with the group of Ton Schumacher, we have built *in vitro* and *in vivo* systems to study interactions between tumor cells and T cells. We use these systems to perform function-based screens to develop combinatorial targeted and immunotherapy regimens to achieve more durable clinical responses. These screens have identified several unexpected targets that may be of therapeutic interest, and that are currently being characterized. Similar matched epitope/TCR systems have now been set up for lung cancer, also to use large-scale genetic perturbations for the identification of predictive biomarkers and new therapeutic targets.

F



Anastassis Perrakis Group leader Division Biochemistry

Anastassis Perrakis PhD Group leader Robbie Joosten PhD Senior post-doc Misbha Ud Din Ahmad PhD Post-doc Yoshitaka Hiruma PhD Post-doc Krista Joosten PhD Post-doc Athanassios Adamopoulos PhD student Bart van Beusekom PhD student Fernando Salgado-Polo PhD student Tatjana Heidebrecht Technical staff George Damaskos Software engineer Maarten Hekkelman Software engineer

#### Selected publications

Sacristan C, Ahmad MUD, Keller J, Fermie J, Groenewold V, Tromer E, Fish A, Melero R, Carazo JM, Klumperman J, Musacchio A, Perrakis A, Kops GJ. Dynamic kinetochore size regulation promotes microtubule capture and chromosome biorientation in mitosis. Nat Cell Biol. 2018;20(7):800-810

Salgado-Polo F, Fish A, Matsoukas MT, Heidebrecht T, Keune WJ, Perrakis A. Lysophosphatidic acid produced by autotaxin acts as an allosteric modulator of its catalytic efficiency. J Biol Chem. 2018;293(37):14312-14327

Van Beusekom B, Joosten K, Hekkelman ML, Joosten RP, Perrakis A. Homology-based loop modeling yields more complete crystallographic protein structures. IUCrJ. 2018;5(Pt 5):585-594

### Structural biology

We aim to provide molecular insight to macromolecular interactions and structures, understanding how these regulate specific biological activities in space and in time. In parallel we develop concepts, algorithms, and software improving the methods for this work. Our work enables the development of new specific drugs and biologics.

#### Structural studies of Autotaxin

ATX produces the signalling phospholipid LPA; LPA and ATX are involved in cancer metastasis and other pathogenic situations. Previously, we found a new allosteric site at ATX. This prompted a detailed evaluation of the kinetics of the enzymatic activity of ATX, analysing kinetic data with a global modelling approach. This revealed a product activation mechanism, whereas hydrolysis of various LPC species is activated by various LPAs. Our focus since has been to understand the catalysis-independent signalling of ATX in different contexts.

#### Structural studies of proteins involved in mitotic progression

The Spindle Assembly Checkpoint (SAC) is a protein network that ensures that the cell does not proceed with separating the sister chromatids in mitosis before all chromosomes have been aligned and attached to the spindle machinery. A module in the N-terminus of Mps1, the NTE-TPR, as well as a C-terminal extension (CTE) and a Middle Region (MR) are important localizing of Mps1 to the kinetochores, competing with microtubules for binding to the NDC80 complex in the outer kinetochores, and is a major regulator of the SAC. Studying interactions of the NTE, CTE, MR, and the TPR, allowed progress in understanding how the Mps1 modules interact with the outer kinetochore complexes, modulating microtubule attachment.

We also contributed to the study of the dynein adaptor Spindly and the RZZ complex, which drive kinetochore expansion in a dynein-independent manner. We showed that C-terminal farnesylation and MPS1 kinase activity causes conformational changes of Spindly: dynamic kinetochore size regulation in mitosis is coordinated by a single, Spindly-based mechanism that promotes initial microtubule capture and subsequent correct maturation of attachments.

#### Structural studies of J-base binding proteins

The JBP1 protein binds to DNA that contains base J ( $\beta$ -D-glucosyl-hydroxymethyluracil) and is also a thymidine hydroxylase. Well into the second decade since its discovery by Piet Borst and colleagues, we found a function of base J in non-telomeric regions, showed how JBP1 recognizes J-containing DNA through a single aspartate residue in a small DNA Binding Domain (DBD), with ten thousand-fold preference over normal DNA, demonstrated that full-length JBP1 binding to DNA takes place in two distinct steps, and have characterised the low-resolution shape of the J-DNA complex with JBP1. Excitingly, we recently established a mass spectrometry based assay for JBP1 function and have done the groundwork towards an EM structure for the JBP1 protein.

#### Methods for X-ray crystallography

PDB-REDO is a project we lead together with Robbie Joosten in my group. We strive to make better crystallographic structure models by improving published structures and making them available through the PDB\_REDO data bank, while providing a web-server that allows practicing crystallographers to take full advantage of the PDB\_REDO procedure.

PDB\_REDO is a decision-making system that makes rational decisions for the best crystallographic model optimization protocols. This year we continued our focus on using structural homology as a tool to create better structures, especially at low resolution. Using homology information we created a new algorithm to "transfer" flexible un-modelled loops from one structure to another, allowing us to build about 25,000 loops that were not previously in the PDB.



#### Sven Rottenberg

Group leader Division Molecular Pathology

Sven Rottenberg DVM PhD Dipl ECVP Group leader Christina Andronikou MSc PhD student Marco Barazas MSc PhD student Ewa Gogola MSc PhD student Alexandra Duarte Technical staff

Selected publications

Duarte A, Gogola E, Sachs N, Barazas M, Annunziato S, de Ruiter J, Velds A, Blatter S, Houthuijzen J, van de Ven M, Clevers H, Borst P, Jonkers J', Rottenberg S'. BRCA-deficient mouse mammary tumor organoids to study cancer drug resistance. Nat Methods. 2018;15:134-140

Barazas M, Annunziato S, Pettitt SJ, de Krijger I, Ghezraoui H, Roobol SJ, Lutz C, Frankum J, Song FF, Brough R, Evers B, Gogola E, Bhin J, van de Ven M, van Gent DC, Jacobs JJL, Chapman R, Lord CJ, Jonkers J', Rottenberg S'. The CST complex mediates end protection at double-strand breaks and promotes PARP inhibitor sensitivity in BRCA1-deficient cells. Cell Rep. 2018:23:2107-2118

Gogola E, Duarte AA, de Ruiter JR, Wiegant WW, Schmid JA, de Bruijn R, James DI, Guerrero Llobet S, Vis DJ, Annunziato S, van den Broek B, Barazas M, Kersbergen A, van de Ven M, Tarsounas M, Ogilvie DJ, van Vugt M, Wessels LFA, Bartkova J, Gromova I, Andújar-Sánchez M, Bartek J, Lopes M, van Attikum H, Borst P, Jonkers J', Rottenberg S'. Selective loss of PARG restores PARylation and counteracts PARP inhibitor-mediated synthetic lethality. Cancer Cell. 2018;33:1078-1093

\* Corresponding authors

### Therapy escape of cancer

We are studying drug resistance mechanisms in "spontaneous" mammary tumors arising in genetically engineered mice. In particular, we are using mammary tumors with conditional defects of the *Brca1*, *Brca2*, and *p53* genes. In these models we are focusing on (1) mechanisms of secondary drug resistance, (2) the characterization of drug tolerant tumor cells, and (3) the identification of markers that are useful to predict therapy response. These projects are carried out in close collaboration with the group of Jos Jonkers and with Piet Borst (NKI). Using our mouse models, we are also investigating the escape from local radiotherapy control (4) in collaboration with the NKI-AVL radiotherapist Gerben Borst.

#### Identification of the shieldin and CST complexes that counteract DNA end resection and cause PARP inhibitor resistance when lost

The synthetic lethal interaction between BRCA1 or BRCA2 deficiency and poly(ADP-ribose) polymerase (PARP) inhibition is a well-established therapeutic paradigm with encouraging clinical response rates. Despite this success, long-lasting clinical response rates in patients with advanced disease are limited by the development of resistance, the mechanisms of which have not been fully elucidated. Using the *K14cre;Brca1/2<sup>F/F</sup>;p53<sup>F/F</sup>* (KB1P or KB2P) mouse models of hereditary breast cancer, we have identified PARPi resistance mechanisms that are independent of functional BRCA1/2 restoration. The BRCA1-independent resistance mechanisms predominantly involved the partial restoration of homologous recombination (HR) through re-wiring of the DNA damage response (DDR); for example, by loss of 53BP1. Although this loss partially restores end resection of DNA double-strand breaks (DSBs), the precise underlying mechanism was elusive. In collaboration with the groups of Dan Durocher (Lunenfeld-Tanenbaum Research Institute, Toronto), Ross Chapman (University of Oxford) and Chris Lord (ICR, London), we identified the RPA-like shieldin (SHLD1-SHLD2-SHLD3-REV7/MAD2L2) and CST (CTC1-STN1-TEN1) complexes as resection antagonists that act downstream of 53BP1. These findings might also have clinical implications, because loss-of-function mutations in the CST- or shieldin-encoding genes are predicted to cause clinical PARPi resistance. Moreover, we expect that these alterations provide new therapeutic vulnerabilities, because we recently found that depletion of the 53BP1-dependent DNA repair pathway enhances sensitivity to radiotherapy.

#### Loss of PARG restores PARylation and counteracts PARP inhibitor-mediated synthetic lethality

In contrast to BRCA1-mutated tumors, HR is not restored at all in the BRCA2-deficient PARPiresistant tumors in our model. Intriguingly, when we performed loss-of-function screens for PARPi resistance in BRCA2-deficient cells, we found that the loss of poly(ADP-ribose) glycohydrolase (PARG), which depolymerizes PAR, causes PARPi resistance. Loss of PARG could also be confirmed in several PARPi-resistant mouse mammary tumors by next generation sequencing. PARG depletion restores PAR formation, rescues controlled fork progression and promotes the recruitment of downstream DNA repair factors. Our finding highlights an important aspect of PARPi therapy: the endogenous PARG activity in tumor cells is crucial for therapy success. Moreover, PARG-negative clones are pre-existing in a subset of human triple-negative breast cancers, underscoring the potential relevance of PARG in clinical PARPi resistance.



#### **Benjamin Rowland**

Group leader Division Gene Regulation

Benjamin Rowland PhD Group leader Ahmed Elbatsh PhD Post-doc Judith Haarhuis PhD Post-doc Alberto García Nieto MSc PhD student Claire Hoencamp MSc PhD student Roel Oldenkamp MSc PhD student Marjon van Ruiten MSc PhD student Ángela Sedeño Cacciatore MSc PhD student

Laureen Willems BSc Technical staff

#### Publications

Allahyar A, Vermeulen C, Bouwman BAM, Krijger PHL, Verstegen MJAM, Geeven G, van Kranenburg M, Pieterse M, Straver R, Haarhuis JHI, Jalink K, Teunissen H, Renkens IJ, Kloosterman WP, Rowland BD, de Wit E, de Ridder J, de Laat W. Enhancer hubs and loop collisions identified from single-allele topologies. Nat Genet. 2018;50:1151-1160

Van Ruiten MS, Rowland BD. SMC complexes: Universal DNA looping machines with distinct regulators. Trends Genet. 2018;34:477-487

### Chromosome Biology

Human chromosomes are centimetres in length, but are organized such that they fit into a cell of micrometre-scale dimensions. Within this confined setting, chromosomes allow for tightly controlled cellular processes such as mitosis and transcription. These processes are made possible by two conserved protein complexes known as cohesin and condensin. Both cohesin and condensin are ring-shaped SMC complexes that can entrap DNA and build loops to provide structure to chromosomes.

Research in our lab centres on the mode of action of cohesin and condensin. How do these complexes entrap and release DNA? How does condensin drive mitotic chromosome condensation? How does cohesin contribute to the formation of the often megabase-sized loops that shape interphase chromosomes? And how does loop formation by these complexes affect nuclear organization and gene expression? We are addressing these questions using a multi-disciplinary approach that covers genetics, genomics, biochemistry and imaging, and through our fruitful collaborations also includes biophysics and crystallography.

#### Chromosome organization by cohesin

The cohesin complex is essential for the formation of chromatin loops across the genome. We recently discovered that the interphase genome is structured through a highly dynamic process that involves a continuous cycle of formation, loss and re-formation of loops by cohesin. We also found that the cohesin release factor WAPL limits the degree by which loops can be enlarged. Together, our findings support the model that cohesin structures chromosomes through the processive enlargement of DNA loops (Haarhuis et al., Cell 2017).

Cohesin is required for the formation of loops between CTCF sites along chromosomes. In collaboration with the laboratories of Wouter de Laat, Jeroen de Ridder and Elzo de Wit we have revealed that distant CTCF sites can be brought together in rosette-like structures that form through the collision of CTCF-bound loop anchors, and that cohesin release by WAPL counteracts the formation of these structures (Allahyar et al., Nat. Genet. 2018).

#### Chromosome condensation by condensin

Cohesin and condensin are enzymes with highly conserved ABC-like ATPases at their basis. These ATPase machineries each contain two distinct ATPase sites. In collaboration with the lab of Kim Nasmyth, we recently found that cohesin's ATPase sites have distinct roles, as only one of these sites controls DNA release (Elbatsh et al., Mol Cell, 2016 and Beckouët et al., Mol Cell, 2016). Acetylation proximal to this release ATPase site locks cohesin on DNA to establish enduring sister chromatid cohesion.

This year, we collaborated with the labs of Cees Dekker, Christian Haering and Elzo de Wit, and found that specifically one of condensin's ATPase sites drives loop formation, while the other site rather controls what type of DNA structures are formed. Condensin's ATPase thus controls condensation in a dual manner. We find that this mechanism is conserved from yeast to humans. Asymmetric ATPases with distinct roles for each ATPase site are likely to reflect a universal principle for SMC complexes that enables these ancient molecular machines to intricately control chromosome architecture.



#### Sanne Schagen

Group leader Division Psychosocial Research and Epidemiology

Sanne Schagen PhD Group leader Michiel de Ruiter PhD Research associate Joost Agelink van Rentergem PhD Post-doc Heleen Feenstra PhD Post-doc Kete Klaver PhD student Emmie Koevoets PhD student Philippe Lee Meeuw Kjoe PhD student Kimberly van der Willik PhD student Lenja Witlox PhD student Jacobien Kieffer MSc Senior statistical analyst Marianne Kuenen Research assistant

# Selected publications

Stouten-Kemperman MM, de Ruiter MB, Boogerd W, Kerst JM, Kirschbaum C, Reneman L, Schagen SB. Brain Hyperconnectivity >10 Years After Cisplatin-Based Chemotherapy for Testicular Cancer. Brain Connect. 2018;8(7):398-406

Van der Willik KD, Koppelmans V, Hauptmann M, Compter A, Ikram MA, Schagen SB. Inflammation markers and cognitive performance in breast cancer survivors 20 years after completion of chemotherapy: a cohort study. Breast Cancer Res. 2018;20(1):135

Van der Willik KD, Ruiter R, Wolters FJ, Ikram MK, Stricker BH, Hauptmann M, Compter A, Schagen SB, Ikram MA. Mild Cognitive Impairment and Dementia Show Contrasting Associations with Risk of Cancer. Neuroepidemiology. 2018;50(3-4):207-215

# Cognitive function in cancer patients

The projects constituting our lines of research center around the characterization of the incidence, pattern and course of cognitive problems associated with cancer and cancer therapies, the risk factors for cognitive problems and the pathophysiological mechanisms that underlie cognitive problems in patients with tumours either inside or outside the CNS. Our research is also directed to develop, evaluate and implement interventions to minimize and manage cognitive problems and to enhance quality of life and increase functional independence.

#### Trajectories of cognitive function prior to cancer diagnosis

Research suggests that non-central nervous system cancer may negatively impact the brain apart from cancer treatment. However, studies assessing cognitive function in newly diagnosed cancer patients cannot exclude psychological effects of diagnosis. To overcome these limitations, we investigated trajectories of cognitive function of patients before cancer diagnosis.

Between 1989-2013, 2,185 participants from the population-based Rotterdam Study were diagnosed with non-CNS cancer. Cognitive assessments were performed every three-five years using a neuropsychological battery from which the general cognitive factor was derived, assessing global cognitive function. We evaluated 1) whether shared risk factors for both cancer and cognitive impairment influence cognitive function by excluding test results within two years preceding cancer diagnosis and 2) the impact of subclinical cancer, thereby including all test results up to cancer diagnosis. Using linear mixed models we compared cognitive trajectories prior to diagnosis between cancer cases and age-matched cancer-free controls (1:2).

We found no evidence that cognitive function declines differently over time among individuals who will be diagnosed with cancer prior to disease manifestation than among individuals who will remain cancer-free; The general cognitive factor declined from study entry up to two years before cancer diagnosis at a similar rate for cases and controls (*P* difference=.763). In addition, the change of the general cognitive factor over time did not differ between cases and controls after inclusion of all test results up to diagnosis (*P* difference=.669).

Our results do not support the idea that cancer itself or shared risk factors for cancer and cognitive impairment play a role in the origination of cognitive impairment in non-CNS cancer.

#### Online assessment of cognitive function

We developed and tested a neuropsychological test battery that can be completed online without supervision, the Amsterdam Cognition Scan. The ACS is available in the Dutch and English language. We are currently working on a Swedish, French, Spanish and German version. The ACS is at present used in various clinical trials, such as the SUBITO study on the efficacy of high-dose chemotherapy for high-risk BRCA1-like breast cancer, and will soon be incorporated in the SONIA trial on the efficacy of endocrine therapy plus CDK4/6 in first or second line for hormone positive advanced breast cancer. Several behavioral and life-style intervention trials with the aim to diminish cognitive problems in cancer patients also use the ACS. We expect that this instrument will facilitates the collection of cognitive data in research. It also allows for more in-depth analysis of patients' responses, thereby contributing to our insight into the nature of cognitive problems following cancer and cancer therapies.



### Alfred Schinkel Group leader

. Division Pharmacology

Alfred Schinkel PhD Group leader Cristina Lebre PhD Academic staff Changpei Gan MSc PhD student Stéphanie van Hoppe MSc PhD student Wenlong Li MSc PhD student Alejandra Martínez MSc PhD student Margarida Martins MSc PhD student Jing Wang MSc PhD student Yaogeng Wang MSc PhD student

Selected publications

Li W, Sparidans RW, Wang Y, Lebre MC, Wagenaar E, Beijnen JH, Schinkel AH. P-glycoprotein (MDR1/ABCB1) restricts brain accumulation and cytochrome P450-3A (CYP3A) limits oral availability of the novel ALK/ ROS1 inhibitor Iorlatinib. Int J Cancer. 2018;143(8):2029-2038

Van Hoppe S, Rood JJM, Buil L, Wagenaar E, Sparidans RW, Beijnen JH, Schinkel AH. P-Glycoprotein (MDR1/ABCB1) Restricts Brain Penetration of the Bruton's Tyrosine Kinase Inhibitor Ibrutinib, While Cytochrome P450-3A (CYP3A) Limits Its Oral Bioavailability. Mol Pharm. 2018;15(11):5124-5134

Wang J, Gan C, Sparidans RW, Wagenaar E, van Hoppe S, Beijnen JH, Schinkel AH. P-glycoprotein (MDR1/ ABCB1) and Breast Cancer Resistance Protein (BCRP/ABCG2) affect brain accumulation and intestinal disposition of encorafenib in mice. Pharmacol Res. 2018;129:414-423

# Genes and proteins involved in anticancer drug resistance and pharmacokinetics

We study genes and proteins that cause drug resistance or drug susceptibility in tumors, or influence the pharmacological and toxicological behavior of (anticancer) drugs and toxins, including carcinogens. Of special interest are multispecific drug efflux and uptake transporters, as well as drug-metabolizing enzymes. Insight into these systems may: i) improve chemotherapy and pharmacotherapy approaches for cancer and other diseases; ii) increase insights into factors determining susceptibility to toxins and carcinogens, and; iii) allow elucidation of physiological functions. To understand the physiological, pharmacological and toxicological roles of the proteins involved we generate and analyze knockout or transgenic mice lacking or overexpressing the relevant genes. Below we describe a few recent studies illustrating our approach.

#### P-glycoprotein restricts brain accumulation and cytochrome P450-3A limits oral availability of the ALK/ROS1 inhibitor lorlatinib

Lorlatinib is a recently approved oral anaplastic lymphoma kinase (ALK) inhibitor for treatment of non-small-cell lung cancer. It was designed to have high membrane and blood-brain barrier permeability. We investigated the roles of the multidrug efflux transporters ABCB1 and ABCG2, and the multispecific drug-metabolizing enzyme CYP3A in plasma pharmacokinetics and tissue distribution of lorlatinib using genetically modified mouse strains. Following oral lorlatinib administration, brain accumulation of lorlatinib was fourfold increased in Abcb1a/1b<sup>-/-</sup> and Abcb1a/1b;Abcg2<sup>-/-</sup> mice. Lorlatinib plasma levels were not altered. Oral coadministration of the ABCB1/ABCG2 inhibitor elacridar increased the brain accumulation of lorlatinib in wild-type mice fourfold. In Cyp3a<sup>-/-</sup> mice, the plasma exposure of lorlatinib was increased 1.3-fold, but was then twofold reduced upon transgenic overexpression of human CYP3A4 in liver and intestine, whereas relative tissue distribution of lorlatinib remained unaltered. Lorlatinib brain accumulation is thus limited by P-glycoprotein in the blood-brain barrier, which can be effectively reversed by elacridar coadministration. Moreover, oral availability of lorlatinib is restricted by CYP3A4 activity.

# P-glycoprotein restricts brain penetration of the Bruton's tyrosine kinase inhibitor ibrutinib, while cytochrome P450-3A limits its oral bioavailability

Ibrutinib, an oral tyrosine kinase inhibitor (TKI) approved for treatment of B-cell malignancies, inhibits the Bruton's tyrosine kinase. We investigated whether ABCB1 and ABCG2 or the CYP3A enzyme family can affect the oral bioavailability and tissue disposition of ibrutinib and its metabolite ibrutinib-DiOH. In mice, Abcb1 markedly restricted the brain penetration of ibrutinib and ibrutinib-DiOH, either alone or in combination with Abcg2, resulting in 4.5- and 5.9-fold increases in ibrutinib brain-to-plasma ratios in Abcb1a/1b<sup>-/-</sup> and Abcb1a/1b;Abcg2<sup>-/-</sup> mice. Cyp3a deficiency increased the ibrutinib plasma AUC by 9.7-fold compared to wild-type mice. This increase was mostly reversed (5.1-fold reduction) by transgenic human CYP3A4 overexpression. Our results suggest that pharmacological inhibition of ABCB1 during ibrutinib therapy might benefit patients with malignancies or (micro)metastases positioned behind an intact blood-brain barrier. Moreover, inhibitors or inducers of CYP3A will likely strongly affect ibrutinib oral bioavailability and, thus, its therapeutic efficacy, as well as its toxicity risks.



#### Marjanka Schmidt

Group leader Division of Molecular Pathology

Marianka Schmidt PhD Group leader Sander Canisius PhD Research associate Susanne Rebers PhD Research associate Sandra van den Broek PhD Post-doc. project manager Delal Akdeniz MSc MD PhD student Maria Escala Garcia MSc PhD student Daniele Giardiello MSc PhD student Iris Kramer MSc PhD student Anna Morra MSc PhD student Maartie Schreurs MSc PhD student Marcelo Sobral-Leite MSc PhD student Nikkie Aarts PhD Project staff Aaike van Oort Project staff Marjolein Timmers MSc Project staff Proteeti Bhattacharjee MSc Project manager Miriam Beusink MSc Research assistant

Renske Keeman MSc Data manager Sten Cornelissen Technical staff

# Selected publications

Escala-Garcia M, BCAC authors, I...J and Schmidt MK. Genome-wide association study of germline variants and breast cancer-specific mortality. Br. J. Cancer 2018 (in press)

Kramer I, Schaapveld M, Oldenburg H, Sonke G, McCool D, van Leeuwen F, van de Vijver K, Russell N, Linn S, Siesling S, Menke-van der Houven van Oordt W, Schmidt MK. The influence of adjuvant systemic regimens on contralateral breast cancer risk and receptor subtype. J Natl Cancer Inst. 2018 (in press)

Rebers S, Vermeulen E, Brandenburg AP, Aaronson NK, Schmidt MK. Recall and Retention of Consent Procedure Contents and Decisions: Results of a Randomized Controlled Trial. Public Health Genomics. 2018

# Molecular breast cancer epidemiology

Our work spans the themes of precision medicine (and prevention) and survivorship. We investigate germline genetic variants for their role in breast cancer subtype development and prognosis. Where relevant, we translate and implement our findings in models and tools to facilitate shared decision-making by patients and physicians with the aim to prevent breast cancer (recurrence), reduce overtreatment, and improve outcome.

# Huge efforts to identify hereditary variants relevant for breast cancer prognostication

Together with other researchers within the Breast Cancer Association Consortium, we examined the association between germline variants and breast cancer survival. We included data based on ~10.4 million variants for 96,661 women with breast cancer. While we did not find any variant associated with breast cancer survival at genome-wide significance, the most significant variants were located close to genes for which there is biological evidence related to breast cancer outcome. A major limitation of the studies to date is the relatively low number of breast cancer deaths, which determine the power of the statistical tests. To overcome this limited power, we are now using a network-based approach to detect genetic effects across multiple genes and proteins with similar biological functions.

#### Systemic adjuvant treatment prevents a second breast cancer

Contralateral breast cancer (CBC) is a rare event (10-year cumulative incidence 4%), with potential for poor outcome. We are developing a CBC risk model, using data of 132,756 patients with 4,682 CBC from 20 studies, to help clinical decision making for follow-up and risk-reducing surgery. We also investigated the influence of adjuvant systemic regimens for the first breast cancer on subtype-specific CBC risk. Using data of 80,000 Dutch patients diagnosed between 2003-2010 and multivariable Cox regression analyses, we showed that adjuvant endocrine therapy, chemotherapy, and trastuzumab combined with chemotherapy were associated with overall 54%, 30%, and 43% risk reductions of CBC, respectively. Taxane-containing chemotherapy and aromatase inhibitors were associated with the largest CBC risk reduction. Subtype analyses revealed that endocrine therapy was only associated with a reduced risk of ER-positive CBC and did not protect against the development of ER-negative CBC.

#### Launch of ELSI (Ethical, Legal and Social issues) Servicedesk for precision medicine

Precision medicine promises to bring powerful new ways of improving treatment and health care, tailored to individual patients. At the same time, this leads to a variety of different ethical, legal and societal issues (ELSI). How, for instance, can privacy be protected under new data protection regulations when data sharing is the norm in science? What about patients' rights and informed consent? In 2018, we launched a new national facility, the ELSI Servicedesk (www.elsi.health-ri.nl), which aims to provide researchers practical information and advice they need in implementing laws and guidelines in their work. Moreover, we aim to contribute to the harmonization of ELSI policies in the Netherlands, thereby facilitating multi-center collaborations and enabling responsible innovation. Although recently launched, the ELSI Servicedesk receives about 400 visitors per month and already received about 15 requests for tailored ELSI advice from one of our experts.



#### Ton Schumacher

Group leader Division Molecular Oncology & Immunology

Ton Schumacher PhD Group leader Chong Sun PhD Senior post-doc Marleen Kok MD PhD Post-doc Wouter Scheper PhD Post-doc Daniela Thommen MD PhD Post-doc Kaspar Bresser MSc PhD student Feline Dijkgraaf MSc PhD student Lorenzo Fanchi MSc PhD student Miriam Hoekstra MSc PhD student Lianne Kok MSc PhD student Anne van der Leun MSc PhD student Meike Loatenberg MSc PhD student Riccardo Mezzadra MSc PhD student Ali Can Sahillioglu MSc PhD student Maarten Slagter MSc PhD student Paula Voabil MSc PhD student Marlous van den Braber Technical staff Marjolein de Bruijn Technical staff Mireille Toebes Technical staff Jos Urbanus Technical staff

# Selected publications

Blank CU, et al. Neoadjuvant versus adjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma. Nat Med. 2018;24(11):1655-1661

Logtenberg MEW, et al. Glutaminyl cyclase is an enzymatic modifier of the CD47- SIRPa axis and target for immunotherapy. Nat Med. 2018 (in press)

Scheper W, et al. Low and variable tumor-reactivity of the intratumoral TCR repertoire in human cancers. Nat Med. 2019;25(1):89-94

# Dissecting and manipulating tumor-specific immunity

The aim of our research is simple 1). To design novel technologies to examine and modify immune responses 2). To subsequently use these technologies to unravel and manipulate immune recognition of human cancer. Some of the highlights of the past year have been the following:

#### Dissecting and enhancing T cell recognition in human cancer

There is now widespread evidence for the clinical value of T cell-based immunotherapies, such as T cell checkpoint inhibitors, in a number of human cancers. However, activity of these therapies has to date been most prominent for tumor types with high numbers of DNA alterations, presumably reflecting T cell recognition of the cancer neoantigens that are formed as a consequence of this DNA damage. The low clinical activity of T cell checkpoint inhibitors in tumors with lower amounts of DNA damage begs the question what the role may be of the T cells that do infiltrate these tumor types. To address this question, we have developed technology to 'rescue' the intratumoral TCR repertoire, allowing one to analyze its quality in an unbiased manner. We have subsequently utilized this technology to assess whether the intratumoral TCR repertoire in ovarian cancer and colorectal cancer is commonly tumor reactive. Data obtained indicate that only a small and variable fraction of the intratumoral TCR pool shows autologous tumor reactivity in these tumor types, emphasizing that human tumors can be 'cold' in not only a quantitative but also in a qualitative manner. Parallel work in NSCLC and melanoma suggests that it may to some extent be feasible to predict which TCRs are likely to harbor tumor reactivity, as based on the phenotypic/ transcriptional profile of the T cells in which they are contained. From a therapeutic perspective, these data argue for the use of modalities that induce a broadening of the tumor-specific T cell response in tumors in which the quality of the intratumoral TCR repertoire is poor.

To understand whether T cell checkpoint blockade displays significant clinical activity in patients with an earlier disease stage, the group of Christian Blank and our group initiated the OpACIN study, aiming to evaluate the feasibility of neo-adjuvant and adjuvant checkpoint blockade in patients with stage III melanoma. Data obtained demonstrate a very high response rate – but also high toxicity – of neo-adjuvant T cell checkpoint blockade, and also demonstrate that neo-adjuvant checkpoint blockade leads to a superior expansion of tumor-resident T cell clones, as compared to adjuvant therapy. Data from the OpACIN study form a strong incentive for the broader evaluation of neo-adjuvant T cell checkpoint inhibition regimens in melanoma and beyond.

#### Targeting of the myeloid cell checkpoint CD47 through QPCTL

CD47 serves as a 'don't eat me' signal for myeloid cells by binding to the inhibitory receptor signalregulatory protein alpha (SIRP $\alpha$ ). Using a haploid genetic screen, we have identified glutaminylpeptide cyclotransferase-like (QPCTL) as a major component of this myeloid cell checkpoint. Mechanistically, the pyroglutamate formation activity of QPCTL was shown to be required for formation of the SIRP $\alpha$  binding site of CD47. Notably, interference with QPCTL expression was shown to result in a major increase in tumor cell killing and neutrophil influx by tumor-opsonizing antibodies in vivo. These data provide an avenue for small molecule inhibition of the CD47 pathway to augment antibody therapy of cancer.



#### Titia Sixma

Division head, group leader Division Biochemistry

Titia Sixma PhD Group leader Roy Baas PhD Post-doc Alex Fish PhD Post-doc Xiaohu Guo PhD Post-doc Luca Martinelli PhD Post-doc Andrea Murachelli PhD Post-doc Anu Priyanka PhD Post-doc Ivette Aarsman MSc PhD student Doreth Bhairosing-Kok MSc PhD student

Susanne Bruekner MSc PhD student Shreya Dharadhar MSc PhD student Niels Keijzer PhD student Robbert Kim Msc PhD student Michael Uckelmann MSc PhD student Pim van Dijk Technical staff Yvette Stijf-Bultsma Technical staff Herrie Winterwerp Technical staff

# Selected publications

Haahr P, Borgermann N, Guo X, Typas D, Achuthankutty D, Hoffmann S, Shearer R, Sixma TK, Mailand N. ZUFSP Deubiquitylates K63-Linked Polyubiquitin Chains to Promote Genome Stability. Mol Cell, 2018; 70:165-174

Morrow ME, Morgan MT, Clerici M, Growkova K, Yan M, Komander D, Sixma TK, Simicek M, Wolberger C. Active site alanine mutations convert deubiquitinases into high-affinity ubiquitin-binding proteins. EMBO Rep. 2018;19:e45680

Uckelmann M, Densham RM, Baas R, Winterwerp HHK, Fish A, Sixma TK, Morris JR. USP48 restrains resection by site-specific cleavage of the BRCA1 ubiquitin mark from H2A. Nat Commun. 2018;9:229

### Structural biology

Development of cancer is generally due to errors that occur in cellular pathways. Understanding the mechanisms of underlying processes will help to determine where the errors occur and how they can be treated. We study proteins using a combination of biochemical and biophysical methods, including X-ray crystallography and cryo-EM (electron microscopy) to provide three-dimensional structures. This leads to insights in molecular mechanisms that we validate in cells. In addition our structures provide targets for drug design studies. In this work we focus primarily on proteins involved in ubiquitin conjugation, particularly in stress response and DNA repair pathways and DNA mismatch repair.

#### DNA mismatch repair

DNA mismatch repair (MMR) plays a crucial role in maintaining genome stability. Defects in the mismatch repair proteins in humans predispose to Lynch syndrome (or hereditary non-polyposis colorectal cancer) and are associated with a variety of sporadic cancers. DNA mismatch repair is initiated by recognition of a mismatch or an unpaired base by MutS (in *Escherichia coli*) or its MSH homologs (in humans). Initial recognition of the mismatch is followed by an ATP-dependent conformational change of MutS into a sliding clamp state that can be recognized specifically by the next protein in the mismatch repair cascade, MutL (or its homologs). Interestingly, to load onto DNA, MutS needs to open its clamp domain by kinking the long 'lever' helices (Bhairosing-Kok, in revision). We use cryo-electron microscopy in collaboration Meindert Lamers and Rafael Fernandez-Leiro to study different states in MMR. This has generated structures in different MutS states that we are currently validating.

#### Ubiquitin conjugation

Ubiquitin conjugation is an important signal in cellular pathways, changing the fate of a target protein, by degradation, relocalisation or complex formation. Deregulation of ubiquitin-dependent processes often leads to cancer. Ubiquitin signals are balanced by deubiquitinating enzymes (DUBs), which antagonize ubiquitination of specific protein substrates. Because ubiquitination pathways are critically important, we focus on mechanisms of ubiquitin conjugation to aid the process of drug design.

DUB activity is often carefully controlled. We use a combination of biochemistry and kinetic modelling to study DUB mechanism. This revealed how a novel DUB, ZUFSP, is regulated by product inhibition (Haahr et al, Mol Cell, 2018). USP7 (or HAUSP) is one of the most abundant DUBs. It also allowed to follow all the steps in the reaction of USP7 and to define how the correct substrate can promote the reaction (Kim et al, Nat Comm. *in press*).

In the DNA damage response H2A ubiquitination plays a crucial role. We study how site-specific histone ubiquitination is achieved on a molecular level and how different multi-protein complexes work together to integrate different histone ubiquitination states. We use biochemistry and structural studies by cryo-EM to analyze these reactions. We found that USP48 reverses BRCA1-dependent H2A ubiquitination. In collaboration with Jo Morris we could show that this is relevant for genome stability (Uckelmann, Densham et al, Nat Comm, 2018).



#### Jan-Jakob Sonke

Division head (ad int.), group leader Division Radiation Oncology

Jan-Jakob Sonke PhD Group Leader Roeland Dilz PhD Post-doc Martin Fast PhD Senior post-doc Matthew la Fontaine PhD Post-doc Takahiro Kanehira PhD Post-doc Artem Khmelinskii PhD Post-doc Simon van Kranen PhD Post-doc Barbara Stam PhD Post-doc Jonas Teuwen PhD Post-doc Chris Beekman MSc PhD student Judi van Diessen MD PhD student Zeno Gouw MSc PhD student Jolien Heukelom MD PhD student Natasja Janssen MSc PhD student Celia Juan de la Cruz MSc PhD student Tessa van de Lindt MSc PhD student Kai Lønning MSc PhD student Lukas Schroder MSc PhD student Uros Stanković MSc PhD student Maddalena Rossi MSc Technical staff

# Selected publications

Fast M, van de Schoot A, van de Lindt T, Carbaat C, van der Heide U, Sonke JJ. Tumor trailing for liver SBRT on the MR-Linac, Int J Radiat Oncol Biol Phys. 2018

Van de Lindt TN, Fast MF, van der Heide UA, Sonke JJ. Retrospective self-sorted 4D-MRI for the liver, Radiother Oncol. 2018 Jun;127(3):474-480

Van Diessen J, De Ruysscher D, Sonke JJ, Damen E, Sikorska K, Reymen B, van Elmpt W, Westman G, Fredberg Persson G, Dieleman E, Bjorkestrand H, Faivre-Finn C, Belderbos J. The acute and late toxicity results of a randomized phase II dose-escalation trial in non-small cell lung cancer (PETboost trial), Radiother Oncol. 2018

### Adaptive radiation therapy

Geometrical uncertainties such as setup error, posture change, organ motion, deformations and treatment response limit the precision and accuracy of radiation therapy (RT). Consequently, the actually delivered dose typically deviates from the planned dose. To minimize the deleterious effects of geometrical uncertainties, adaptive radiation therapy (ART) aims to characterize the patient's specific variation through an image feedback loop and adapts the patients' treatment plan accordingly. Adaptive radiation therapy research therefore includes 1) improving in-room imaging, 2) patient variability characterization, 3) treatment plan modification and 4) outcome modeling.

#### 4D MRI

Daily MRI-guided radiotherapy for moving targets requires four dimensional (4D) imaging sequences. The purpose of this study was therefore to develop a 4D-MRI strategy providing T2-weighting for non-contrast enhanced tumor visibility. Images were acquired using an axial multi-slice 2D Turbo Spin Echo (TSE) sequence, repeated a variable number of times (dynamics). A self-sorting signal (SsS) was retrieved from the data by computing correlation coefficients between all acquired slices. Images were sorted into 10 phases and missing data were interpolated. For 30 dynamics, acquisition-reconstruction time was <5 min and showed good image quality and tumor visibility in liver cancer patients.

#### Tumor Trailing

Drifts of the tumor position during treatment delivery limit the accuracy of radiotherapy delivery. Tumor trailing is a treatment delivery technique which continuously adjusts the beam aperture according to the last available time-averaged position of the target. This study investigates whether tumor trailing on the MR-Linac can improve target coverage in liver SBRT in the case of baseline motion. To that end, in 17 oligometastatic liver patients, treatment was simulated using an in-house developed delivery emulator. For imaging frequencies  $\geq 1$ , tumor trailing restored target dose in liver SBRT in the case of baseline motion for the presented patient cohort. This approach was validated using phantom measurements on the MR-Linac.

#### Acute and late toxicity results the PET-boost trial

Dose escalation driven by biological imaging has the potential to improve treatment outcome in locally advanced lung cancer patients. The PET-boost randomized phase II trial (NCT01024829) investigated dose-escalation to the entire primary tumor or redistributed to regions of high pre-treatment FDG-uptake in inoperable non-small cell lung cancer (NSCLC) patients. The toxicity results of the PET-boost trial revealed that an iso-toxic hypofractionated dose-escalation to the primary tumour is associated with elevated acute and late toxicities compared to conventional chemoradiotherapy but within the limits of the pre-defined stopping rules.



Arnoud Sonnenberg

Group leader Division Cell Biology

Arnoud Sonnenberg PhD Group leader Lisa te Molder MSc PhD student Veronika Ramovs MSc PhD student Wei Wang MSc PhD student Alba Zuidema MSc PhD student Maaike Kreft BSc Technical staff



Yazlovitskaya EM, Viquez OM, Tu T, De Arcangelis A, Georges-Labouesse E, Sonnenberg A, Pozzi A, Zent R. The laminin binding  $\alpha$ 3 and  $\alpha$ 6 integrins cooperate to promote epithelial cell adhesion and growth. Matrix Biol. 2018

Zuidema A, Wang W, Kreft M, Te Molder L, Hoekman L, Bleijerveld OB, Nahidiazar L, Janssen H, Sonnenberg A. Mechanisms of integrin αVβ5 clustering in flat clathrin lattices. J Cell Sci. 2018:131(21)

Romagnoli M, Cagnet S, Chiche A, Bresson L, Baulande S, de la Grange P, De Arcangelis A, Kreft M, George-Labouesse E, Sonnenberg A, Deugnier M-A, Raymond K., Glukhova MA, and Faraldo MM. Deciphering the mammarry stem cell niche: a role for laminin binding integrins. Stem Cell Reports 2019 (in press)

### **Receptors for matrix adhesion**

Our main aim is to understand the molecular mechanisms that regulate the interaction of cells with components of the extracellular matrix and to establish the role of cell adhesion receptors in health and disease. A major class of cell adhesion receptors are formed by members of the integrin family. We would like to understand how integrins interact with their ligands and assemble multiprotein complexes at the cell-substratum site in normal and pathological conditions, define the interplay among different integrins and understand the underlying molecular mechanisms.

#### Assembly of different integrin-based adhesion structures

Integrins are obligate heterodimers composed of  $\alpha$  and  $\beta$  subunits. In mammals 18  $\alpha$  and 8  $\beta$  subunits have been characterized. We are investigating three integrins that are clustered in different adhesion structures and associate with distinct cytoskeletal elements. These are laminin-binding  $\alpha$ 3 $\beta$ 1 and  $\alpha$ 6 $\beta$ 4, and  $\alpha$ V $\beta$ 5, a receptor for vitronectin. While the integrins  $\alpha$ 3 $\beta$ 1 and  $\alpha$ V $\beta$ 5 are connected to the actin cytoskeleton in focal adhesions,  $\alpha$ 6 $\beta$ 4 associates with the intermediate filament system in hemidesmosomes. Additionally, integrins  $\alpha$ 3 $\beta$ 1 and  $\alpha$ V $\beta$ 5 can localize to adhesion structures that are seemingly not connected with the actin cytoskeleton;  $\alpha$ V $\beta$ 5 can be found in flat clathrin lattices and  $\alpha$ 3 $\beta$ 1, when in complex with CD151, resides in tetraspanin webs. We study the dynamic regulation of these adhesion structures, how cellular traction forces influence their assembly and the mechanisms underlying the ability of the integrins to regulate signalling transduction cascades.

#### Role of integrins in health and disease

Integrin  $\alpha 3\beta 1$ , which mediates the adhesion of epithelial cells to laminin-332 and -511 in the basement membrane and plays a role in the maintenance of cell-cell contacts, has been implicated both as a promoter and suppressor of tumorigenesis and metastasis in different types of tumors. Among others, we observed such dual role in cancer in a model of chemically induced skin tumorigenesis (DMBA/TPA treatment) in mice, where  $\alpha 3\beta 1$  is required for the initiation and development of the disease. However, during the later stages of skin carcinogenesis, the loss of integrin  $\alpha 3\beta 1$  resulted in increased invasiveness and metastases formation. The correlation between  $\alpha 3\beta 1$  and breast cancer development is even less clear, as independent studies of human samples have reported all possible outcomes - positive, negative and lack of correlation between  $\alpha 3\beta 1$  and tumor formation and progression. This reflects the complex role of this integrin during the lifespan of cancer. Our current work focuses on understanding the often opposing function of  $\alpha 3\beta 1$  in cancer by studying its role in specific stages and types of tumors. Our primary focus is to determine the mechanisms behind lpha 3eta 1-dependent onset of skin tumors induced by DMBA/ TPA treatment. To this end we are investigating the role of  $\alpha 3\beta 1$  in the proliferation, differentiation and dynamics of different skin cell populations during homeostatic conditions and during skin tumorigenesis and are studying the related  $\alpha 3\beta 1$  dependent signalling pathways and interactors. Furthermore, we are trying to better define the role of  $\alpha 3\beta 1$  in breast cancer by looking into its function in a mouse model for human breast cancer, overexpressing the HER2 oncogene.



Hein te Riele

Group leader Division Tumor Biology & Immunology

Hein te Riele PhD Group leader Chantal Stoepker PhD Post-doc Bente Benedict MSc PhD student Frank van Gemert MSc PhD student Tim Harmsen MSc PhD student Wietske Pieters MSc PhD student Thomas van Ravesteyn MSc PhD student

Marleen Dekker BSc Technical staff Elly Delzenne-Goette Technical staff

# Selected publications

Benedict B, van Harn T, Dekker M, Hermsen S, Kucukosmanoglu A, Pieters W, Delzenne-Goette E, Dorsman JC, Petermann E, Foijer F, Te Riele H. Loss of p53 suppresses replication-stress-induced DNA breakage in G1/S checkpoint deficient cells. Elife 2018;7:e37868

Harmsen T, Klaasen S, Van de Vrugt H, Te Riele H. DNA mismatch repair and oligonucleotide end-protection promote base-pair substitution distal from a CRISPR/Cas9-induced DNA break. Nucleic Acids Res. 2018;46:2945-55

Wielders CLC, van Nierop P, Vormer TL, Foijer F, Verheij J, Lodder JC, Andersen JB, Mansvelder HD, Te Riele H. RNAi screening of subtracted transcriptomes reveals tumor suppression by taurineactivated GABAA receptors involved in volume regulation. PLoS One 2018;13:e0196979

# Genomic instability and carcinogenesis

How does genomic instability develop and impact the initiation and progression of cancer? We study two causes of genomic instability: (1) loss of DNA mismatch repair (MMR) and (2) defective  $G_1/S$  control causing unscheduled S-phase entry and replication stress. We develop novel gene modification tools to induce and study genomic instability in cell culture and mouse models.

#### Unclassified variants of MMR genes

Carriers of a deleterious MMR gene variant (deletion, stop codon) are cancer prone (Lynch syndrome, LS) and need surveillance to reduce cancer risk. However, single codon variants are difficult to interpret and carriers of such 'Variants of uncertain significance' (VUS) cannot be properly counseled. We developed a functional test to study MMR VUS: "oligonucleotide-directed mutation screening" (ODMS) (Houlleberghs et al., PNAS 2016;113:4128, PLoS Genet 2017;13:e1006765). Briefly, the variant is introduced into mouse embryonic stem cells (ESCs), hemizygous for MMR genes, by oligonucleotide-directed gene modification (Van Ravesteyn et al., PNAS 2016;113:4122). This technique uses short (25 nt) single-stranded oligonucleotides (ssODN) to introduce the VUS into ±0.01% of cells. When the VUS is deleterious, modified cells survive exposure to 6-thioguanine (6TG) and form colonies. This protocol identified 64 deleterious VUS among 149 MMR gene variants.

To address extra-exonic variants (promoter, intron and 5'- and 3'-untranslated sequences), we optimized ODMS in human cells. To implement functional assays in clinical practice, we have created a nationwide KWF-sponsored consortium of preclinical laboratories, clinical genetics centers and gastroenterologists, termed IN*VUS*E (*"investigating variants of uncertain significance for use in clinical practice"*).

#### CRISPR/Cas9-assisted gene modification

ssODN-directed gene modification is stimulated by targeted DNA breakage using CRISPR/Cas9. Strikingly, we found DNA MMR impacts ssODN-directed gene modification *without* and *with* nuclease activity differently: while suppressing oligo targeting without nuclease, MMR was crucial for nucleotide substitution *distal* from the break and instructed by the 3'-half of the ssODN. 3'-end protection of the ssODN stimulated MMR-dependent gene editing. These findings imply gene editing is effectuated by templated break repair rather than oligonucleotide integration and guide gene editing strategies when a proximal nuclease site is lacking (Harmsen et al., NAR 2018;46:2945).

We corrected a disruptive mutation in the Fanconi anemia (FA) gene *Fancf* using CRISPR/Cas9 and a 120-nt ssODN template in mouse ESCs and fibroblasts. Although the frequency was low (3-6%) FA corrected ESCs rapidly overgrew non-corrected cells, which even allowed recovery of the very rare templated gene editing events obtained by using Cas9D10A nickase. Notably, nickase activity resulted in mono-allelic gene editing without undesired mutagenesis that is a drawback of wild-type Cas9 (Van de Vrugt et al., Sci Rep 2019; in press).

#### **Replication stress**

 $G_1/S$  checkpoint failure in mitogen-starved cells that lack the retinoblastoma proteins pRB, p107 and p130, causes replication stress, manifesting as slow fork progression, reduced origin firing, DNA breakage and proliferative arrest (Van Harn et al., Genes Dev 2010;24:1377). We found that disruption of Tp53 or its downstream target p21<sup>CIP1</sup> allowed mitogen-independent proliferation, not only by attenuating the DNA damage response, but rather by reducing the level of DNA breakage. While replication speed remained low, origin firing was restored, possibly reducing the fragility of stalled replication forks (Benedict et al., Elife 2018;7:e37868). Reduced DNA breakage upon Tp53 loss was seen in  $G_1$ /S-checkpoint-defective mouse fibroblasts, human retina pigment epithelial cells and in an *in vivo* teratoma model. Thus, loss of p53 may promote growth of incipient cancer cells by reducing replication-stress-induced DNA damage.





Uulke van der Heide PhD Group leader Petra van Houdt PhD Research associate Ghazaleh Ghobadi PhD Post-doc Rick Keesman PhD Post-doc Rita Simoes PhD Post-doc Catarina Dinis Fernandes MSc PhD student Edzo Klawer MSc PhD student Ernst Kooreman MSc PhD student

Roque Rodriguez-Outeiral MSc PhD student Marcel van Schie MSc PhD student

Iban Torres-Xirau MSc PhD student

#### Selected publications

Dinis Fernandes C, van Houdt PJ, Heijmink SW, Walraven I, Keesman R, Smolic M, Ghobadi G, van der Poel HG, Schoots I, Pos PJ, van der Heide UA. Quantitative 3T multiparametric MRI of benign and malignant prostatic tissue in patients with and without local recurrent prostate cancer after external-beam radiation therapy. J Magn Res Imag. 2018 (in press)

Monninkhof EM, van Loon JWL, van Vulpen M, Kerkmeijer LGW, Pos FJ, Haustermans K, van den Bergh L, Isebaert S, McColl GM, Jan Smeenk R, Noteboom J, Walraven I, Peeters PHM, van der Heide UA. Standard whole prostate gland radiotherapy with and without lesion boost in prostate cancer: Toxicity in the FLAME randomized controlled trial. Radiother Oncol. 2018;127(1):74-80

Van Schie MA, Dinh CV, Houdt PJV, Pos FJ, Heijmink SWTJP, Kerkmeijer LGW, Kotte ANTJ, Oyen R, Haustermans K, van der Heide UA. Contouring of prostate tumors on multiparametric MRI: Evaluation of clinical delineations in a multicenter radiotherapy trial. Radiother Oncol. 2018;128(2):321-326

# Imaging technology in radiation oncology

#### Dose painting for prostate cancer

The FLAME trial, a multi-center phase III randomized trial of dose escalation in prostate cancer using external-beam radiotherapy, has finalized inclusion. In this study, a focal boost to the visible tumor inside the prostate to a dose of 95 Gy was given and compared to the standard treatment of 77 Gy to the gland. In total 571 patients have been randomized. We analyzed the toxicity up to two years after treatment and found that the focal boost did not result in an increase in Genetourinary and gastrointestinal toxicity when compared to the standard treatment. This suggests that the described focal dose escalation technique is safe and feasible. The primary endpoint, 5-year biochemical failure free survival, will be reached in 2020.

To date no guidelines exist for contouring prostate cancer inside the gland, using multiparametric (mp-) MRI. We analyzed the clinical delineations of the FLAME study cohort. A logistic regression analysis of each institute's weighting of T2w, ADC and Ktrans intensity maps in the delineation of the cancer, reveiled considerably different interpretations. As reviewing of all delineations by an expert panel is not feasible, we selected outliers for further evaluation based on discrepancies between our earlier developed tumor probability (TP) model and each institute's clinical delineations using Areas Under the ROC Curve (AUC) analysis.

#### Quantitative MRI for radiotherapy

To improve target definition and tumor characterization for dose painting, strategies to integrate quantitative MRI in the radiotherapy workflow are designed and applied to a range of tumor sites. In a series of test-retest studies, we investigated the impact of contrast injection duration on the quantification of tracer kinetics parameters in DCE-MRI. We observed a significantly lower peak height and increased width in the arterial input function (AIF) for injection durations of 15 s and longer. However, we did not find significant differences in tracer kinetic parameters. We found that the most reliable measurement of the AIF is obtained when the complex MRI signal (magnitude and phase) is used, rather than the signal magnitude alone. This resulted in the highest repeatability of tracer kinetic parameters determined in two subsequent DCE-MRI exams in patients with prostate cancer. We applied quantitative MRI to characterize prostatic tissue after radiotherapy. By investigating patients after radiotherapy with and without a local recurrence, we differentiated recurrent disease from radiation effects in non-cancerous prostate. Dynamic contrast-enhanced (DCE-) MRI was necessary to make this distinction.

The prognostic value of quantitative MRI is investigated in the IQ-EMBRACE trial, a multi-center imaging study of patients receiving chemoradiotherapy for cervical cancer that we initiated in collaboration with Aarhus University.

#### MRI-guided radiotherapy

The department of Radiation Oncology has started MRI-guided treatments with the MR-linac. Studies to improve image quality and investigate the potential of quantitative imaging on the MR-linac are ongoing. The Umbrella-II trial has started, allowing us to investigate the feasibility of multiple techniques and software for MR-guided adaptive radiation therapy on the Elekta Unity MR-linac. In the previous years we adapted the system for electronic portal imaging dosimetry so that it can be used on the MR-linac. The clinical validation of this system is currently ongoing.

#### Image-guided radiotherapy of rectal cancer

To improve the results of radiotherapy for rectal cancer, we investigated various image-guidance strategies. In the Remark study, the feasibility of gold fiducial markers for image guidance was investigated. Implantation strategies were studied and visualization of the fiducial markers on MRI was optimized.

Boost strategies using image-guided brachytherapy are currently investigated in the OPPER trial, in collaboration with the Leiden UMC. MR-guided strategies both for brachytherapy and external-beam irradiation are currently developed.

١



Michiel van der Heijden

Group leader Division Molecular Carcinogenesis

Michiel van der Heijden MD PhD Group leader

Kristan van der Vos PhD Post-doc Jeroen van Dorp MD PhD student Nick van Dijk MD PhD student Sander Palit PhD student Daniel Vis PhD Bioinformatician

# Selected publications

Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, Kadel lii EE, Koeppen H, Astarita JL, Cubas R, Jhunjhunwala S, Banchereau R, Yang Y, Guan Y, Chalouni C, Ziai J, Senbabaoğlu Y. Santoro S. Sheinson D. Hung J, Giltnane JM, Pierce AA, Mesh K. Lianoglou S, Riegler J, Carano RAD, Eriksson P, Höglund M, Somarriba L, Halligan DL, van der Heijden MS, Loriot Y, Rosenberg JE, Fong L, Mellman I, Chen DS, Green M, Derleth C, Fine GD, Hegde PS, Bourgon R. Powles T. TGF $\beta$ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018;554(7693):544-548

Seiler R, Gibb EA, Wang NQ, Oo HZ, Lam HM, van Kessel KE, Voskuilen CS, Winters B, Erho N, Takhar MM, Douglas J, Vakar-Lopez F, Crabb SJ, van Rhijn BWG, Fransen van de Putte EE, Zwarthoff EC, Thalmann GN, Davicioni E, Boormans JL, Dall'Era M, van der Heijden MS, Wright JL, Black PC. Divergent Biological Response to Neoadjuvant Chemotherapy in Muscleinvasive Bladder Cancer. Clin Cancer Res. 2018

Van Dijk N, Funt SA, Blank CU, Powles T, Rosenberg JE, van der Heijden MS. The Cancer Immunogram as a Framework for Personalized Immunotherapy in Urothelial Cancer. Eur Urol. 2018

# Personalized treatment of urological cancers

#### Individualized therapy in bladder cancer: molecular targets and biomarkers

Bladder cancer is a common cancer, with a worldwide prevalence of 2.7 million patients. Although bladder cancer is often superficial at diagnosis, 30-40% of patients present with more advanced disease or progress to more aggressive disease. For patients with locally advanced or metastatic bladder cancer, platinum-based chemotherapy is the mainstay of treatment. Most patients will eventually die of their disease. In recent years, immunotherapy has shown to be active in bladder cancer. Impressive responses are seen, however only a minority of patients benefits from these treatments and it is unclear which patients respond. We aim to advance the development of a personalized approach to bladder cancer by exploring novel molecular targets, mechanisms of resistance and biomarkers that can guide systemic therapy. Our key focus is on the neoadjuvant setting, as we believe the highest gains in cure rates can be achieved here. Through the large number of bladder cancer patients, excellent multidisciplinary collaboration and broad availability of clinical trials with novel therapeutics at the NKI-AVL, discoveries can rapidly be translated into clinical trials.

#### Neoadjuvant treatment with combination Immunotherapy

In 2018, we opened the NABUCCO study. This study investigates the feasibility of pre-operative ipilimumab/nivolumab in locoregionally advanced bladder cancer. This study will not only provide important clinical data, but will also provide an unique biobank of pre- and on-treatment bladder cancer tissue. Using this biobank, we will explore the effects of combined inhibition of the PD1/ PDL1 axis and CTLA4 on the tumor-immune microenvironment. Additionally, we aim to define which patients are most likely to benefit from pre-operative immunotherapy.

#### Enhancement of sensitivity to FGFR-inhibitors

The *FGFR3* gene is activated in 10-15% of advanced bladder cancers, and FGFR inhibitors are currently tested in clinical trials. To find potential drug targets that can act synergistically with FGFR inhibition, we performed a synthetic lethality screen for the FGFR inhibitor AZD4547 using an shRNA library targeting the human kinome in the UCC cell line RT112 (*FGFR3-TACC3* translocation). We identified multiple members of the PI3K pathway and found that inhibition of PIK3CA acts synergistically with FGFR inhibition in multiple UCC and lung cancer cell lines having *FGFR* mutations. Consistently, we observed an elevated PI3K-AKT pathway activity resulting from EGFR or ERBB3 reactivation caused by FGFR inhibition as the underlying molecular mechanism of the synergy. Our data show that feedback pathways activated by FGFR inhibition converge on the PI3K pathway. These findings provide a strong rationale to test FGFR inhibitors in combination with PI3K inhibitors in cancers harboring genetic activation of FGFR genes.

#### Genetic mechanisms of resistance to androgen receptor inhibitors

Novel androgen receptor (AR) inhibitors have clinical benefit in castration-resistant prostate cancer patients. Still, cancer cells eventually develop resistance to these therapies. We are investigating genetic resistance to these drugs through several means. Functional genetic screens are used to identify mechanisms of resistance. After in vitro and in vivo validation, these mechanisms can then be tested on clinical samples of patients undergoing AR inhibitor treatment. These clinical samples are being collected through the CPCT network. In addition, plasma is collected to analyze development of genetic resistance throughout treatment.



#### Lonneke van de Poll-Franse

Group leader Division Psychosocial Research and Epidemiology

#### Lonneke van de Poll-Franse PhD Group leader

Annelies Boekhout PhD Senior scientist Marieke van Leeuwen PhD Post-doc Lianne van Soolingen MD PhD student Barbara Wollersheim MSc PhD student Silvie Janssen Research assistant Jacobien Kieffer MSc Statistical analyst

# Selected publications

Arts LPJ, Oerlemans S, Tick L, Koster A, Roerdink HTJ, van de Poll-Franse LV. More frequent use of health care services among distressed compared with nondistressed survivors of lymphoma and chronic lymphocytic leukemia: Results from the populationbased PROFILES registry. Cancer. 2018;124(14):3016-3024

De Rooij BH, Ezendam NPM, Vos MC, Pijnenborg JMA, Boll D, Kruitwagen RFPM, van de Poll-Franse LV. Patients' information coping styles influence the benefit of a survivorship care plan in the ROGY care trial: New insights for tailored delivery. Cancer. 2018

Van de Poll-Franse LV, Oerlemans S, Bredart A, Kyriakou C, Sztankay M, Pallua S, Daniëls L, Creutzberg CL, Cocks K, Malak S, Caocci G, Molica S, Chie W, Efficace F; EORTC Quality of Life Group. International development of four EORTC disease-specific quality of life questionnaires for patients with Hodgkin lymphoma, high- and low-grade non-Hodgkin lymphoma and chronic lymphocytic leukaemia. Qual Life Res. 2018;27(2):333-345

### Cancer survivorship

Our research objective is to understand the impact of cancer, treatment and supportive care strategies on physical and psychosocial functioning of cancer survivors.

# Patient Reported Outcomes Following Initial treatment and Long-term Evaluation of Survivorship (PROFILES)

In 2009 we initiated the PROFILES registry for the study of the physical and psychosocial impact of cancer and its treatment. Today we have evaluated and published about patient reported outcomes (PRO's) of more than 25.000 cancer patients and (long term) survivors. In 2016 we obtained a large investment grant from NWO to upgrade the PROFILES registry to facilitate studies of the *mechanisms* of declining health after cancer. We are currently collecting novel data that includes biological markers, biosensor data, online food diaries and body composition.

#### International development of quality of life questionnaires

We have developed four disease-specific EORTC QoL questionnaires for patients with (non) Hodgkin lymphoma (N-HL) or chronic lymphocytic leukaemia (CLL). These were tested in five European countries and resulted in questionnaires with 27 items for HL, 29 items for high grade NHL, 20 items for low grade NHL and 17 items for CLL. We are currently conducting an international validation study. Furthermore, in the past years we have been developing an EORTC cancer survivorship questionnaire that includes physical, emotional and practical functioning.

#### Cancer Survivorship Care Plans for patients with endometrial or ovarian cancer

This pragmatic cluster RCT was conducted to longitudinally assess the impact of an automatically generated survivorship care plan (SCP) on patient-reported outcomes in routine clinical practice. Among ovarian cancer patients, no overall differences were observed between the trial arms on satisfaction with information provision, satisfaction with care or health care utilization. Combining data from both endometrial and ovarian cancer survivors showed that SCPs may be beneficial for patients who desire information about their disease, whereas SCPs may be less beneficial for patients who avoid medical information, suggesting a need for tailored SCP delivery to improve survivorship care.

# Effectiveness of patient-reported outcome feedback and a web-based intervention on lymphoma patients' self-management skills

The objective of the multicentre Lymphoma InterVEntion (LIVE) RCT is to examine whether feedback to patients on their PROs and access to the web-based self-management intervention "Living with lymphoma" will increase self-management skills and satisfaction with information and reduce psychological distress.

Patients with (non) Hodgkin lymphoma are invited via their haemato-oncologist 6 to 15 months after diagnosis. The intervention is based on cognitive-behavioural therapy components and includes information, assignments, assessments, and videos. Patient recruitment has been completed in 2018, first results are expected in 2019.

In 2018 we furthermore started the data collection for the pragmatic cluster randomized GERSOC (GERiatric Screening in the treatment of elderly patients with Ovarian Carcinoma) trial and the individually randomized PROSPEC (PROstate cancer follow-up care in Secondary and Primary hEalth Care) trial.

V



#### Wim van Harten

Group leader Division Psychosocial Research and Epidemiology

Wim van Harten MD PhD Group leader Valesca Retèl PhD Post-doc Wim Groen PhD Senior post-doc Anke Wind PhD Post-doc Ann-Jean Beck MD PhD student Willeke Naaktgeboren MD PhD student Laura Kooij MSc PhD student Nora Franzen MSc PhD student Melanie Lindenberg MSc PhD student Danalyn Bing MSc PhD student Joost Verbeek MSc PhD student Bruno Vieira MSc PhD student Hester van de Wiel MSc PhD student

# Selected publications

Lindenberg MA, Retèl VP, van den Berg JH, Geukes Foppen MH, Haanen JB, van Harten WH. Treatment With Tumorinfiltrating Lymphocytes in Advanced Melanoma: Evaluation of Early Clinical Implementation of an Advanced Therapy Medicinal Product. J Immunother. 2018;41(9):413-425

Groen WG, van Harten WH, Vallance JK. Systematic review and meta-analysis of distance-based physical activity interventions for cancer survivors (2013-2018): We still haven't found what we're looking for. Cancer Treat Rev. 2018;69:188-203

Wind A, Gonçalves FR, Marosi E, da Pieve L, Groza M, Asioli M, Albini M, van Harten W. Benchmarking Cancer Centers: From Care Pathways to Integrated Practice Units. J Natl Compr Canc Netw. 2018;16(9):1075-1083

## Early stage technology assessment, operations research and cancer rehabilitation

#### Early Stage Technology Assessment

As healthcare costs are continuously increasing and demographics and technologic developments in oncology cause especially high service and financial burdens on health systems, sustainability of future oncology services will inevitably become an issue. Gradually we can expect Health Technology Assessment (HTA) not only to be involved in policy and coverage decisions, but also in an earlier stage in the translational research process.

From 2003 through 2010, a HTA study was conducted on the introduction of the MammaPrint (a 70-gene micro array test) as a prognostic tool in the treatment of node negative breast cancer (the RASTER-study) and as a side study of the European randomized controlled trial the MINDACT-study. We will end the series of Cost Effectiveness Analyses of the MammaPrint with the incorporation of the results of MINDACT trial, approved by the BIG consortium and EORTC, by end of 2018. In 2015 an early stage technology assessment of TIL-adoptive cell technology in advanced melanoma started in a Coverage with Evidence Development project, as well as in 2017 for gastric HIPEC and high dose chemotherapy for triple negative breast cancer. Valesca Retel works as post-doc 50% employed by NKI and 50% for the Health Technology and Services Research group at the University of Twente. She is primary investigator in the TANGO project in the Personalized Medicine program of ZonMw (in which Wim van Harten is HTA coordinator). Ann-Jean Beck works on HTA of various interventions in Head & Neck survivorship care. Melanie Lindenberg is evaluating early stage translational technologies in oncology including image guided interventions. Danalyn Bing is active in the field of HTA in early stage breast cancer and active surveillance versus usual care in DCIS treatment. Nora Franzen is working on research and modelling of alternatives for the present system of patents and pricing in expensive cancer drugs. Joost Verbeek started a PhD project on the ongoing Coverage with Evidence Development projects.

#### Improving Oncology Services

Benchmarking is a possibly powerful tool to inform management on improvement options and patients on the quality of services. In 2013 the EU-subsidized project BENCH-CAN started in order to develop and pilot a European benchmarking system on Comprehensive Cancer Care. Pathway and center benchmarking studies were published in 2018, as final publications of the thesis of Anke Wind. Especially the paper on pathway benchmarking and relating this to Value Based Health Care draw attention as it was published in the NCCN journal. Meanwhile a follow up project on pathway benchmarking was started. Bruno Vieira is conducting a PhD project on improving radiotherapy Logistics by use of Operations Research methods until 2020.

#### Rehabilitation, Physical Activity and Cancer

Survivorship care and rehabilitation are important elements of a cancer centre's program. A major Alpe d'Huzes/KWF project was started early 2011, focusing on patient empowerment, return to work, tele-monitoring and implementation of relevant findings and programs related to physical exercise and supported by innovative IT. This program, totalling up to 2,8 million euros, held its final symposium in April 2016, and the evaluation ran until mid-2018. As further development in this field Laura Kooij performs research into e-health interventions and survivorship care, such as IT-supported stepped care and video consultation.

Also a PhD student co-supervised by Wim van Harten works at IQ-Healthcare in Nijmegen on the structured implementation of ACARE projects' findings in ten Dutch hospitals.

Following up on the ACARE2 project, and financed by KWF, the PABLO trial involves a web-based and blended intervention on physical activity in breast and prostate cancer survivors. The project involves a postdoc position (Wim Groen, who is also co-pi), and a PhD position (Hester van de Wiel) focusing on aspects that influence effectiveness from both physical as well as psychological perspectives. Willeke Naaktgeboren performs a PhD project on cardiovascular status and late effects after physical activity interventions during chemotherapy in the HEART study. A systematic review on the effects of distance based physical activity interventions was published in Cancer Treatment Reviews.



#### Flora van Leeuwen

Division head, group leader Division Psychosocial Research and Epidemiology



#### Matti Rookus

Project leader Division Psychosocial Research and Epidemiology

Flora van Leeuwen PhD Group leader Matti Rookus PhD Project leader Michael Schaapveld PhD Research associate Berthe Aleman MD PhD Radiation oncologist Sandra van den Belt-Dusebout PhD Post-doc Nina Berentzen PhD Post-doc Naomi Boekel PhD Post-doc Miniam Haaksma PhD Post-doc Hugoline de Haan PhD Post-doc Annelies Niidam PhD Post-doc Anouk Pijpe PhD Post-doc Yvonne Geurts PhD student Harmke Groot MSc PhD student Judy Jacobse MD PhD student Inge Krul MSc PhD student Suzanne Neppelenbroek PhD student Lieske Schrijver MSc PhD student Mandy Spaan MSc PhD student Lara Terra MSc PhD student Simone de Vries MSc PhD student Thea Mooij MSc Statistical analyst Gabey Ouwens Research assistant Marieke Bras MSc Research assistant Sandra Fase MSc Research assistant Viviana Groutars Research assistant Rianne Hoek Research assistant Katinka John MSc Research assistant Karline Pellikaan Research assistant

### Cancer epidemiology

The cancer epidemiology group is currently concentrating on two principal research lines: (1) the long-term health consequences of cancer treatment, particularly in terms of the risk of developing second malignancies or cardiovascular disease; (2) the etiology of hormonerelated cancers, with a focus on gene-environment interactions;

#### Late effects of cancer treatment

Now that curative treatment is available for a substantial group of cancer patients, it is increasingly important to evaluate how the occurrence of late complications of treatment affects their long-term survival. We aim to evaluate the risk of second malignant neoplasms (SMNs) and cardiovascular disease (CVD) after radiotherapy (RT), chemotherapy (CT) and immunotherapy for Hodgkin lymphoma (HL, n=8,500), non-Hodgkin lymphoma (n=2,800), testicular cancer (n=7,100) and breast cancer (n~30,000) over a period of up to 40 years after primary treatment.

We evaluated risk of solid cancers after treatment for testicular cancer among 5,848 one-year survivors treated before 50 years of age between 1976-2006. Non-seminoma patients experienced increased risk of cancers of the lung, stomach, pancreas, colon, bladder and thyroid, melanoma and soft tissue sarcoma, whereas seminoma patients experienced increased risk of cancers of the small intestine, pancreas, and urinary bladder. Remarkably, platinum-based CT was associated with significantly increased risk of solid cancers (hazard ratio 2.4), and the risk of a solid cancer increased with 22% per cycle of platinum-containing CT (P-value for linear trend <0.001). The risk of gastrointestinal solid cancers even increased with 53% for each additional cycle. Our study is the first to provide evidence for a dose-response relationship between the number of platinum-containing CT cycles and solid cancer risk in testicular cancer patients. This is also relevant for other cancer patients.

HL survivors have a strongly increased risk of breast cancer after chest RT and we investigated whether genetic susceptibility contributes to RT-induced breast cancer. We conducted an international case-case analysis including 327 breast cancer patients after chest RT for HL and 4,671 first primary breast cancer patients from BCAC. Nine SNPs showed statistically significant interaction with RT on BC risk. A polygenic risk score (PRS) composed of these SNPs (RT-interaction-PRS) and a previously published BC-PRS derived in the general population were evaluated in a case-control analysis comprising the 327 HL patients with breast cancer and 491 chest-irradiated HL patients without breast cancer. Patients in the highest tertile of the RT-interaction-PRS had a 1.6-fold higher BC risk than those in the lowest tertile. After external validation this RT-interaction PRS can be incorporated in risk prediction models for HL patients. Remarkably, we observed a 4-fold increased RT-induced risk in the highest compared with the lowest decile of the BC-PRS, similar to the effect size found in the general population. We intend to incorporate the BC-PRS in prediction models for HL patients.

Female survivors of HL treated with alkylating CT and/or pelvic RT have an increased risk of premature ovarian insufficiency (POI). As women with a *natural early* menopause have an increased risk of CVD, we examined whether treatment-induced POI adds to the already high risk of CVD in chest-irradiated HL survivors. After a median follow-up of 24 years, 32% of women treated before age 41 (n=918) had developed POI (median menopausal age, 34 years). POI was not associated with subsequent CVD risk (HR:0.85) compared with a menopausal age of  $\geq$ 40 years. Also, a short duration of ovarian function after treatment (<5 years) did not increase CVD risk compared to a long duration ( $\geq$ 25 years). Similar results were found for coronary heart disease as separate outcome. Our results are reassuring for HL survivors who already have a high CVD risk.

#### Etiology of hormone-related cancers

In our nationwide cohort study among families tested for a *BRCA1/2* mutation (HEBON study; 44,616 relatives, including 38,710 women (5,983 BRCA1/2 mutation carriers) and 5,397 men (including

Anja van der Wal Research assistant Denise Jenner MSc Data manager Rosemarie Wijnands MSc Data manager

# Selected publications

Boekel NB, Jacobse JN, Schaapveld M, Hooning MJ, Gietema JA, Duane FK, Taylor CW, Darby SC, Hauptmann M, Seynaeve CM, Baaijens MHA, Sonke GS, Rutgers EJT, Russell NS, Aleman BMP, van Leeuwen FE. Cardiovascular disease incidence after internal mammary chain irradiation and anthracycline-based chemotherapy for breast cancer. Br J Cancer. 2018;119(4):408-418

Groot HJ, Lubberts S, de Wit R, Witjes JA, Kerst JM, de Jong IJ, Groenewegen G, van den Eertwegh AJM, Poortmans PM, Incrocci L, van den Bergh ACM, Jozwiak K, van den Belt-Dusebout AW, Horenblas S, Gietema JA, van Leeuwen FE, Schaapveld M. Risk of Solid Cancer After Treatment of Testicular Germ Cell Cancer in the Platinum Era. J Clin Oncol. 2018;36(24):2504-2513

Krul IM, Opstal-van Winden AWJ, Janus CPM, Daniels LA, Appelman Y, Maas A, de Vries S, Jozwiak K, Aleman BMP, van Leeuwen FE. Cardiovascular Disease Risk After Treatment-Induced Premature Ovarian Insufficiency in Female Survivors of Hodgkin Lymphoma. J Am Coll Cardiol. 2018;72(25):3374-3375

Opstal-van Winden AWJ, de Haan HG, Hauptmann M, Schmidt MK, Broeks A, Russell NS, Janus CPM, Krol ADG, van der Baan FH, De Bruin ML, Couch FJ, Pharoah P, Orr N, Easton DF, Aleman BMP, Strong LC, Bhatia S, Cooke R, Robison LL, Swerdlow AJ, van Leeuwen FE. Genetic susceptibility to radiation-induced breast cancer after Hodgkin Lymphoma. Blood. 2018

Schrijver L, Olsson H, Phillips K-A, Thea TM, Andrieu N, Easton DF, van Leeuwen FE, Hopper JL, Milne RL, Antoniou AC, Rookus MA. Oral Contraceptive Use and Breast Cancer Risk: Retrospective and Prospective Analyses From a BRCA1 and BRCA2 Mutation Carrier Cohort Study. JNCI Cancer Spectrum. 2018;2(2):pky023

Spaan M, van den Belt-Dusebout AW, van den Heuvel-Eibrink MM, Hauptmann M, Lambalk CB, Burger CW, van Leeuwen FE, on behalf of the OMEGA-steering group. Risk of cancer in children and young adults conceived by assisted reproductive technology. Human Reproduction 2019 (in press) 1,853 *BRCA1/2* mutation carriers), we are studying whether 1) hormonal/life-style factors modify cancer risk in *BRCA1/2* families, and 2) common genetic alterations are associated with the risk of breast cancer among *BRCA1/2* carriers. In the International BRCA Carrier Cohort Study (6,030 BRCA1 and 3,809 BRCA2 mutation carriers) we examined the association between use of oral contraceptives and breast cancer risk in retrospective and first prospective analyses (269 incident cases of breast cancer). In BRCA1 mutation carriers, use of oral contraceptives was not associated with risk of breast cancer in prospective analyses, but in retrospective analyses, risks were increased by 26% (95%CI=6%-51%). For BRCA2 mutation carriers, power was still limited for prospective analyses, and retrospective analyses showed no association. We conclude that long-term increased risks of breast cancer are not likely for BRCA1 and BRCA2 mutation carriers, while a temporal increased risk during use cannot be excluded for BRCA1 and BRCA2 mutation carriers.

The aim of the Nightingale Study, a cohort of 59,947 nurses, is to assess the association between shift work and risk of breast cancer. We have been conducting the first round of follow-up to update information on shift work, reproductive history, sleep habits and lifestyle since 2011, and to better assess circadian disruption. Recent linkage with the Netherlands Cancer Registry will allow us to further study the potential effects of circadian disruption on breast cancer risk among a highly exposed population.

The aim of the nationwide OMEGA study is to assess risk of hormone-related cancers after ovarian stimulation for in-vitro fertilization (IVF). The cohort comprises 30,838 women treated with IVF between 1983 and 2001.and 10,013 women treated with subfertility treatments other than IVF. In 2018, we assessed cancer risk in the OMEGA children's cohort comprising all live born children of OMEGA participants. (n=47,690). Of these children, 24,269 were conceived by assisted reproductive technology (ART, i.e. (IVF or intracytoplasmic sperm injection (ICSI)) and 13,761 were naturally conceived. The children's cohort was linked to the Netherlands Cancer Registry, yielding 231 incident cancers after a median follow-up of 21 years. The overall risk for childhood cancer in ART-conceived children was not increased. From 18 years of age onwards, the hazard ratio of cancer in ART-conceived versus naturally-conceived individuals was 1.25 (95%CI=0.73-2.13). Cancer risk was somewhat increased, although not statistically significantly so, in children conceived after ICSI or from cryo-preserved embryos. As currently more children are born through these techniques, long-term cancer risk is now being investigated in an expanded cohort of 30,000 children born through ART.



Increasing risk of gastro-intestinal second malignancies by cumulative dose of cisplatin.

V



#### Fred van Leeuwen

Group leader Division Gene Regulation

Fred van Leeuwen PhD Group leader Ila van Kruijsbergen PhD Post-doc Tessy Korthout MSc PhD student Eliza Mari Maliepaard MSc PhD student Thom Molenaar MSc PhD student Deepani Poramba Liyanage MSc PhD student Tibor van Welsem Technical staff

> Selected publications

Korthout T, Poramba-Liyanage DW, van Kruijsbergen I, Verzijlbergen KF, van Gemert FPA, van Welsem T, and Van Leeuwen F. Decoding the chromatin proteome of a single genomic locus by DNA sequencing. PLOS Biol 2018; 16: e2005542

Korthout T, Poramba-Liyanage DW, van Kruijsbergen I, Verzijlbergen KF, van Gemert FPA, van Welsem T, and Van Leeuwen F. Epi-ID: systematic and direct screening for chromatin regulators in yeast by Barcode-ChIP-Seq. Methods in Mol Biol. 2018 (in press)

Van Welsem T, Korthout T, Ekkebus R, Morais D, Molenaar TM, Van Harten K, Poramba-Liyanage DW, Sun SM, Lenstra TL, Srivas R, Ideker T, Holstege FCP, van Attikum H, El Oualid F, Ovaa H, Stulemeijer IJE, Vlaming H, and Van Leeuwen F. Dot1 promotes H2B ubiquitination by a methyltransferase-independent mechanism. Nucleic Acids Res. 2018;46(21):11251-11261

### **Chromatin Dynamics**

Switching genes on or off and keeping them in that state involves packaging of the genome by wrapping it around histone proteins. Histones carry different chemical modifications that affect the packaging of DNA by epigenetic mechanisms. The Van Leeuwen lab studies mechanisms and principles of epigenetic regulation using innovative proteomic, genetic, and (epi)genomics approaches. Our general strategy is to develop new tools and technologies, most recently two barcode-ChIP-sequencing approaches to discover epigenetic regulators and to decode the proteomes of genomic loci. These innovations enable us to explore new areas of chromatin biology and to dissect specific chromatin processes in high molecular detail, such as the regulation and function of histone methylation. We take advantage of yeast as a powerful model system and in parallel we are developing tools in mice and cultured human cells using CRISPR-Cas9 to translate our findings to mammals.

#### Function and regulation of histone methylation

Errors in the chemical modifications of histones can lead to changes in gene expression and cancer. We previously discovered the histone methyltransferase Dot1, which methylates lysine 79 of histone H3 (H3K79). This modification influences gene regulation and oncogenic transformation in mammals. A major goal of our research is to understand the regulation of H3K79 methylation and its function in gene control. Our previous work uncovered new insights into the activation of Dot1 by ubiquitination of histone H2B. We recently discovered that this trans-histone crosstalk works in two directions: Dot1 promotes the occurrence of H2B ubiquitin by a mechanism that is independent of its methyltransferase activity. Together with the group of Heinz Jacobs we are currently studying the regulation and function of DOT1L in mammals in epigenetic control of lymphocyte development and oncogenic transformation.

#### Decoding chromatin proteomes by DNA sequencing

Gene regulation involves interactions of specific genomic loci with many different proteins. How these interactions are orchestrated at any given location over time is largely unknown because systematically measuring protein-DNA interactions at a specific locus in the genome is challenging. To address this problem, we developed Epi-Decoder, a Tag-ChIP-Barcode-Seq technology in yeast. Epi-Decoder is orthogonal to proteomics approaches because it does not rely on mass spectrometry but instead takes advantage of DNA barcoding and DNA sequencing. Using Epi-Decoder we identified hundreds of chromatin-interacting proteins at an actively transcribed reporter gene. We obtained quantitative information on protein interactions and observed broad rewiring of local chromatin proteomes during replication stress. Native genomic loci can be efficiently barcoded by CRISPR-Cas9-mediated genome editing. Thus, Epi-Decoder is an effective strategy to identify and quantify in an unbiased and systematic manner the proteome of an individual genomic locus by DNA sequencing. We expect that Epi-Decoder will enable the delineation of complex and dynamic protein-DNA interactions across many regions of the genome.

Together, the aim of our studies is to provide a deep molecular understanding of the dynamics and inheritance of protein-based epigenetic information in dividing cells and the impact of chromatinbased information on gene regulation in normal development and disease.

V



#### Maarten van Lohuizen

Division head, group leader Division Molecular Genetics

Maarten van Lohuizen PhD Group leader

Jitendra Badhai PhD Senior post-doc Elisabetta Citterio PhD Senior post-doc Gayathri Chandrasekaran PhD Postdoc

Gaurav Pandey PhD Post-doc Jawahar Kopparam PhD Post-doc Jasper van Genugten MSc PhD student Santiago Gisler MSc PhD student Nick Landman MSc PhD student Danielle Hulsman Technical staff

#### Publication

Serresi M, Siteur B, Hulsman D, Company C, Schmitt MJ, Lieftink C, Morris B, Cesaroni M, Proost N, Beijersbergen RL, van Lohuizen M, Gargiulo G. Ezh2 inhibition in Kras-driven lung cancer amplifies inflammation and associated vulnerabilities. J Exp Med. 2018;215(12):3115-3135

# Role of polycomb-group genes in transcriptional repression, stem cell fate and tumorigenesis

We study transcriptional repression by Polycomb-group (PcG) protein complexes, and the effects of deregulation of PcG genes on development, cell cycle control, cancer and stem cell maintenance. For this a range of conditional polycomb transgenic and knockout mouse models are used in combination with specific cancer-predisposing mutations mimicking closely cognate human cancers. Recent focus is on using CISPR screens in selected polycomb-dependent tumor models to uncover new synthetic lethal interactions and vulnerabilities.

#### Context-dependent roles of PRC2 in tumorigenesis

We recently demonstrated an oncogenic role for *Ezh2* (histone methyltransferase and catalytic subunit of Polycomb repressive complex 2 (PRC2) in *Kras* driven non-small cell lung cancer. However, prolonged inactivation of PRC2 in aggressive *Kras;P53* mutant NSCLC uncovered a profound tumor suppressive function for PRC2 loss resulting in tumor cell identity change, driven by inflammatory responses and EMT. This resulted in new vulnerabilities that can be exploited using combined inhibition of PRC2 and inflammatory responses. Ezh2 is overexpressed in glioblastoma multiforme (GBM) suggesting a possible oncogenic role. In a mouse model for GBM we demonstrated using inducible Ezh2 shRNAs and specific Ezh2 inhibitors that short-term intermitted inhibition indeed slowed tumor growth and prolonged survival. However, prolonged Ezh2 inhibition caused a robust switch in cell fate, resulting in enhanced proliferation and invasion, enhanced DNA repair and activation of a stem cell pluripotency network, resulting in therapy-resistant aggressive GBM. This illustrates that dosing of Ezh2 inhibition is critical, and Ezh2 inhibitors need to be used with caution. We are using these GBM models with CRISPR screens to find more effective combination therapies.

#### Modeling and investigating BAP1-deficient malignant mesothelioma

Besides PRC2, also a variety of PRC1 complexes contribute to dynamic polycomb repression. These PRC1 complexes differ in subunit constitution but all harbor a critical E3 ubiquitin ligase monoubiquitylates H2A at K119. This mark can be removed by the de-ubiquitylase BAP1. Interestingly, BAP1 is a prominent tumor suppressor that is frequently mutated in malignant mesothelioma (MM), uveal melanoma and clear cell renal cancers. Together with the Berns lab we have generated a conditional mouse model that closely mimics BAP1-deficient human MM. Interestingly, BAP1 deficient MM shows increased polycomb repression and recruitment and dependency on PRC2 and Ezh2. We are using this model and tumor cell lines to screen for the underlying cancer relevant polycomb targets and pathways. This model is also used to screen for new vulnerabilities and targeted combination therapies.

#### Genome wide Chromatin profiling using a transposon-reporter system

In collaboration with the Wessels and van Steensel labs we have developed high-throughput chromatin profiling by using Thousands of PiggyBac transposon-based Reporters In Parallel (TRIP). The power of TRIP lies in combining different (inducible) transcriptional reporters in transposons with random barcoding and high throughput sequencing to study position effects and influences of local chromatin and epigenetic states on reporter expression. As an example, we recently used TRIP to test the genome-wide influence of epigenomic context on CRISPR-Cas9 activity.



#### Jacco van Rheenen

Group leader Division Molecular Pathology

Jacco van Rheenen PhD Group leader Evelyne Beerling PhD Academic staff Amalie Dick PhD Academic staff Saskia Ellenbroek PhD Senior post-doc Saskia Suijkerbuijk PhD Senior postdoc

Kerstin Hahn PhD Post-doc Lennart Kester PhD Post-doc Jessica Morgner PhD Post-doc Claire Vennin PhD Post-doc Miguel Vizoso PhD Post-doc Laura Bornes MSc PhD student Lotte Bruens MSc PhD student Andrea Da Cruz Margarido MSc PhD student

Arianna Fumagalli MSC PhD student Jeroen Lohuis MSC PhD student Daniel Postrach MSC PhD student Colinda Scheele MSC PhD student Danielle Seinstra MSC PhD student Sander Steenbeek MSC PhD student Rebecca Uceda Castro MSC PhD student

Tim Schelfhorst BSc Technical staff

# Selected publications

Fumagalli A, Suijkerbuijk SJE, Begthel H, Beerling E, Oost KC, Snippert HJ, van Rheenen J, Drost J. A surgical orthotopic organoid transplantation approach in mice to visualize and study colorectal cancer progression. Nat Protoc. 2018;13(2):235-247

Steenbeek SC, Pham TV, de Ligt J, Zomer A, Knol JC, Piersma SR, Schelfhorst T, Huisjes R, Schiffelers RM, Cuppen E, Jimenez CR, van Rheenen J. Cancer cells copy migratory behavior and exchange signaling networks via extracellular vesicles. EMBO J. 2018;37(15)

**Dost KC, et al.** Specific labeling of stem cell activity in human colorectal organoids using an ASCL2-responsive minigene. Cell Rep. 2018; 22(6):1600-1614

## Intravital Microscopy of cancer plasticity

Our laboratory studies the identity, behavior, and fate of cells that drive tumor initiation, progression, metastasis and the development of therapy resistance. These population of cells are difficult to study since they are rare, and their behavior (e.g. migration) and traits (e.g. stemness) change over time. To be able to study these dangerous cells, we have developed intravital microscopy techniques to visualize individual cells in real-time in living animals, often referred to as intravital microscopy. In order to trace specific cell types (e.g. stem cells, EMT cells, proliferative cells) within the primary tumor and at distant organs for several weeks, we combine genetic mouse models for breast and colorectal cancer with fluorescent mouse models in which identity, behavior or lineage is labeled by fluorescent colors.

#### Tumor initiation revealed at the single cell level

Adult stem cells (SCs) are long-lived, able to self-renew and differentiate into specialized cells to drive tissue homeostasis and tissue repair, and in addition are considered to be crucial for the initiation of tumors. Using intravital microscopy, we have identified the behavior of the adult stem cells that drive the development and homeostasis of intestinal and breast tissues. By developing new fluorescent mouse models, intravital microscopy, mathematical modelling, and single cell sequencing we are currently investigating how the dynamic behavior and fate of these SCs can be manipulated to reduce the initiation and progression of colon and breast tumors. For example, we are investigating whether we can manipulate the competition between mutant and wild-type stem cells by diet (e.g. calorie restriction) thereby enhancing the elimination of mutant (APC negative) stem cells from healthy tissues.

#### Metastasis and minimal residual disease revealed at the single cell level

Only a minority of cells within a tumor acquire traits and are surrounded by microenvironments that enable them to resist therapy, gain long-term clonogenic capacity, and/or to disseminate and form distant metastases. We have established genetic colorectal and breast cancer mouse models in which cells that possess or acquire these states are fluorescently marked. We are currently filming these cells during the metastatic cascade and during and after therapy. Moreover, we try to identify the tumor microenvironment that induces the deleterious cellular states that cancer cells can acquire, and how these states and microenvironment be manipulated to inhibit metastases and the recurrence of therapy resistant tumors.

#### Cellular mechanisms that drive therapy resistance

The cellular composition of tumors is highly heterogeneous, and can have a large influence on how patients respond to therapy. Through single-cell sequencing we identified gene expression profiles for all the cellular components of a set of heterogeneous breast tumors. Moreover, we developed Tumor Cell Deconvolution (TCD), a computational algorithm that utilizes these reference profiles to reveal the cellular composition of tumors for which only bulk RNA sequencing data is available. By applying TCD on RNA seq data from clinical trials, we are currently correlating the cellular composition of individual tumors to their sensitivity to therapeutics, in order to identify new biomarkers for personalized medicine.

V



#### Bas van Steensel

Division head, group leader Division Gene Regulation

Bas van Steensel PhD Group leader Joris van Arensbergen PhD Post-doc Federico Comoglio PhD Post-doc Stefano Manzo PhD Post-doc Ezequiel Miron Sardiello PhD Post-doc Eva Brinkman MSc PhD student Laura Brückner MSc PhD student Christ Leemans MSc PhD student Miquel Martinez Ara MSc PhD student Ruben Schep MSc PhD student Tom van Schaik MSc PhD student Xabier Vergara Ucin MSc PhD student Ludo Pagie PhD Bioinformatician Marcel de Haas Technical staff Daniel Peric Hupkes PhD Technical staff

Marloes van der Zwalm MSc Technical staff

# Selected publications

Brinkman EK, Kousholt AN, Harmsen T, Leemans C, Chen T, Jonkers J, van Steensel B. Easy quantification of template-directed CRISPR/Cas9 editing. Nucleic Acids Res. 2018;46:e58

Brinkman EK, Chen T, de Haas M, Holland HA, Akhtar W, van Steensel B. Kinetics and fidelity of the repair of Cas9-induced double-strand DNA breaks. Mol Cell 2018;70:801-813

Van Steensel B. Scientific honesty and publicly shared lab notebooks. EMBO Rep. 2018;19:e46866

### **Chromatin Genomics**

Gene expression is controlled by promoters, enhancers and other regulatory elements, and by packaging of DNA into chromatin. All of these components work in concert, and it is a major challenge to unravel their complex interplay. In addition, the spatial organization of interphase chromosomes is thought to be of key importance for genome expression and maintenance. In order to gain insight into these fundamental processes, we develop and apply new genomics techniques to reveal the interplay of chromatin and regulatory elements, and to study the architecture of chromosomes inside the nucleus.

#### Genomics tools to study gene regulation

We previously developed SuRE, a genome-wide method to study how regulatory elements are functioning when taken out of their natural chromatin context. We recently applied SuRE to study the impact of human genetic variation on gene regulation. Among ~6 million single-nucleotide variants we identified ~30,000 that alter the activity of enhancers and promoters. These data can help to overcome the limited mapping resolution of large genome-wide association studies, to pinpoint genetic variants responsible for various human traits and predisposition to disorders such as cancer. Furthermore, we are developing new approaches to study the communication between enhancers and promoters.

#### Spatial organization of the genome and gene regulation

We previously found that the genome of mammalian cells is associated with the nuclear lamina through ~1,300 large Lamina-Associated Domains (LADs). By gene expression analysis and systematic genome transplantation approaches we identified hundreds of genes that are repressed inside LADs. Another set of genes is much less sensitive to the LAD context. We found that these differences are in part encoded in the promoters, and in part due to local variation in the repressive potential of LADs. Conversely, we found that forced activation of genes inside LADs can lead to local detachment of these genes from the lamina. Further studies of the underlying mechanisms are ongoing. As part of the NIH 4D Nucleome consortium, we have generated a collection of publicly available high-resolution maps of NL contacts in various cell lines, and we have begun to map association of the genome with other nuclear compartments, such as nucleoli and pericentric heterochromatin domains. This extends our understanding of the dynamic spatial architecture of chromosomes in relation to gene regulation.

#### Facilitating and understanding genome editing

We previously developed TIDE, a cheap and simple assay to monitor the efficacy of genome editing by CRISPR/Cas9 (Brinkman et al, Nucl Acids Res 2014). This technology is now widely used. We recently extended this method with TIDER, a variant of the technology that can quantify "designer" CRISRPR/Cas9 editing events such as oligonucleotide-templated nucleotide substitutions. In addition, we have precisely measured the repair events that follow the induction of a single double-strand break by CRISPR/Cas9. Mathematical modeling of these data indicates that repair of such breaks takes several hours and is mostly mutagenic. This offers a better understanding of the widely used CRISPR/Cas9 technology, and provides insights into DNA repair. We are now extending this approach to hundreds of genomic locations in parallel. This should provide fundamental insights in the impact of chromatin context on the process of DSB repair.



Olaf van Tellingen Group leader Division Pharmacology

Olaf van Tellingen PhD Group leader Mark de Gooijer MSc PhD student Paul Slangen MSc PhD student Artur Burylo Technical staff Ceren Çitirikkaya Technical staff Hilal Colakoglu Technical staff

Selected publications

De Gooijer MC, de Vries NA, Buckle T, Buil LCM, Beijnen JH, Boogerd W, van Tellingen O. Improved Brain Penetration and Antitumor Efficacy of Temozolomide by Inhibition of ABCB1 and ABCG2. Neoplasia. 2018;20(7):710-20

De Gooijer MC, Guillen Navarro M, Bernards R, Wurdinger T, van Tellingen O. An Experimenter's Guide to Glioblastoma Invasion Pathways. Trends Mol Med. 2018;24(9):763-80

De Gooijer MC, Zhang P, Buil LCM, Citirikkaya CH, Thota N, Beijnen JH, van Tellingen O. Buparlisib is a brain penetrable pan-PI3K inhibitor. Sci Rep. 2018;8(1):10784

# Glioblastoma and the quest for better therapies

Glioblastoma (GBM) is a uniformly fatal disease. The location and invasive nature of GBM renders complete surgical resection impossible. Although radiotherapy is important for disease management, side effects prohibit the delivery of curative doses. Despite the successful introduction of novel targeted therapeutics in some other solid cancer types, clinical trials in GBM have all failed. The mission of our preclinical research group is to develop and validate more effective pharmacotherapies for this disease.

#### Getting drugs through the blood-brain barrier into the brain tumor

This year, we have brought a substantial number of our preclinical studies into publications. A major part of our work is dedicated to characterizing the impact of the blood-brain barrier (BBB) in brain tumors on treatment outcome. It is obvious that adequate drug delivery to the tumor is a requirement for any therapy response. The BBB is a major impediment for drug delivery to the healthy brain, but since the integrity of the BBB may be compromised by the tumor, it was unclear how much protection the BBB can offer to the tumor. We have conducted a series of experiments using several brain tumor models in which we characterized the integrity of the BBB by contrastenhanced MRI. Very invasive tumors that lack contrast-enhancement (*i.e.* non-leaky BBB) do not accumulate more drug than normal healthy brain and failed to respond to therapy. Tumors with contrast-enhancement, that were grafted in recipient mice lacking the drug efflux transporters Pgp and BCRP, responded better to a substrate drug than when the tumor was grafted in wildtype mice that do express P-gp and BCRP at the BBB. This correlated with differences in drug uptake. Thus, we show that even in leaky tumors, the tumor blood vessels still maintain barrier properties by expression of drug efflux proteins that reduce drug distribution and efficacy. Importantly, this also applies to the drug temozolomide, which is a cornerstone in the treatment of GBM. We show that inhibition of these transport proteins increases the tumor distribution of temozolomide by 50%, without increasing systemic exposure. Moreover, this was also seen with vemurafenib in BRAF<sup>v600e</sup> melanoma brain metastases (MBM). Brain metastases in general have more leaky blood vessels, but MBM's in wildtype mice responded much less to vemurafenib than MBM's in P-gp/BCRP deficient mice. Intriguingly, although MBMs were responsive in the latter, the duration of the response was short and regrowth of tumor growth occurred while the animals were still receiving daily treatment with vemurafenib. This finding is in line with the overall shorter response duration of MBMs in patients relative to extracranial melanoma lesions. Since canonical pathways were still inhibited, this acquired resistance may be related to the brain microenvironment.

Improving drug delivery to brain tumors by inhibition of both P-gp and BCRP is an important topic of our research. Elacridar is a dual P-gp and BCRP inhibitor that works efficiently in mice, because relatively high plasma concentrations can easily be achieved in this species. Unfortunately, the oral bioavailability of elacridar is much lower in humans than in mice, due to poor drug formulation and significant first-pass metabolism. We are working to find solutions for these pharmacokinetic issues, in order to repurpose elacridar for improving drug delivery to the brain. Importantly, the availability of such an inhibitor may not only benefit brain cancer patients, but also patients suffering from other CNS diseases.



Marcel Verheij

Group leader Division Cell Biology

Marcel Verheij MD PhD Group leader Conchita Vens PhD Associated research staff member, Radiobiologist Paul Essers PhD Post-doc Rosemarie de Haan MD Resident, PhD student Martijn van der Heijden MD PhD student David Vossen MD PhD student Shuraila Zerp MSc Technical staff Ben Floot BSc Technical staff Manon Verwijs Technical staff

> Selected publications

De Haan R, Pluim D, van Triest B, van den Heuvel M, Peulen H, van Berlo D, George J, Verheij M, Schellens JHM, Vens C. Improved pharmacodynamic (PD) assessment of low dose PARP inhibitor PD activity for radiotherapy and chemotherapy combination trials. Radiother Oncol. 2018;126:443-9

Verhagen CVM, Vossen DM, Borgmann K, Hageman F, Grénman R, Verwijs-Janssen M, Mout L, Kluin RJC, Nieuwland M, Severson TM, Velds A, Kerkhoven R, O'Connor MJ, van der Heijden M, van Velthuysen ML, Verheij M, Wreesmann VB, Wessels LFA, van den Brekel MWM, Vens C. Fanconi anemia and homologous recombination gene variants are associated with functional DNA repair defects in vitro and poor outcome in patients with advanced head and neck squamous cell carcinoma. Oncotarget. 2018;9:18198-213

Vossen DM, Verhagen CVM, Grénman R, Kluin RJC, Verheij M, van den Brekel MWM, Wessels LFA, Vens C. Role of variant allele fraction and rare SNP filtering to improve cellular DNA repair endpoint association. PLoS One. 2018;13:e0206632

### Targeted radiosensitization

Increased understanding of the molecular mechanisms underlying tumor and normal cell radiosensitivity has led to the identification of a variety of potential targets for rational intervention. Our research aims to translate such novel combination strategies from bench to bedside with a focus on cell death and DNA repair/response modulation and radio-immunotherapy.

#### Manipulation of cell death

Based on our previously described synergistic interaction between pro-apoptotic receptor agonists and DNA damaging agents, we study combined treatment effects of APG880, a second generation hexameric TRAIL-receptor agonist, and radiation in a panel of human colon cancer cell lines and colon cancer-derived organoids. Nanomolar concentrations of APG880 induce apoptosis in a timeand dose-dependent manner. Combined treatment with radiation results in synergistic levels of apoptosis and reduced clonogenic survival, indicating radiosensitization. Ongoing studies focus on underlying molecular mechanisms of this interaction. Preliminary data indicate a radiation-induced increase of DR4 and DR5 expression in the models studied.

#### DNA damage response modulators

DNA damage repair and response inhibition are promising strategies to potentiate radio- or chemotherapy. Among such approaches, PARP inhibitors are particularly attractive as radioenhancers due to the cellular replication-dependent radiosensitizing and vasodilatory properties. Potent radiosensitization capacity combined with a favorable low systemic toxicity profile provides a strong rational for radiotherapy PARP inhibitors combinations. Three collaborative phase I-II studies evaluating the safety and tolerability of the PARP inhibitor olaparib, in combination with radiotherapy in locally advanced breast cancer (with G Sonke), non-small cell lung cancer (NSCLC; with M van den Heuvel) and HNSCC (with M van den Brekel) are recruiting patients to test this combination in the clinic.

Biomarkers that assess the activity of drugs or the combination are important to guide such trials. We developed and evaluated a PARP inhibitor pharmacodynamics assay that allows sensitive assessment of PARP inhibitor activity. In a healthy volunteer study, we determined that the sensitivity and accuracy to quantify PARP inhibition exceeded those of the established PAR pharmacodynamic assay by several fold. Implemented in clinical combination trials, the assay showed superior detection of PARP inhibition in patients treated with the PARP inhibitor olaparib and establishes strong PARP inhibitory activities at low daily doses.

#### Identification and exploitation of DNA repair defects

Recent genomic data demonstrate the role of DNA damage response and repair in tumorigenesis or patient outcome in an increasing number of cancer types. DNA damage repair pathway defects inherent to some cancers may therefore define radiotherapy outcome. Previously, we identified DNA repair defects in HNSCC and tested opportunities to exploit those by the combination of radiation and PARP inhibitors. To allow the identification of such defects in clinical material, we tested and developed multiple genetic biomarkers in collaboration with the Department of Head and Neck Surgery and Oncology. In preliminary studies these showed promise, identifying a subgroup of patients with different outcome parameters that warrant validation in an independent cohort.



#### **Emile Voest**

Group leader Division Molecular Oncology & Immunology

Emile Voest MD PHD Group leader Chelsea McLean PhD Post-doc Rhode Bijlsma MD PhD student Chiara Cattaneo PhD student Myriam Chalabi MD PhD student Krijn Dijkstra MD PhD student Joris van der Haar MD PhD student Louisa Hoes MD PhD student Salo Ooft PhD student Luuk Schipper MD PhD student Danielle Seinstra MD PhD student Fleur Weeber MD PhD student Roel Wouters MD PhD student Sovann Kaing Technical staff

Emile Voest is medical director of the Netherlands Cancer Institute, medical oncologist and translational scientist.



Dijkstra K, Cattaneo C, Weeber F, Chalabi M, van de Haar J, Fanchi L, Slagter M, van der Velden D, Kaing S, Kelderman S, van Rooij N, van Leerdam M, Depla A, Smit E, Hartemink K, Groot R, Wolkers M, Sachs N, Snaebjornsson P, Monkhorst K, Haanen J, Clevers H, Schumacher T, Voest E. Facilitating individualized T cell therapy by co-culture of peripheral blood lymphocytes and tumor organoids. Cell 2018;174(6):1586-1598

Van der Velden DL, I...J, Voest EE. Phase I study of combined indomethacin and platinum-based chemotherapy to reduce platinum-induced fatty acids. Cancer Chemother Pharmacol. 2018;81(5):911-921

Van der Velden DL, I...J, Voest EE. Detection of endogenously circulating Mesenchymal Stem Cells in human cancer patients. Int J Cancer 2018;143(10):2516-2524

# Personalized Medicine by employing tumor organoids and genomics

#### Genomics, immunotherapy and (tumor)organoids

#### Genomics-guided personalized medicine

We continued the Drug Rediscovery Protocol, in short the DRUP study. In this multi-pharma (12 companies to date), multi-drug (25 drugs to date), multi-center (27 centers to date) study we now have created a platform through which patients can get access to approved medication based on a genomic profile coupled to a tumor type. These drugs are provided for free by pharma and the number of drugs and hospitals are expanding. At the closure of 2018, we have received and reviewed >830 patient submissions of which 344 patients will be actively treated with targeted agents. In the first analysis we have encountered a clinical benefit ratio (defined as complete or partial remission or stable disease >16 weeks) of ~35%. This is surprisingly high and reflects that patient selection is key in such a personalized medicine approach.

A true highlight of the DRUP approach is the agreement with the Dutch Healthcare Institute and national health care insurers to reimburse on a pay for performance basis successful cohorts of DRUP, starting with MSI tumors treated with nivolumab.

#### Immunotherapy

The NICHE trial is a unique study that investigates the use of neoadjuvant immunotherapy in colorectal cancer. First results are now coming in which allows the assessment of safety and initial outcome.

In 2018 a very exciting translational study to generate better understanding of which tumors are recognized by T cells was completed and published in Cell. In this study we used autologous organoids to induce an immune response on PBMC. In colorectal cancer and NSCLC we have seen PBMC responses when exposed to autologous tumor organoids. These T cells can be expanded for further research and even in the future for T cell treatment. This creates a very interesting platform to study resistance to T cells and paves the way to better understand resistance to the immune system.

#### Organoids as a tool to personalize medicine

We have initiated several clinical trials to investigate the value of organoids as predictive tools. These trials include validation studies in patients with chemotherapy and targeted therapy in lung and colorectal cancer (TUMOROID), organoid-guided experimental treatment studies (SENSOR) and more. We have now shown that tumor organoids can predict non responsiveness to irinotecanbased chemotherapy but not to oxaliplatin-based treatment.

Unfortunately, studies with breast cancer organoids have been terminated due to very slow growth rate and success rate to create organoids of biopsies (44%).

In summary, my group is strongly committed to develop a better understanding of individual tumors and their responsiveness to immunotherapy and chemotherapy.

V


# Jelle Wesseling

Group leader Division Molecular Pathology

Jelle Wesseling MD PhD Group leader Esther Lips PhD Associate staff scientist Proteeti Bhattacharjee PhD Project manager Sena Alaeikhanehshir MD PhD student Mathilde Almekinders MD PhD student Carolien van der Borden MD PhD student Emilie Groen MD PhD student

Marte Liefaard MD PhD student Maartje van Seijen MD PhD student Lindy Visser PhD student Li-Ping Fu MSc Research assistant, data manager Petra Kristel Technical staff Lennart Mulder Technical staff



Saskia Stoffels Technical staff

Elshof LE, Schmidt MK, Rutgers EJT, van Leeuwen FE, Wesseling J, Schaapveld M. Cause-specific Mortality in a Population-based Cohort of 9799 Women Treated for Ductal Carcinoma In Situ. Ann Surg 2018;267:952-958

Van Seijen M, Mooyaart AL, Mulder L, Hoogstraat M, Drukker CA, Loo CE, Pouw B, Sonke GS, Wesseling J, Lips EH. Enrichment of high-grade tumors in breast cancer gene expression studies. Breast Cancer Res Treat 2018;168:327-335

Visser LL, Elshof LE, Schaapveld M, van de Vijver K, Groen EJ, Almekinders MM, Bierman C, van Leeuwen FE, Rutgers EJ, Schmidt MK, Lips EH, Wesseling J. Clinicopathological Risk Factors for an Invasive Breast Cancer Recurrence after Ductal Carcinoma In Situ-A Nested Case-Control Study. Clin Cancer Res 2018;24:3593-3601

# Molecular pathology of breast cancer

Breast cancer is a heterogeneous disease. Accurate pathological and molecular analyses are key to make accurate predictions regarding prognosis and response to treatment. We aim to find, validate, and implement biomarkers to optimize precise and personalized predictions regarding prognosis and treatment response.

# Finding the balance between over and undertreatment of breast Ductal Carcinoma In Situ (DCIS)

Ductal carcinoma in situ (DCIS) now represents 20-25% of all breast neoplasia due to large-scale detection by population-based breast cancer screening programs. Uncertainty as to which DCIS lesions will progress to invasive drives massive overtreatment of this often harmless disease. Distinguishing DCIS that may progress to lethal disease from the majority of harmless DCIS is therefore an urgent need to save thousands of women with low risk DCIS the burden of radical treatment without any survival benefit. Therefore, we started the PRECISION (PREvent ductal Carcinoma In Situ Overtreatment Now) initiative in 2015, to distinguish harmless DCIS from hazardous DCIS. In 2017 the PRECISION team received the Cancer Research UK Grand Challenge Award, co-funded by the Dutch Cancer Society.

We aim to reduce the burden of overtreatment of DCIS (surgery, radiation therapy, hormonal therapies) through the development of novel tests that promote informed and shared decision-making between patients and clinicians, without compromising the excellent outcomes for DCIS management presently achieved. We collected a nation-wide population-based cohort of 10,000 women treated for primary DCIS between 1989 and 2004 in the Netherlands. Within this cohort we compared DCIS samples from 200 patients developing ipsilateral breast cancer with 500 matched DCIS samples of women without invasive recurrence during a ten year follow up period. A main finding was that women with HER positive and COX 2 overexpression had a fourfold increased risk of developing a subsequent invasive breast cancer. A second intriguing finding is that, when we compared matched DCIS and invasive recurrences, 40% of the paired lesions has a different copy number profile, indicating a second primary tumor, or outgrowth of a minor subclone. We are now continuing our efforts to unravel DCIS progression. In addition to our retrospective research, a prospective active surveillance trial (the LORD study) is up and running in the Netherlands and other European countries.

# Development of clinically useful molecular tests to predict chemotherapy response of primary breast cancers

#### (collaboration with Lodewyk Wessels and Gabe Sonke)

We continued our work to identify predictive biomarkers for neoadjuvant chemotherapy treatment in breast cancer. An extensive molecular characterization of matched pre- and post-treatment samples of 22 luminal and triple negative patients showed a multitude of differences between pre- and post-chemotherapy samples, revealing a wide range of potential, distinct mechanisms of resistance. Among these, proliferation- and stroma-related genes play a prominent role. The large degree of heterogeneity in possible resistance mechanisms makes effectively targeting chemotherapy resistant cells challenging. New projects are ongoing to unravel treatment resistance mechanisms in HER2 positive breast cancer.



### Lodewyk Wessels

Division head, group leader Division Molecular Carcinogenesis

Lodewyk Wessels PhD Group leader Kathy Jastrzebski PhD Associate scientific staff member Jinhvuk Bhin PhD Post-doc Tycho Bismeijer PhD Post-doc Evert Bosdriesz PhD Post-doc Gergana Bounova PhD Post-doc Sander Canisius PhD Post-doc Marlous Hoogstraat PhD Post-doc Tesa Severson PhD Post-doc Bram Thiissen PhD Post-doc Daniel Vis PhD Post-doo Nanne Aben MSc PhD Student Joris van de Haar MSc PhD student Soufiane Mourragui MSc PhD student Maarten Slagter MSc PhD student Marie Corradi MSc Bioinformatician Kat Moore PhD Bioinformatician Silvana Roos MSc Technical staff

# Selected publications

Bismeijer T, Canisius S, Wessels LFA. Molecular characterization of breast and lung tumors by integration of multiple data types with functional sparse-factor analysis. PLoS Comput Biol. 2018;14(10):e1006520

Bosdriesz E, Prahallad A, Klinger B, Sieber A, Bosma A, Bernards R, Blüthgen N, Wessels LFA. Comparative Network Reconstruction using mixed integer programming. Bioinformatics. 2018;34(17):i997-i1004

Jastrzebski K, Thijssen B, Kluin RJC, de Lint K, Majewski IJ, Beijersbergen RL, Wessels LFA. Integrative Modeling Identifies Key Determinants of Inhibitor Sensitivity in Breast Cancer Cell Lines. Cancer Res. 2018;78(15):4396-4410

# **Computational cancer biology**

We aim to quantify and understand treatment response in model systems and human patients. To this end we 1) develop data-driven approaches to analyse large-scale datasets to find determinants of drug sensitivity and synergies; 2) we construct semi-mechanistic models based on knowledge and measurements to understand drug response and 3) we perform multiplexed, single cell perturbation and profiling assays to map drug response at the single cell level (figure 1). Below we present a number of highlights from the past year.

# Identifying epistasis in cancer genomes: a delicate affair

Recent studies of the tumor genome seek to identify cancer pathways as groups of genes in which mutations are epistatic with one another or, specifically, 'mutually exclusive'. However, many mutations appear to be mutually exclusive not due to pathway structure, but to the fact that prominent cancer genes are more frequently mutated in tumors with low overall mutation load. Consequently, these cancer genes are less likely to be co-mutated with others, leading to many misleading findings in current epistatic interaction maps. Researchers should view these maps with caution until we better understand the multiple cause-and-effect relationships among factors such as positive selection for mutations, disease subtypes, and gross tumor characteristics including mutational signatures and load.

# GR50: Is it a useful approach to correct for growth rate in drug screens?

High-throughput, large-scale compound screens use viability-based measures, such as the IC50, as an endpoint. It has recently been suggested that growth rate-based measures, such as the GR50, would be more suitable. However, using three independent high-throughput screens, we find that IC50 and GR50 estimates are highly correlated. The biggest differences were found for slowgrowing cell lines, where we show that this can be attributed to amplification of noise in the growth rate correction. Consequently, reproducibility was lower for GR50s than for IC50s, both within and between screens. We performed screens to test other suggested benefits of the GR50, such as cytotoxicity prediction or invariance to measurement type and seeding density. In all cases, we do not find the GR50 to be better than the IC50. We therefore recommend using the IC50 as endpoint.

# Pan-cancer drug combination screen in 765 cell lines and 56 drugs

Monotherapies are often not effective by themselves, but efficacy can be greatly improved by the addition of a second drug. This phenomenon, where a two-drug combination is more effective than any single drug, is referred to as synergy. Many synergistic drug combinations have previously been reported, but have often only been tested in small subsets of cell lines. Hence, it is not clear whether these are robust, generalize to other tumor types and very few biomarkers for drug synergy have been identified. To address these problems, we have performed a large-scale drug combination screen of 56 drug combinations and 765 tumor cell lines. We find that synergistic combinations are not cancer type specific. Specifically, we find five combinations that result in synergy, including the combination of Olaparib with Temozolomide, a DNA damaging agent (DDA), and several combinations of AZD7762 (CHEK1/2) with a DDA.

W



# Lotje Zuur

Group leader Division Tumor Biology & Immunology

Lotje Zuur MD PhD Group leader Xiaohang Qiao PhD Post-doc Charlotte Duinkerken PhD student Jos Elbers PhD student Anne van der Leun PhD student Joris Vos PhD student

# Selected publications

Cioni B, Jordanova ES, Hooijberg E, van der Linden R, de Menezes RX, Tan K, Willems S, Elbers JBW, Broeks A, Bergman AM, Zuur CL, de Boer JP. HLA class II expression on tumor cells and low numbers of tumor-associated macrophages predict clinical outcome in oropharyngeal cancer. Head Neck. 2019;41:463-478

Dohmen AJC, Sanders J, Canisius S, Jordanova ES, Aalbersberg EA, van den Brekel MWM, Neefjes J, Zuur CL. Sponge-supported cultures of primary head and neck tumors for an optimized preclinical model. Oncotarget. 2018;9(38):25034-25047

Elbers JBW, Al-Mamgani A, van den Brekel MWM, Jóźwiak K, de Boer JP, Lohuis PJFM, Willems SM, Verheij M, Zuur CL. Salvage Surgery for Recurrence after Radiotherapy for Squamous Cell Carcinoma of the Head and Neck. Otolaryngol Head Neck Surg. 2018

# Improving treatment responses in Head and Neck cancer

# Novel treatments to improve clinical outcome in head and neck cancer

Head and neck cancer can be categorized by two distinct aetiologies: tobacco and/or alcohol use in combination with genetic predisposition, or infection and activity of viral oncogenes. Head and neck cancers are characterized by a microenvironment invaded by various immune cells (see figure) that each may play a role in treatment response and resistance. Despite intensive treatment regimens of surgery w/wo (chemo-)radiotherapy (RT), prognosis in our patients remains relatively poor.

To improve clinical outcome in our patients, my group designed the phase Ib/II *IM*CISION trial (EudraCT 2016\_002366\_31) concerning toxicity and feasibility of T-cell checkpoint inhibitors nivolumab w/wo ipilimumab immunotherapy neoadjuvant to standard of care (extensive surgery) in patients with advanced disease. Phase 1 was completed in 2018, Phase 2 is now open for accrual.

Also, in 2018, we identified a promising novel lead compound that showed tumor selective radiosensitizing activity in vitro, while having no effect on cell viability in the absence of irradiation. The target was found to be ATM, part of the DNA repair pathway. We are currently testing this compound in vitro and in mice. These studies are performed in collaboration with the Division of Chemical Immunology of Prof Neefjes and Prof Ovaa of the LUMC in Leiden, The Netherlands, and should define better options for radiotherapy in our patients.

In 2018 we have also completed a phase 1 trial providing trans-tympanic administration of an oto-protective drug to rescue patients from irreversible hearing loss due to high-dose cisplatin anti-cancer treatment. The idea is that the rescue drug will diffuse from the middle ear to the inner ear via the round window. In this phase 1 trial we could safely administer the drug in all patients. Moreover, to our great enthusiasm, our protocol and mode of administration of the drug indeed resulted in successful oto-protection in single patients.

In 2018 Amy Dohmen, MD PhD successfully defended her thesis *Head and neck cancer treatment, a basic step forward.* 



Tumor microenvironment of oropharyngeal cancer. Various coloured cells represent the various immune cells that surround and invade the squamous cell carcinoma. (Courtesy Bianca Cioni, Jan Paul de Boer, André Bergman, Erik Hooijberg)



#### Wilbert Zwart

Group leader Division Oncogenomics

Wilbert Zwart PhD Group leader Yongsoo Kim PhD Post-doc Stefan Prokovic PhD Post-doc Abhishek Singh PhD Post-doc Koen Flach MSc PhD student Stacey Joosten MSc PhD student Jeroen Kneppers MSc PhD student Simon Linder MSc PhD student Rebecca Louhanepessy MSc PhD student

Isabel Mayayo Peralta MSc PhD student Laurel Schunselaar MSc PhD student Suzan Stelloo MSc PhD student Anniek Zaalberg MSc PhD student Yanyun Zhu MSc PhD student Karianne Schuurman BSc Technical staff

# Selected publications

Severson TM, Kim Y, Joosten SEP, Schuurman K, van der Groep P, Moelans CB, Ter Hoeve ND, Manson QF, Martens JW, van Deurzen CHM, Barbe E, Hedenfalk I, Bult P, Smit VTHBM, Linn SC, van Diest PJ, Wessels L, Zwart W. Characterizing steroid hormone receptor chromatin binding landscapes in male and female breast cancer. Nat Commun. 2018;9(1):482

Stelloo S, Nevedomskaya E, Kim Y, Schuurman K, Valle-Encinas E, Lobo J, Krijgsman O, Peeper DS, Chang SL, Feng FY, Wessels LFA, Henrique R, Jerónimo C, Bergman AM, Zwart W. Integrative epigenetic taxonomy of primary prostate cancer. Nat Commun. 2018;9(1):4900

Singh AA, Schuurman K,

Nevedomskaya E, Stelloo S, Linder S, Droog M, Kim Y, Sanders J, van der Poel H, Bergman AM, Wessels LFA, Zwart W. Optimized ChIP-seq method facilitates transcription factor profiling in human tumors. Life Sci Alliance, 2018 (in press)

# Hormones in cancer

Hormonal therapies represent the first and most-successful targeted therapeutics in cancer. In most breast cancers and prostate cancers, hormonal therapy forms the very backbone of systemic treatment both in the adjuvant setting as well as in the treatment of metastatic disease. Still, resistance to hormonal therapeutics is commonly observed, and many patients relapse despite treatment. It is therefore absolutely crucial to better understand hormonal signalling and therapy resistance in these two most-frequently diagnosed cancers.

We study hormone receptor action in multiple tumor types, including breast and prostate cancer. The ultimate goal of our research is to personalize clinical decision-making, optimize treatment selection and minimize over-treatment. By expanding our knowledge on steroid hormone receptor function in cancer and elucidating mechanisms of treatment resistance, we aim to achieve tailored endocrine treatment selection, selecting the most-suitable therapy for the individual patient.

# Hormonal crosstalk in male and female breast cancer

About 75% of all breast tumors are Estrogen Receptor (ER $\alpha$ )-positive and are thought to depend on hormonal stimuli for tumor cell proliferation. In addition, most breast cancers also express Androgen Receptor (AR), Progesterone Receptor and Glucocorticoid Receptor. In both male and female breast cancers, we profiled the chromatin interaction landscapes of all these hormone receptors (Severson et al., 2018). A remarkable high level of overlapping chromatin interaction sites was found for all hormone receptors, in which practically all AR sites were localized at DNA regions co-occupied by ER $\alpha$ . These data suggest extensive genomic crosstalk between hormone receptors in clinical specimens. Furthermore, between both sexes practically all hormone receptor/ DNA binding sites were shared. However, those selective enhancer regions with prognostic potential were sex-specific, revealing a prognostic gene signature that was specifically geared for outcome prediction in male breast cancer patients.

# Epigenetics-based prostate cancer patient stratification

Prostate cancer is the second most prevalent malignancy in men, in which the Androgen Receptor (AR) is considered the sole-driving factor in cancer development and progression. In prostate cancer, no clear pathological subtypes are known. We profiled epigenetic marks (H3K4me3, H3K27ac, H3K27me3) and AR chromatin interactions in 100 primary prostate cancers, which was integrated with transcriptomics data, DNA copynumber analyses and somatic mutations. Through integrative genomic analyses, we successfully identified a novel prostate cancer subtype (Stelloo et al., 2018). These tumors are hallmarked by low mutational burden and little DNA copy number variations. Surprisingly, tumors in this novel subtype also exposed low AR activity even though the receptor was readily expressed, suggesting that hormonal blockade may not be effective in these patients. Pathway analyses revealed other signalling cascades as potential drivers of the disease, including FGF and WNT signalling.



# Epigenetics-based classification of primary prostate cancers reveals three distinct tumor subtypes.

Heatmap displays the consensus matrix of integrative analysis (MIV-NMF) on the basis of RNA-seq, AR, H3K27ac, H3K4me3, and H3K27me3 ChIP-seq for *k* = 3 (three clusters). Rows and columns are samples, and the more frequently samples occur in the same cluster, the darker

Z







# Marcel Stokkel

Head Division Diagnostic Oncology

#### DEPARTMENT OF CLINICAL CHEMISTRY

Daan van den Broek PhD Academic staff, head Huub van Rossum Academic staff Tiny Korse PhD Scientific Staff Daan Vessies MSc PhD student Lennart van Winden MSc PhD student

DEPARTMENT OF MEDICAL PHYSICS AND TECHNOLOGY Michiel Sinaasappel PhD Academic staff, head Leon ter Beek PhD Academic staff Esther Martens PhD Academic staff Sara Muller PhD Academic staff Erik-Jan Rijkhorst PhD Academic staff

Wilfred de Beukelaar Technical staff Simon Bullock Technical staff Jessica Kamp Technical staff Hanny Keep Technical staff Sanny Kraan Technical staff Hans Palmboom Technical staff Suzanne Nanninga Technical staff Ton Vlasveld Technical staff

#### THE NETHERLANDS CANCER INSTITUTE FAMILY CANCER CLINIC

Lizet van der Kolk MD PhD Academic staff, head Muriel Adank MD PhD Academic staff Fonnet Bleeker MD PhD Academic staff Eveline Bleiker PhD Academic staff Daniela Hahn Academic staff Frans Hogervorst PhD Academic staff Fred Menko MD PhD Academic staff Petra Nederlof PhD Academic staff Efraim Rosenberg PhD Academic staff Marielle Ruiis MD PhD Academic staff Maartje Vogel PhD Academic staff Marijke Hagmeijer Genetic associate Anja van Rens Genetic associate Sonhie van der Velden Genetic associate

Daoud Ait Moha Research assistant Kiki Jeanson Research assistant Ivon Tielen Quality manager Mohamed Achahchah Technical staff Abderrahim Ajouaou Technical staff Majella Boutmy-de Lange Technical staff

Rashmie Debipersad Technical staff

Daphne Dieduksman Technical staff Mobien Kasiem Technical staff Rob Plug Technical staff Roelof Pruntel Technical staff Esther Scheerman Technical staff Ruben Moritz BSc Bioinformatician Rubayte Rahman MSc Bioinformatician

# DEPARTMENT OF NUCLEAR MEDICINE

Marcel Stokkel MD PhD Academic staff, head

Else Aalbersberg MSc Academic staff Christel Brouwer MD Academic staff Maarten Donswijk MD Academic staff Martine Geluk-Jonker MSc Pharmacist Bernies van der Hiel MD Academic staff Karen van Os MD Academic staff Emilia Owers MD Academic staff Erik Vegt MD PhD Academic staff Michelle Versleijen MD PhD Academic staff

Wouter Vogel MD PhD Academic staff Linda de Wit-van der Veen MSC PhD Academic staff

**Jeroen Hendrikx MSc** Clinical pharmacist

Daan Hellingman MSc PhD student Daphne Huizing MSc PhD student Judith Oldeheuvel MSc PhD student Hajar el Aissati Technical staff Saskia Baank Technical staff Ilse van Beelen-Post Technical staff Natascha Bruin Technical staff Cas Chrispijn Technical staff Marien Dekker Technical staff Aafke Ebbens Technical staff Christel Feenstra Technical staff Simone Gouw Technical staff Mariëtte Kieft Technical staff Ted Kuijer Technical staff Marintha Louwe Technical staff Chelvi Mylyaganan Technical staff Kirsten Manuel-Peen Technical staff Danielle Ekelschot-Piilsma Technical staff

Lyandra Kronenburg-Rooze Technical staff

Esther Streefkerk Technical staff Colinda Vroonland Technical staff Jeroen Effing Technical staff Jelmer van der Veen Technical staff

#### DEPARTMENT OF PATHOLOGY

Gerrit Meijer MD PhD Academic staff, head Mathilde Almekinders MD Academic staff Elise Bekers MD PhD Academic staff

Jose van den Berg MD MD PhD Academic staff

Jonathan Bijron MD PhD Academic staff

Mirjam Boelens PhD Academic staff Mijke Bol MD Academic staff Linda Bosch PhD Academic staff Hester van Boven MD PhD Academic staff

Annegien Broeks PhD Academic staff Beatriz Carvalho PhD Academic staff Janneke van Denderen PhD Academic staff

Remond Fijneman PhD Academic staff Emilie Groen MD Academic staff

# Division of Diagnostic Oncology

In 2018, a scientific site visit of the division of Diagnostic Oncology was performed in order to assess current scientific status and, moreover, to address scientific opportunities. In addition to the good and excellent scores of the departments visited, the most important outcome was the recommendation to increase the collaboration within the division focusing on one main topic. Although focus of research is already established within the research themes of the NKI, a general theme for the division should be implemented in future plans in order to improve its position, to increase scientific output and to be able to valorize the input. "The development of early markers of disease and response" has been identified as main topic harboring input of all departments within this division, but also the close collaboration with other divisions and pre-clinical research groups. In 2019, more detailed plans will be developed in which innovation and improvement of outcome measures in patient care are ultimate goals. The division, again, was very successful this year with a large number of papers published, graduations, grant applications awarded and, finally, the appointment of Jelle Wesseling as professor at Leiden University Medical Center.

# DEPARTMENT OF CLINICAL CHEMISTRY AND LABORATORY MEDICINE

Daan van den Broek

# Liquid Biopsies and improved "in vitro diagnostics"

The department focuses on translational research and implementation of innovative diagnostics into clinical practise. Such an innovative approach to cancer diagnostics are liquid biopsies. Our department is running multiple ctDNA studies as well as local and national biobank initiatives for different tumor-types and different fluids. One of the great knowledge gaps in commercially available methods for the detection of ctDNA is standardisation and a direct comparison of the performance of different methods. To address this we ran a study comparing four major commercial platforms with respect to sensitivity, detection rate and total cost of analysis. In addition to PCR-based methods, sequencing of ctDNA can broaden the diagnostic information provided by ctDNA analysis. We evaluated and validated the Roche AVENIO plasma sequencing pipeline and validated this approach for clinical use. Together with the department of Pathology funding was obtained for the COIN project. The Coin consortium brings together all research groups and laboratories in the Netherlands working on ctDNA to build a biomarker implementation framework. This will enable a coordinated evidence-based introduction of ctDNA in the Netherlands. In addition the project involves the initiation of a biomarker driven intervention study in colorectal cancer (MEDOCC-Create).

Apart from our molecular work we have developed a new, liquid chromatography mass spectrometry based method for the analysis of the steroid hormones. For testosterone this method has a 20 time lower limit of detection and allowed quantitation of testosterone in a large number of samples that could otherwise not be determined. Especially for advanced prostate cancer this might be relevant since androgen deprivation therapy is the cornerstone of treatment. Also a similar method for estrogens has been developed.

### Clinical and diagnostic validation of biomarkers

For monitoring of cancer, tumor biomarkers are often used. Unfortunately for many of these markers used in daily practice objective insights is lacking in what consecutively obtained results clinically mean. A platform called Re-marker was developed that included a newly designed graphical presentation, called BReC plot, to diagnostically validate and better support treatment decisions.

# Validation of the NETest<sup>®</sup>, a blood neuroendocrine tumour gene signature in a Dutch cohort

The lack of effective strategies to identify gastro-enteropancreatic neuroendocrine tumors (GEP-NETs) is one of the reasons why diagnosis is delayed for up to 7 years. We investigated the discriminative value of the NETest<sup>®</sup> as well as the association between tumor characteristics, compared to CgA. The NETest<sup>®</sup> measures gene expression of 51 circulating NET marker genes simultaneously by q-PCR21. The superior sensitivity of the NETest<sup>®</sup> over CgA in this study supports the clinical potential of the NETest<sup>®</sup> as follow-up marker and indicator for residual disease after surgery.

# DEPARTMENT OF MEDICAL PHYSICS AND TECHNOLOGY

#### **Michiel Sinaasappel**

This department actively participates in several hospital-wide research lines. We introduce new techniques, facilitate their implementation, and advise on regulatory issues. A mechanical workshop is part of our department, where we build, adapt, and design devices used in several clinical and pre-clinical research projects.

The department has the following expertise and skills. MR physics: develop, implement, and evaluate new MRI sequences for biomarkers and image-guided therapy applications. Medical imaging: develop segmentation, registration, and visualization algorithms for image-guided therapy applications. PACS interface to facilitate large-scale imaging studies (in collaboration with the Radiomics group). Pharmacokinetic modeling and radiation dose calculations. Optical and physiological measurement techniques: development, implementation, and evaluation.

In 2018 the department achieved the following highlights. In collaboration with Wouter Vogel (Nuclear Medicine), we evaluated the robustness of ASL MR for quantitative perfusion monitoring of potentially inhibited salivary gland function. A reduced salivary gland perfusion may lead to reduced uptake and toxicity from systemically administered pharmaceuticals, thereby potentially minimizing xerostomia. Frans Hogervorst PhD Academic staff Erik Hooijberg PhD Academic staff Hugo Horlings MD PhD Academic staff Jeroen de Jong MD PhD Academic staff Kim Monkhorst MD PhD Academic staff Petra Nederlof PhD Academic staff Liudmilla Peppelenbosch-Kodach MD PhD Academic staff

Efraim Rosenberg PhD Academic staff Joyce Sanders MD Academic staff Laura Smit MD PhD Academic staff Petur Snaebjornsson MD Academic staff

Maartje Vogel PhD Academic staff Jacqueline van der Wal MD PhD Academic staff

Jelle Wesseling MD PhD Academic staff Bart van de Wiel MD Academic staff Sanneke Heijker MD Temporary staff Petra Ghuijs MD Temporary staff Sanne Martens-de Kemp PhD Post-doc Meike de Wit PhD Post-doc Karlijn Hummelink MD PhD student Gosia Komor MSc PhD student Meta van Lanschot MD PhD student Iris van 't Erve PhD student Abderrahim Ajouaou Technical staff Mariska Bierkens PhD Technical staff Carolien Bierman Technical staff Anne Bolijn Technical staff Pien Delis-van Diemen Technical staff Kelly van Deventer Technical staff Alex Henneman PhD Technical staff Annemieke Hiemstra MSc Technical staff Brenda Hiimans PhD Technical staff Margriet Lemmens Technical staff Joyce Lübeck Technical staff Donné Majoor Technical staff Pauline van Mulligen MA Technical staff Roelof Pruntel Technical staff Rubayte Rahman Technical staff Christian Rausch PhD Technical staff Jan-Nico Ridderbos Technical staff Charlotte van Rooiien Technical staff Brian Severins Technical staff Marianne Tijssen Technical staff Menno de Vries MSc Technical staff Rianne van der Wiel Technical staff

#### DEPARTMENT OF RADIOLOGY

Regina Beets-Tan MD PhD Academic staff, head Tarik Baetens MD Academic staff

Annemarieke Bartels-Rutten MD PhD Academic staff

Annemarie Bruining MD Academic staff Fernando Gomez-Muňoz MD Academic staff

Birthe Heeres MD Academic staff Stijn Heijmink MD PhD Academic staff Farshad Imani MD Academic staff Bas Jasperse MD PhD Academic staff Petra de Koekkoek-Doll MD Academic staff

Lisa Klompenhouwer MD PhD Academic staff

Max Lahaye MD PhD Academic staff Doenja Lambregts MD PhD Academic staff

Charlotte Lange MD Academic staff Ferry Lalezari MD Academic staff Claudette Loo MD PhD Academic staff Monique Maas MD PhD Academic staff Philip Pevenage MD Academic staff Samuel Rice MD Academic staff Iris van 't Sant-Jansen MD Academic staff

Laurens Topff MD Academic staff Japke van Urk MD Academic staff Jan Vanrusselt MD Academic staff Gonneke Winter-Warnars MD PhD Academic staff

Ingrid de Zwart MD PhD Academic staff Hugo Aerts MSC PhD Post-doc Irene van Kalleveen MSC PhD Post-doc Robert-Jan Schipper MD PhD Post-doc Ivo Schoots MD PhD Post-doc Thi Dan Linh Nguyen-Kim MD PhD Post-doc

Brigit Aarts MD PhD student Paula Bos MSc PhD student Rianne Beckers MD PhD student Zuhir Elkarghali MD MSc PhD student Maurits Engbersen MSc PhD student Miriam van Heeswijk MD PhD student Joost van Griethuysen MD PhD student Kay van der Hoogt MD PhD student Britt Hupkens MD PhD student Jasenko Krdzalic MD PhD student Lisa Min MD PhD student Elias Nerad MD PhD student

Niels Schurink MSc PhD student Stefano Trebeschi MSc PhD student Marjanneh Taghavirazavizadeh MSc PhD student

Sophie Vollenbrock MD PhD student Martine Bes Technical staff

Iris Beverwijk Technical staff Arjan te Boekhorst Technical staff Miriam Coenraads-Wiersma Technical staff

Dirk Doorenspleet Technical staff Marjon van Engelen Technical staff Ingeborg Franx Technical staff Warda Gilani Technical staff Cees de Graaf Technical staff Patricia van der Groen Technical staff Saskia Harren Technical staff Saskia Havermans Technical staff Zilca van Heijninge-van Diepen Technical staff

Annelies van Heusden Technical staff Rien Hoogeboom Technical staff Vanessa van Hout Technical staff Huib Huurdeman Technical staff Leonie Keizer Technical staff Marjon de Koning Technical staff Carolien Kos Technical staff Fenna van der Krieke Technical staff Reinier Latenstein Technical staff Megan van der Lubbe Technical staff Lyanne Molenaar Research Technical staff

Marjan Nazaryfard Technical staff Theo van Ooij Technical staff Anita Paape Technical staff Brenda Plakké Technical staff Annemieke Poelmann Technical staff Astrid Pontvuijst Technical staff Joyce van Schaik-Ellenbroek Technical staff

Harmen Schraa Technical staff José Sernee Technical staff Edgar Smit Technical staff Bob Spil Technical staff Rick Straathof Technical staff Irene Terpstra Technical staff Yvonne Vasbinder-Palthé Technical staff

Ingrid Veldema Technical staff Mauro Villanueva Technical staff Marianne Visser Technical staff Etha Voorham Technical staff Maaike van der Voort-van Oostwaard Technical staff Susanne van der Weijden Technical staff



# SELECTED PUBLICATIONS DEPARTMENT OF CLINICAL CHEMISTRY AND LABORATORY MEDICINE

Holdenrieder S, Molina R, Qiu L, Zhi X, Rutz S, Engel C, Kasper-Sauer P, Dayyani F, Korse CM. Technical and clinical performance of a new assay to detect squamous cell carcinoma antigen levels for the differential diagnosis of cervical, lung and head and neck cancer. Tumor Biol. 2018;40(4)

Moritz R, Muller M, Korse CM, van den Broek D, Baas P, van den Noort V, Ten Hoeve JJ, van den Heuvel MM, van Rossum HH. Diagnostic validation and interpretation of longitudinal circulating biomarkers using a biomarker response characteristic plot. Clin Chem Acta 2018;487:6-14

Van Treijen MJC, Korse CM, van Leeuwaarde RS, Saveur LJ, Vriens MR, Verbeek WHM, Tesselaar MET, Valk GD. Blood transcript profiling for the detection of neuroendocrine tumors: results of a large independent validation study. Front Endocrinol (Lausanne) 2018;9:740

### SELECTED PUBLICATIONS DEPARTMENT OF MEDICAL PHYSICS AND TECHNOLOGY

Borggreve AS, Mook S, Verheij M, Mul VEM, Bergman JJ, Bartels-Rutten A, ter Beek LC, Beets-Tan RGH, Bennink RJ, van Berge Henegouwen MI, Brosens LAA, Defize IL, Van Dieren JM, Dijkstra H, van Hillegersberg R, Hulshof MC, van Laarhoven HWM. Lam MGEH, van Lier ALHMW, Muijs CT Nagengast WB Nederveen A.L Noordzii W. Plukker JTM, van Rossum PSN, Ruurda JP, van Sandick JW. Weusten BLAM, Voncken FEM, Yakar D, Meijer GJ. Preoperative imageguided identification of response to neoadjuvant chemoradiotherapy in esophageal cancer (PRIDE); a multicenter observational study. BMC Cancer, 2018:18(1):1006

Van Griethuysen JJM, Bus EM, Hauptmann M, Lahaye MJ, Maas M, ter Beek LC, Beets GL, Bakers FCH, Beets-Tan RGH, Lambregts DMJ. Gas-induced susceptibility artefacts on diffusionweighted MRI of the rectum at 1.5 T - Effect of applying a micro-enema to improve image quality. Eur J Radiol. 2018;99:131-137

Vollenbrock SE, Voncken FEM, Van Dieren JM, Lambregts DMJ, Maas M, Meijer GJ, Goense L, Mook S, Hartemink KJ, Snaebjornsson P, ter Beek LC, Verheij M, Aleman BMP, Beets-Tan RGH, Bartels-Rutten A. Diagnostic performance of MRI for the assessment of response to neoadjuvant chemoradiotherapy in oesophageal cancer. BJS 2018 (accepted)

# SELECTED PUBLICATIONS THE NETHERLANDS CANCER INSTITUTE FAMILY CANCER CLINIC

Mavaddat N, Michailidou K, Dennis J, I...] García-Closas M, Simard J, Easton DF. Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes. Am J Hum Genet. 2018

Menko, FH, Stege JA ter, Kolk L van der, Jeanson K, Schats W, Ait Moha D, Bleiker EMA. The uptake of presymptomatic genetic testing in hereditary breast-ovarian cancer and Lynch syndrome: a systematic review of the literature and implications for clinical practice Fam Cancer. 2019;18(1):127-135

Tudini E, Moghadasi S, Parsons MT, van der Kolk L, van den Ouweland AMW, Niederacher D, Feliubadaló L, Wappenschmidt B, Spurdle AB, Lazaro C. Substantial evidence for the clinical significance of missense variant BRCA1 c.5309G>T p.(Gly1770Val). Breast Cancer Res Treat. 2018;172(2):497-503

#### SELECTED PUBLICATIONS DEPARTMENT OF NUCLEAR MEDICINE

Aalbersberg EA, de Wit-van der Veen BJ, Versleijen MWJ, Saveur LJ, Valk GD, Tesselaar MET, Stokkel MPM. Influence of lanreotide on uptake of 68Ga-DOTATATE in patients with neuroendocrine tumours: a prospective intra-patient evaluation. Eur J Nucl Med Mol Imaging. 2018 In collaboration with the research group of Ludi Smeele (Head & Neck Oncology and Surgery) we evaluated an innovative fast T2mapping MRI technique to visualize activated muscles based on an increased T2 relaxation time. Muscle activation was induced by a dedicated swallow exercise aid developed for muscle strengthening exercises to restore swallowing function after head and neck cancer treatment.

In collaboration with the research group of Theo Ruers we developed an automatic segmentation method for extracting liver, hepatic vasculature, and biliary tree anatomy from multiphase contrast-enhanced MRI. Our method was evaluated using data of 15 patients showing good correlation with expert manual segmentations. Resulting 3D models of patient-specific liver anatomy facilitate computer-aided planning of surgeries and interventions.

Pharmaceutical research into oral chemotherapy in tablet form enables future patients to take their medication at home, potentially replacing IV administration at the hospital. Since it is expensive medication, it is important to first test this new method on a small-scale. Our mechanical workshop manufactured a high quality mini-extruder for this small-scale lab testing.

# THE NETHERLANDS CANCER INSTITUTE FAMILY CANCER CLINIC Lizet van der Kolk

For many of the 1450 patients (families) visiting the Family Cancer Clinic the indication for referral is a possible genetic predisposition for breast and/or ovarian cancer. Other indications include suspected Lynch syndrome, colorectal polyposis syndromes, Li-Fraumeni syndrome and a possible genetic predisposition for stomach cancer, renal cancer, melanofma and pancreatic cancer. Increasingly, results of DNA-analysis have implications for the treatment of cancer. This development results in more referrals and, sometimes, a different way of genetic counselling.

# The DNA-diagnostic laboratory of the Family Cancer Clinic

The implementation of Next Generation Sequencing (NGS) for the BRCA1/2 genes in 2016 made it possible to offer BRCA testing for germline and somatic DNA, isolated from blood cells and more importantly FFPE fixed tumor or normal cells. Several clinical trials require rapid testing of tumor DNA for a BRCA1 specific or a BRCAness profile. For this we offer a complete test panel for BRCAness: germline and somatic BRCA1/2 testing, BRCA1 promotor methylation and CNV seq to assess the genomic tumor profile for BRCAness features (in collaboration with P. Nederlof, head Molecular Diagnostics). In 2018 the following genes were added to our NGS tests: TP53, MLH1, MSH2, MSH6 and PMS2. Furthermore, we have implemented the automated isolation of DNA from blood using a Qiagen Symphony robot. In parallel, we introduced barcoding of our DNA samples to improve sample registration and tracking during the molecular diagnostic tests.

### **Research projects**

We contribute to national (HEBON) and international (BCAC, CIMBA) efforts to understand the etiology, risk and outcome of breast cancer. We are involved in international efforts to establish polygenic risk scores for breast cancer. In 2017 an unique prospective breast cancer study was granted by Pink Ribbon/KWF (In close cooperation with M.J. Hooning and A. Hollestelle, ErasmusMC, M.K. Schmidt, and M.A. Adank, NKI) to assess all aspects of breast cancer in women from families with a CHEK2 c.1100delC mutation.

TP53-mutation carriers from Li-Fraumeni syndrome families nation-wide are screened by total body MRI in the NKI. Data will be collected on the MRI-results and on the psychosocial impact of this screening tool (M. Ruijs, E. Bleiker, G. Sonke (Division of Medical Oncology) and C. Loo (Division of Radiology)). The first data were shared with patients and their doctors on December 13.2018 in a symposium: Li-Fraumeni syndrome in the Netherlands.

In close colabortaion with E. Bleiker (PSOE) and the Family Cancer Clinic (F. Menko, L. van der Kolk) new methods for informing family members are developed and evaluated aimed at improving the communication of cancer risk and better use of preventive measures.

Furthermore, we participate in ongoing collaborations (inter) nationally to elucidate the clinical role of DNA variants found by the DNA diagnostic laboratory (INVUSE, BRCA1/2 VUS, ENIGMA). Our department is also interested in the ethical, legal and social aspects of unsolicited genomic findings, particularly in the context of clinical genetic testing and counseling, Lizet van der Kolk is a member of the core team of the ELSI Servicedesk.

# DEPARTMENT OF NUCLEAR MEDICINE

Marcel Stokkel

### Personalized Medicine

Over the past years, several new radiopharmaceuticals have become available for imaging and treating different tumor types. Examples of this are Ga68-DOTATATE, Ga68-PSMA, Zr89 labelled antibodies and Lu177-DOTATATE. Although many aspects are already well known, basic principles, such as influence of medication and treatment, are quite often unclear. This year, therefore, the department has shifted focus its of research on these aspects, with emphasis on neuro-endocrine tumors, melanoma and prostate cancer. In collaboration with several academic hospitals, such as UMC Utrecht, VUMC and Erasmus UMC, new studies have been initiated this year of which the intra-arterial administration of Lu177-DOTATATE is the most challenging one aiming to improve radiation dose in liver metastases of neuro-endocrine tumors. Finally, image analysis and quantification of uptake of tracers in tumors, so called Radiomics, has been studied in all afore mentioned tumor types in order to improve the diagnostic and prognostic value of imaging.

### Image guided surgery

Since the introduction of Ga68-PSMA a new field of research has become available in which diagnostic aspects can be combined with surgical intervention. Using Cerenkov Light as one of the side-effects of positron emission, it might become possible





.





Hellingman D, Wan OY, de Wit-van der Veen BJ, van der Ploeg IM, Elkhuizen PHM, Rutgers EJT, Stokkel MPM. Predictive risk factors for sentinel lymph node nonvisualization on planar lymphoscintigraphy using an intratumoral injection in patients with primary breast cancer. Nucl Med Commun. 2018

Konert T, van de Kamer JB, Sonke JJ, Vogel WV. The developing role of FDG PET imaging for prognostication and radiotherapy target volume delineation in non-small cell lung cancer. J Thorac Dis. 2018

### SELECTED PUBLICATIONS DEPARTMENT OF PATHOLOGY

Komor MA, Bosch LJ, Bounova G, Bolijn AS, Delis-van Diemen PM, Rausch C, Hoogstrate Y, Stubbs AP, de Jong M, Jenster G, van Grieken NC, Carvalho B, Wessels LF, Jimenez CR, Fijneman RJ, Meijer GA. Consensus molecular subtype classification of colorectal adenomas. J Pathol. 2018;246:266-76

Dijkstra KK, Cattaneo CM, Weeber F, Chalabi M, van de Haar J, Fanchi LF, Slagter M, van der Velden DL, Kaing S, Kelderman S, van Rooij N, van Leerdam ME, Depla A, Smit EF, Hartemink KJ, de Groot R, Wolkers MC, Sachs N, Snaebjornsson P, Monkhorst K, Haanen J, Clevers H, Schumacher TN, Voest EE. Generation of Tumor-Reactive T Cells by Co-culture of Peripheral Blood Lymphocytes and Tumor Organoids. Cell. 2018;174:1586-98.e12

Visser LL, Elshof LE, Schaapveld M, van de Vijver K, Groen EJ, Almekinders MM, Bierman C, van Leeuwen FE, Rutgers EJ, Schmidt MK, Lips EH, Wesseling J. Clinicopathological Risk Factors for an Invasive Breast Cancer Recurrence after Ductal Carcinoma In Situ-A Nested Case-Control Study. Clin Cancer Res. 2018;24:3593-601

# SELECTED PUBLICATIONS DEPARTMENT OF RADIOLOGY

Van der Valk MJM, Hilling DE, Bastiaannet E, Meershoek-Klein Kranenbarg E, Beets GL, Figueiredo NL, Habr-Gama A, Perez RO, Renehan AG, van de Velde CJH obo IWWD Consortium. Long-term outcomes of clinical complete responders after neoadjuvant treatment for rectal cancer in the International Watch & Wait Database (IWWD): an international multicenter registry study. The Lancet. 2018;3;391(10139):2537-2545 Van 't Sant I van Eden WJ, Engbersen MP, Kok MFM, Woensdregt K, Lambregts DWJ, Shanmuganathan S, Beets-Tan RGH, Aalbers AGJ, Lahaye MJ. Diffusion-weighted MRI assessment of the peritoneal cancer index before cytoreductive surgery. Br J Surg. 2018

Trebeschi S, van Griethuysen JJM, 2. Lambregts DMJ, Lahaye MJ, Parmar C, Bakers FCH, Peters NHGM, Beets-Tan RGH, Aerts HJWL. Deep Learning for Fully-Automated Localization and Segmentation of Rectal Cancer on Multiparametric MR. Sci Rep. 2018;8(1):2589 to assess margins of resection during surgery. The focus of research (funded by KWF) shifted over the past months from pre-clinical experiments towards clinical translation. In 2019, the first prostate cancer patients will be included in this study. In addition, Tc99m-PSMA will be introduced for lymph node detection and resection in prostate cancer. Both techniques aim to improve recurrence rates and avoidance of additional treatment.

# Molecular imaging guided radiotherapy

Molecular imaging has become important in guiding external beam radiotherapy for various cancer types. The typical example is metabolic imaging using FDG PET/CT, applied for tumor characterization, treatment selection, target definition and follow-up.

However, this technique is still hampered by several issues. Visual interpretation of FDG PET/CT has a risk on observer variation, and many are looking at automatic lesion detection and contouring using radiomics-based feature detection. We have demonstrated that there are currently no robust, independent radiomics features for FDG PET that add information to current clinical parameters for detection of NSCLC. Concluding that FDG PET/CT-based radiotherapy of NSCLC remains an operatordependent treatment, we focused at developing a world-wide training and implementation program in low- and middle-income countries in a joint effort with IAEA, with first results indicating that this results in a significant survival benefit for patients with stage III NSCLC in these countries.

We are now developing more modern implementations of molecular imaging to guide radiotherapy. One project has demonstrated that lymph drainage mapping with SPECT/CT can identify patients with head-neck tumours who can safely omit elective irradiation of the contralateral neck to spare toxicity. A second research line is focusing on molecular imaging for evaluation of normal tissues to develop more accurate and biologically relevant dose-effect relations. PSMA PET/CT is applied to specifically quantify the loss of vital secretory cells in salivary glands during and after radiotherapy, in a voxel-based approach. These evaluations will allow us to develop an entirely new class of dose constraints and planning objectives, aiming at maintained tumor control but with lower toxicity and better quality of life.

# DEPARTMENT OF PATHOLOGY Gerrit Meijer

Pathology is all about diagnosing the nature of disease processes, to guide clinical decision-making and optimize personalized and precision treatment of cancer patients. Our challenge is to generate as much relevant information from tissue, cell and DNA samples aimed at the best personalized treatment for patients today and in the future. Important questions to be answered relate to finding, validating, and implementing prognostic and predictive biomarkers, combined with tumor classification issues. The progress of the research by the Translational Gastrointestinal Oncology group (PI's Beatriz Carvalho, Remond Fijneman and Gerrit Meijer), the lung group (PI Kim Monkhorst), the translational mamma research (PI Jelle Wesseling), and the computational pathology research (PI Hugo Horlings) can be found in the first part of this report. The progress of the Laboratory of Familiar Tumors (head Frans Hogervorst) is summarized in the chapter of the Department of Clinical Genetics. In addition to the major lines of research the department is further developing its role as a key player in translational research through the Pathology Translational Research Core (PTRC). The PTRC provides research services for basic, translational and clinical researchers to accelerate laboratory discoveries into patient care. The PTRC offers state of the art expertise from pathologists, molecular biologists, biomedical scientists and bioinformaticians. The PTRC offers also data services related to pathology. Important asset to this is the Core Facility Molecular Pathology (CFMPB, head Annegien Broeks) which is key to tissue biobanking as well as laboratory support for translational studies. The PTRC supports the logistics of the pathology part of clinical studies, sample handling and shipping of tissues. In the context of the PTRC and in close collaboration with CFMPB, multi spectral imaging, employing Vectra-3 hardware and HALO image analysis software, is further developed (coordinated by Erik Hooijberg). Data analysis is supported as well. This has led to two publications in 2018 and support for additional grant applications. Moreover, NanoString technology has been introduced, coordinated by Linda Bosch. Researchers from in- and outside the NKI have successfully analyzed their samples using this robust technology and the first results have now been submitted for publication. The NKI has been selected as one of the three 'Center of Excellence' of NanoString, in which we have early access to the Digital Spatial Profiling (DSP) system. In close collaboration with Daan van den Broek (department of Clinical Chemistry), Remond Fijneman and Kim Monkhorst make use of clinical trials to perform translational research studies of cell-free circulating tumor DNA as prognostic and predictive biomarkers for colorectal cancer and lung cancer, respectively. Most staff members are actively involved in multidisciplinary research activities in the field of thoracic oncology, urology, gastrointestinal oncology, melanoma, ovarian cancer, head and neck cancer and immunotherapy. In 2018, the department was involved in 161 clinical studies, 312 translational studies and Jelle Wesseling became professor in Leiden. The scientific output includes 94 publications. Three projects were granted by ZonMW and KWF, with a total budget of € 3.3 M.

# DEPARTMENT OF RADIOLOGY

# Regina Beets-Tan

Imaging Research at the department of Radiology is multidisciplinary clinical, translational and fundamental research. It focuses on functional MRI for organ preservation, image guided intervention, artificial intelligence, imaging for immunotherapy and fundamental radiogenomics research. The research team consists of 18 PhD students, 5 postdocs and 13 radiologists' post-docs. **Rectal cancer imaging research focuses on Watch and Wait** investigating the role of MRI for better selection of complete responders after preoperative chemoradiotherapy. In 2018 the data of an international registry was published in the Lancet reporting safety and good outcome in 1000 patients. **Mulltiparametric imaging research** aims to build a model to improve prediction of response for various cancer treatments including a radiomics analysis of multicenter rectal cancer MRIs. **MRI of peritoneal** 

carcinomatosis research determines the impact of DWI-MRI for the detection of peritoneal carcinomatosis in colorectal cancer (CRC) and ovarian cancer. The first results in CRC were published in 2018. Organ preservation is also the focus of research in oesophageal and breast cancer. It validates functional MRI to identify patients with complete response after neoadjuvant treatment. The overall aim is to seek accurate tools to select patients for a non-operative treatment. The first results in oesophagael cancer were published in 2018. In prostate cancer research an MR prediction model for functional outcome after surgery is being externally validated with a patient cohort in Australia. Ultrasound image fusion projects fusing real time US with CT, MR or PET-CT aim to improve the characterization of cervical nodes in Head and Neck cancer and imaging guidance in treatment of vanishing liver metastases. Interventional radiology research runs a project investigating the safety and efficacy of intra-hepatic Mitomycine-C in breast cancer also in combination with Y90 radioembolization. Kidney ablation projects consist of an analysis of data in the NKI and a prospective registration of ablation combined with embolization for kidney tumors > 3 cm. A cryoablation study to boost the efficacy of immunotherapy in metastasized renal cell cancer is in preparation. Y90 radioembolization study in CRC patients with limited metastatic disease analyses biomarkers associated with local control and survival following treatment. Radioimmunotherapy study for prostate cancer is in collaboration with the nuclear medicine and urology department to investigate the feasibility of direct treatment of prostate cancer. Artificial intelligence (AI) is the focus of clinical, translational and fundamental research. Al models in rectal and head and neck cancer for response prediction and in breast DCIS for risk profiling are running. Al Immunotherapy research apply AI models for the prediction of response and for biological profiling. An Al model was developed wherein features were identified and the model was trained and tested on melanoma, NSCLC and urothelial cancer. External validation cohorts are being set up in- and outside the Netherlands. Similarly, radiomic features were identified that can discern clinically relevant genetic mutations in advanced CRC. Further expansion in radiogenomics analysis is underway. Al-powered analysis was executed to assess brain metastasis response to immunotherapy in melanoma. Studies on deep learning-derived volumetrics of brain metastatic edema, necrosis, and viable tumour parts have shown both prognostic and predictive values in immunotherapy. Patient expansion is currently underway to bolster the development of more clinically-robust AI models.



**Jacqueline Stouthard** 

Head Division Medical Oncology from July 1st, 2018



John Haanen

Head Division Medical Oncology until July 1st, 2018

John Haanen MD PhD Head until June 2018 Jacqueline Stouthard MD PhD Head

from July 2018 Paul Baas MD PhD Academic staff André Bergman MD PhD Academic staff Jos Beijnen PhD Academic staff Christian Blank MD PhD Academic staff Jan Paul de Boer MD PhD Academic staff

Henk Boot MD PhD Academic staff Dieta Brandsma MD PhD Academic staff

Tineke Buffart MD PhD Academic staff Wieneke Buikhuisen MD PhD Academic staff

Sjaak Burgers MD PhD Academic staff Annemieke Cats MD PhD Academic staff

Myriam Chalabi Academic staff Annette Compter MD PhD Academic staff

Vincent Dezentjé MD PhD Academic staff

Jolanda van Dieren MD PhD Academic

Marloes van Dongen MD PhD Academic staff

Jeantine de Feijter MD PhD Academic staff Roel van Gijn PhD Academic staff

Roel van Gijn PhD Academic staf

Academic staff Cecile Grootscholten MD PhD Academic staff Michiel van der Heiiden MD PhD Academic staff Alwin Huitema PhD Academic staff Wanda de Kanter MD PhD Academic staff Martiin Kerst MD PhD Academic staff Marleen Kok MD PhD Academic staff Joop de Langen MD PhD Academic staff Monique van Leerdam MD PhD Academic staff Sabine Linn MD PhD Academic staff Lemonitsa Mammatas MD Academic staff Serena Marchetti MD PhD Academic staff Aafke Meerveld MD PhD Academic staff Bastiaan Nuijen PhD Academic staff Frans Opdam MD PhD Academic staff Jan Schellens MD PhD Academic staff Mart Schiefer MD Academic staft Enhert Smit MD Phd Academic staff Carolien Smorenburg MD PhD Academic staff Gabe Sonke MD PhD Academic staff Neeltje Steeghs MD PhD Academic staff Willemijn Theelen MD PhD Academic staff Hans van Thienen MD PHD Academic staff Margot Tesselaar MD PhD Academic staff Wieke Verbeek MD PhD Academic staff Emile Voest MD PhD Clinical director Reinier Wener MD Academic staff Thomas de Wijkerslooth MD PhD Academic staff Sofie Wilgenhof MD PhD Academic staff Roos Achterbergh Temporary staff Stefanie Altenburg-van der Velden Temporary staff Leonora de Boo Temporary staff Maria Disselhorst Temporary staff Marjolein de Groot Temporary staff Amy de Haar-Holleman Temporary staff Eva Lamboo Temporary staff Femke van der Meer Temporary staff Annemiek van Ommen-Niihof Temporary staff Tanja Oostergo Temporary staff Denise Sampiomon Temporary staff Esther Reijm Temporary staff Martin Rijlaarsdam Temporary staff Firazia Rodjan Temporary staff Maaike Schuur Temporary staff Marieke Vollebergh Temporary staff Stephanie van der Woude Temporary staff Sushil Badrising PhD student Bianca Cioni PhD student

Winette van der Graaf MD PhD

Bianca Cioni PhD student Gwen Dackus PhD student Nick van Dijk PhD student Dianne de Gooijer PhD student Bart Jacobs PhD student Vincent de Jong PhD student Chris Klaver PhD student Simone Koole PhD student Merel Lebbink PhD student Marte Liefaard PhD student Sonja Levy PhD student

# Division of Medical Oncology

# BREAST AND OVARIAN CANCER

Vincent Dezentjé, Marloes van Dongen, Marleen Kok, Sabine Linn, Lemonitsa Mammatas, Carolien Smorenburg, Gabe Sonke, Jacqueline Stouthard, Leonora de Boo, Marieke Bruggeman, Gwen Dackus, Marjolein Delfos, Marjo Holtkamp, Vincent de Jong, Inge Kemper, Chris Klaver, Simone Koole, Dinja Kruger, Marte Liefaard, Ingrid Mandjes, Lennart Mulder, Annemiek van Ommen, Suzanne Onderwater, Annelot van Rossum, Margaret Schot, Mariette Schrier, Tessa Steenbruggen, Sonja Vliek, Anna van der Voort, Leonie Voorwerk

# **Background and objectives**

The objective of this research program is to develop and improve systemic therapy for patients with early breast cancer and to improve treatment options in (oligo-) metastatic breast cancer. Our studies are in close collaboration with the Dutch Breast Cancer Research Group (BOOG), the EORTC Breast Cancer Group, the Breast International Group (BIG), and Cancer Core Europe. In 2018, we included 160 patients in 12 clinical studies. In addition, the team is involved in optimizing treatment for women with ovarian cancer.

# (Neo)adjuvant chemotherapy

The neoadjuvant chemotherapy program is the core of a multidisciplinary research effort to optimize systemic treatment and response prediction. It currently comprises multicenter studies for ER+/HER2- breast cancer (AFTER; NCT00738777, NEOLBC; NCT03283384)), triple negative tumors (SUBITO; NCT02810743) and HER2+ tumors (TRAIN-3). The TRAIN-3 study investigates whether the number of pre-operative chemotherapy cycles can safely be reduced in case of an early radiologic complete remission and builds on the results of TRAIN-2 study, which was recently published in Lancet Oncology. Another major achievement this year was the oral presentation of the 20-years follow-up data of the N4+ study (Rodenhuis et al. NEJM 2003) at ESMO 2018. Overall survival benefit of high dose chemotherapy with autologous stem cell rescue versus standard adjuvant chemotherapy was maintained at 20 years in patients with  $\geq 10$  involved axillary lymph nodes, most notably in triple negative breast cancer (TNBC). Long-term toxicity was comparable between both arms, except for more hypertension, dyslipidemia, and dysrhythmias in the high-dose arm.

# Metastatic breast cancer

The OLIGO study (NCT01646034), Triple B-study (NCT01898117), and ABC study (NCT02826512) investigate the treatment of patients whose tumours harbour DNA repair defects as interrogated with the BRCA-like test. In 2018, the triple B-study was amended to enable the treatment with anti-PDL1 (atezolizumab) added to the backbone of paclitaxel or platinumbased chemotherapy in the first- or second-line of treatment for metastatic TNBC. The NKI led international phase Ib/II POSEIDON (NCT02285179) and nationwide SONIA (NCT03155997) studies investigate the optimal use of an isoform selective PI3K inhibition and CDK4/6 inhibition, respectively, added to endocrine therapy in advanced ER+/HER2- breast cancer. The TONIC trial (NCT02499367) is a single center phase II trial in metastatic TNBC, which we initiated to determine the activity of anti-PD1 (nivolumab) after four different immune response induction (low dose doxorubicin, metronomic cyclophosphamide, cisplatin, or radiation) treatments. In 2018 we presented the final clinical data and the first translational data at ASCO suggesting that induction with doxorubicin or cisplatin can result in a more favorable tumor microenvironment and more responses on anti-PD1. The GELATO (NCT03147040) study is a multicenter phase 2 trial recently initiated for invasive lobular breast cancer (ILC) patients with metastatic disease. Based on preclinical data we hypothesize synergy between platinum and immune checkpoint blockade in a subgroup of immune-related ILC.

# Ovarian cancer

In 2018, two major improvements in the treatment of primary ovarian cancer have been developed, in which the team at the NKI have been closely involved. Firstly, hyperthermic intraperitoneal chemotherapy (HIPEC) added to interval debulking surgery was shown to improve both recurrence-free and overall survival in stage III ovarian cancer. The study that investigated this approach was published in the New England Journal of Medicine and recently awarded with the AVL public impact award. Secondly, adjuvant therapy with olaparib in BRCA mutation carriers following primary treatment for ovarian cancer showed significant improved outcome and this SOLO-1 study was also published in the New England Journal of Medicine.

# GASTROENTEROLOGY

Henk Boot, Tineke Buffart, Annemieke Cats, Myriam Chalabi, Jolanda van Dieren, Cecile Grootscholten, Monique van Leerdam, Margot Tesselaar, Wieke Verbeek, Thomas de Wijkerslooth, Linda Henricks, Linda van Veenendaal, Elvira Nuijten, Lisette Al, Berbel Ykema, Esther Toes, Arthur Kooyker, Sonja Levy

# **Background and objectives**

The department of Gastroenterology is involved in different phases of research, with emphasis on early detection and prevention of and innovative multimodality treatments for GI cancers including neuro-endocrine tumours (NET) and hereditary GI-cancer syndromes.

# Upper Gastro-Intestinal cancer

For esophageal cancer several imaging studies are being performed including the evaluation of fiducials, MRI and 4DPET. Furthermore, we are evaluating a watch and wait policy for esophageal cancer. The first studies have been submitted. In 2015, all intended 788 patients with primary resectable gastric cancer were enrolled in the international, randomized, phase III CRITICS study. The results are published in the Lancet Oncology. We are reference center for hereditary diffuse gastric cancer

Mirte Muller PhD student Rebecca Louhanepessy PhD student Maartie Rohaan PhD student Annelot van Rossum PhD student Lisette Rozeman PhD student Izhar Salomon PhD student Emilia Sawicki PhD student Philip Schouten PhD student Robert Schouten PhD student Tesa Severson PhD student Tessa van Steenbruggen PhD student Linde van Veenendaal PhD student Marit Vermunt PhD student Sonia Vliek PhD student Anna van der Voort PhD student Leonie Voorwerk PhD student Berbel Ykema PhD student Michel Hillebrand Technical staff Matthiis Tibben Technical staff Marja Mergui-Roelvink Clinical trial manager

Sandra Adriaansz Nurse practitioner Marjolein Delfos Nurse practitioner i.o. Emmy Harms Nurse practitioner Peggy den Hartog-Lievaart Nurse practitioner

Jacoline van der Hek-van Essen Nurse practitioner

Yvonne Hilhorst Nurse practitioner Marjo Holtkamp Nurse practitioner Inge Kemper Nurse practitioner Maria Kuiper Nurse practitioner Elsbeth van der Laan Nurse practitioner

Nancy Lardenoije Nurse practitioner Anoesjka Lechner Nurse practitioner Judith Lijnsvelt Nurse practitioner i.o. Henk Mallo Nurse practitioner Suzanne Onderwater Nurse practitioner

Saskia Pulleman Nurse practitioner i.o. Jana van der Sar Nurse practitioner Lisette Saveur Nurse practitioner Margaret Schot Nurse practitioner Wilma Uyterlinde PhD Nurse practitioner

Marion Zimmerman Nurse practitioner i.o.

Selected publications

# SELECTED PUBLICATIONS DEPARTMENT BREAST AND OVARIAN CANCER

Van Driel WJ, Koole SN, Sikorska K, Schagen van Leeuwen JH, Schreuder HW, Hermans RH, de Hingh IH, van der Velden J, Arts HJ, Massuger LF, Aalbers AG, Verwaal VJ, Kieffer JM, Van de Vijver KK, van Tinteren H, Aaronson NK, Sonke GS. Hyperthermic intraperitoneal chemotherapy in ovarian cancer. N Engl J Med 2018;378:230-40 Van Ramshorst MS, van der Voort A, van Werkhoven ED, Mandjes IA, Kemper I, Dezentjé VO, Oving IM, Honkoop AH, Tick LW, van de Wouw AJ, Mandigers CM, van Warmerdam LJ, Wesseling J, Vrancken Peeters MT, Linn SC, Sonke GS. Neoadjuvant chemotherapy with or without anthracyclines in the presence of dual HER2 blockade for HER2-positive breast cancer (TRAIN-2): a multicentre, open label, randomised, phase 3 trial. Lancet Oncol 2018;19:1630-40

Van Rossum A, et al. Adjuvant dosedense doxorubicin-cyclophosphamide versus docetaxel-doxorubicincyclophosphamide for high-risk breast cancer: First results of the randomised MATADOR trial (BOOG 2004-04). Eur J Cancer 2018;102:40-48

#### SELECTED PUBLICATIONS DEPARTMENT GASTROENTEROLOGY

Cats A, Jansen EPM, van Grieken NCT, Sikorska K, Lind P, Nordsmark M, Meershoek-Klein Kranenbarg E, Boot H, Trip AK, Swellengrebel HAM, van Laarhoven HWM, Putter H, van Sandick JW, van Berge Henegouwen MI, Hartgrink HH, van Tinteren H, van de Velde CJH, Verheij M; CRITICS investigators. Chemotherapy versus chemoradiotherapy after surgery and preoperative chemotherapy for resectable gastric cancer (CRITICS): an international, open-label, randomised phase 3 trial. Lancet Oncol 2018;19:616-628

Rigter LS, Snaebjornsson P, Rosenberg EH, Atmodimedjo PN, Aleman BM, Ten Hoeve J, Geurts-Giele WR; PALGA group, van Ravesteyn TW, Hoeksel J, Meijer GA, Te Riele H, van Leeuwen FE, Dinjens WN, van Leerdam ME. Double somatic mutations in mismatch repair genes are frequent in colorectal cancer after Hodgkin's lymphoma treatment. Gut 2018;67:447-455

Rigter LS, Spaander MCW, Aleman BMP, Bisseling TM, Moons LM, Cats A, Lugtenburg PJ, Janus CPM, Petersen EJ, Roesink JM, van der Maazen RWM, Snaebjornsson P, Kuipers EJ, Bruno MJ, Dekker E, Meijer GA, de Boer JP, van Leeuwen FE, van Leerdam ME. High prevalence of advanced colorectal neoplasia and serrated polyposis syndrome in Hodgkin lymphoma survivors. Cancer 2018

# SELECTED PUBLICATIONS DEPARTMENT THORACIC ONCOLOGY

De Langen AJ, Jebbink M, Hashemi SMS, Kuiper JL, de Bruin-Visser J, Monkhorst K, Thunnissen E, Smit EF. Trastuzumab and paclitaxel in patients with EGFR mutated NSCLC that express HER2 after progression on EGFR TKI treatment. Br J Cancer 2018;119:558-564

Quispel-Janssen J, van der Noort V, de Vries JF, Zimmerman M, Lalezari F, Thunnissen E, Monkhorst K, Schouten R, Schunselaar L, Disselhorst M, Klomp H, Hartemink K, Burgers S, Buikhuisen W, Baas P. Programmed death 1 blockade with nivolumab in patients with recurrent malignant pleural mesothelioma. J Thorac Oncol 2018;13:1569-1576

Schunselaar LM, Quispel-Janssen JMMF, Kim Y, Alifrangis C, Zwart W, Baas P, Neefjes J. Chemical profiling of primary mesothelioma cultures defines subtypes with different expression profiles and clinical responses. Clin Cancer Res 2018;24:1761-1770

### SELECTED PUBLICATIONS DEPARTMENT CLINICAL PHARMACOLOGY

Groenland SL, van Nuland M, Verheijen RB, Schellens JHM, Beijnen JH, Huitema ADR, Steeghs N. Therapeutic drug monitoring of oral anti-hormonal drugs in oncology. Clin Pharmacokinet 2018

Henricks LM, Lunenburg CATC, de Man FM, Meulendijks D, Frederix GWJ, Kienhuis E. Creemers GJ. Baars A. Dezentjé VO, Imholz ALT, Jeurissen FJF, Portielje JEA, Jansen RLH, Hamberg P, Ten Tije AJ, Droogendijk HJ, Koopman M, Nieboer P, van de Poel MHW, Mandigers CMPW, Rosing H, Beijnen JH, van Werkhoven E, van Kuilenburg ABP, van Schaik RHN, Mathiissen RHJ, Swen JJ. Gelderblom H. Cats A. Guchelaar HJ. Schellens JHM, A cost analysis of upfront DPYD genotype-guided dose individualisation in fluoropyrimidinebased anticancer therapy. Eur J Cancer 2018;107:60-67

Verheijen RB, Yaqub MM, Sawicki E, van Tellingen O, Lammertsma AA, Nuijen B, Schellens JHM, Beijnen JH, Huitema ADR, Hendrikse NH, Steeghs N. Molecular imaging of PgP/BCRP inhibition at the blood brain barrier using elacridar and [11C]erlotinib PET. J Nucl Med 2018;59:973-979

# SELECTED PUBLICATIONS DEPARTMENT UROLOGIC ONCOLOGY

Cioni B, Nevedomskaya E, Melis MHM, van Burgsteden J, Stelloo S, Hodel E, Spinozzi D, de Jong J, van der Poel H, de Boer JP, Wessels LFA, Zwart W, Bergman AM. Loss of androgen receptor signaling in prostate cancerassociated fibroblasts (CAFs) promotes CCL2- and CXCL8-mediated cancer cell migration. Mol Oncol 2018;12:1308-1323

Groot HJ, Lubberts S, de Wit R, Witjes JA, Kerst JM, de Jong IJ, Groenewegen G, van den Eertwegh AJM, Poortmans PM, Klümpen HJ, van den Berg HA, Smilde TJ, Vanneste BGL, Aarts MJ, Incrocci L, van den Bergh ACM, Jóźwiak K, van den Belt-Dusebout AW, Horenblas S, Gietema JA, van Leeuwen FE, Schaapveld M. Risk of solid cancer after treatment of testicular germ cell cancer in the platinum era. J Clin Oncol 2018;36:2504-2513

Van Dijk N, Funt SA, Blank CU, Powles T, Rosenberg JE, van der Heijden MS. The cancer immunogram as a framework for personalized immunotherapy in urothelial cancer. Eur Urol 2018

### SELECTED PUBLICATIONS DEPARTMENT CLINICAL IMMUNOTHERAPY

Blank CU, Rozeman EA, Fanchi LF, Sikorska K, van de Wiel B, Kvistborg P, Krijgsman O, van den Braber M, Philips D, Broeks A, van Thienen JV, Mallo HA, Adriaansz S, Ter Meulen S, Pronk LM, Grijpink-Ongering LG, Bruining A, Gittelman RM, Warren S, van Tinteren H, Peeper DS, Haanen JBAG, van Akkooi ACJ, Schumacher TN. Neoadjuvant versus adjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma. Nat Med 2018;24:1655-1661

Geukes Foppen MH, Rozeman EA, van Wilpe S, Postma C, Snaebjornsson P, van Thienen JV, van Leerdam ME, van den Heuvel M, Blank CU, van Dieren J, Haanen JBAG. Immune checkpoint inhibition-related colitis: symptoms, endoscopic features, histology and response to management. ESMO Open 2018:3:e000278

Haanen JBAG, Carbonnel F, Robert C, Kerr KM, Peters S, Larkin J, Jordan K; ESMO Guidelines Committee. Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2018;29(Supplement 4):iv264-iv266 (HDGC) families. The results of surveillance gastroscopies (2005-2015) in non- CDH1 mutation carriers are described in a cohort study.

# Lower Gastro-Intestinal cancer

In collaboration with the Erasmus MC, Rotterdam, we are responsible for the monitoring and evaluation of the Dutch population-based CRC screening program (www.rivm.nl). Several data have been published including quality aspects and yield of the Dutch program and influence on the CRC stage distribution. Furthermore, we are a Dutch NFU expert center for hereditary GI cancer syndromes. Several research projects are going on in high-risk groups including patients with hereditary CRC syndromes, serrated polyposis syndrome and Hodgkin Lymphoma survivors (MLDS grant). Based on the outcome we are now adapting the guidelines. Several studies focus on DPD activity. Genotype-guided dosing resulted in adequate systemic drug exposure and improved safety and was costeffective. We are involved in translational and clinical studies with targeted and immunotherapy for CRC. The first data about neo-adjuvant Immunotherapy for colon cancer, MMR proficient and deficient has been presented at the ESMO 2018. Remarkable is the fact that a (near) complete response was seen in all MMR deficient colon cancers. Our department has focused on immune related colitis and described endoscopic and histologic findings in correlation with complaints in patients treated with immunotherapy.

# Neuroendocrine tumors (NET)

In close collaboration with the UMCU Utrecht, we are a ENETs center of excellence and a Dutch NFU GEP-NET expertise center. As from March 2016, with the start of PRRT we now have all techniques to diagnose and treat patients with a GEP-NET. Several research projects are going such as exploring new blood biomarkers in patients with metastatic NET as well as GEP-NEC.

# THORACIC ONCOLOGY

Paul Baas, Sjaak Burgers, Wieneke Buikhuisen, Maria Disselhorst, Wanda de Kanter, Joop de Langen, Egbert Smit, Willemijn Theelen, Jose Belderbos, Joost Knegjens, Houke Klomp, Koen Hartemink, Kim Monkhorst, Laurel Schunselaar, Annegien Broeks

# Background and objectives

The Department of Thoracic Oncology stands for optimizing patient care, performing translation research and introducing new clinical therapy. In 2018 most attention has focused on nonsmall cell lung cancer and immunotherapy.

# Immune checkpoint inhibition

Further developments in the application of immune therapy has led to the implementation of immuno-oncology (IO) treatment together with chemotherapy in the 1th line setting in lung cancer. As one of the first in the Netherlands we have been able to start this combination treatment and disseminate it out to other institutions. New, window of opportunity, studies investigate the combination of IO agents before start of surgery or chemo-radiation in patients with locally advanced stages. For the translational part much attention has been given to the pharmacodynamics and kinetics of IO compounds. Collaboration with the VUmc is established were 18F of 89ZR labeled monoclonal antibodies against PD1 or PD-L1 compounds have been tested.

# Malignant Pleural Mesothelioma (MPM)

In 2018 we initiated the DENIM phase III study in which the effect of disease response of vaccination with dendritic cells is compared to observation after chemotherapy in first line. This study is performed in close collaboration with Erasmus University in Rotterdam. Our INITIATE study (Anti PDL1 + anti CTL4) in patients with recurrent mesothelioma is in press (Lancet Respiratory Medicine). The primary short-term cultures for tumor cells in the PROOF study obtained from pleural fluid has been continued to test for optimal chemotherapy regiments when patients have recurrence of the disease. The Mesoscape Database (ETOP) has now recruited almost 500 patients and analysis are ongoing.

Neuro endocrine tumors (ENETS center of excellence) We have continued to focus on the diagnosis and treatment of patients with neuro endocrine tumors. Recently, a phase 2 study with a PD1 inhibitor in patient with low grade metastatic neuro endocrine tumors (PDR001) has been finalized. Other studies like the Phase 3 with Lanreotide versus placebo has now been completed.

# **Targeted agents**

We have expanded the panel of gene sequencing already in 2017 and have been able to enter a number of patients in small studies for orphan diseases like met exon 14 skipping deletions, HER2 amplification, ROS1 or RET mutation. We are one of the referral centers in the Netherlands for patients with special mutations. Within the ETOP (European Thoracic Oncology Platform) studies have been initiated for instant looking at the alert study testing Alectinib in patients with red rearrange tumor. Finally, we have entered over 200 patients in the national LEMA study (Early Molecular Assessment) where mutational status is analyzed in all patients presenting with adenocarcinoma.

### Small Cell Lung Cancer

A randomized study with lurbenectedin (a tubulin inhibiting agent) with chemotherapy versus chemotherapy alone in second line has finished accrual.

# **Smoking Cessation**

There is an active involvement of a member of our group (W de Kanter), who is leading in national and international committees (IASLC). This allows us to interact with politicians to defer from tobacco lobbyists. A criminal law suit has been initiated in the Netherlands to force the prosecution to file charges against the tobacco companies. However the amount of attention given to this action has led to great awareness. We currently focus on prevention of smoking in adolescents.

# CLINICAL PHARMACOLOGY

Neeltje Steeghs, Frans Opdam, Serena Marchetti, Marloes van Dongen, Jan Schellens, Bastiaan Nuijen, Hilde Rosing, Alwin Huitema, Jos Beijnen

Research activities of the department of Clinical Pharmacology (Steeghs), the department of Pharmacy & Pharmacology (Beijnen) and the division of Pharmacology (group Beijnen/ Huitema) are closely integrated. Currently, we perform 48 phase I/II, pharmacological and proof of concept studies. We recruited 216 new patients this year. In 2018 the main themes of our own investigator-initiated research activities were the personalized dosing of oral anti-cancer drugs, microdosing bioavailability studies and genomic profile selected Phase I/II studies.

# Personalized dosing of oral anti-cancer drugs

Oral targeted anti-cancer agents have a complex pharmacological profile, narrow therapeutic index, and a marked pharmacokinetic interpatient variability. Individual patients have a high probability to be either underdosed (>30%) or overdosed (>15%). Therapeutic drug monitoring (TDM), personalized dosing based on measured drug levels, is a well-established method for personalized dosing of drugs. We have started a Therapeutic Drug Monitoring (TDM) project to study and implement TDM for all cancer patients in the country. Over 250 patients have been included so far and were dosed based on their individual drug levels.

#### Microdosing bioavailability studies

Bioavailability is a measurement of the rate and extent to which the active ingredient or active moiety of a drug is absorbed, reaches the systemic circulation and becomes available at the site of action. The EMA and FDA increasingly request absolute oral bioavailability (ABA) data in humans for new chemical entities. It is ideally studied using a microtracer approach. This can be done by administering a therapeutic dose of the drug via the non-IV route, after which a microtracer (either



radiolabelled drug or stable isotope labeled (SIL) drug) is given via the IV route at 1/100<sup>th</sup> of therapeutic dose or less than 100  $\mu$ g at the expected T<sub>max</sub>. We have vast experience with clinical pharmacokinetic trials to investigate the ABA and ADME properties of drugs.

# Genomic profile selected Phase I/II studies

Based on preclinical work done in the lab of Rene Bernards, three clinical trials have been initiated with the combination of pan-HER and MEK inhibitors in KRAS mutant and PIK3CA wildtype lung cancer, pancreatic cancer and colorectal cancer. We initiated a phase II study with AZD1775 in combination with carboplatin for TP53 mutated platinum refractory ovarian cancer patients. Further, we initiated a multinational study (MoTriColor consortium) in which we screen colorectal cancer patient for newly molecular defined subtypes and treat them with specific targeted treatments. And we initiated the Basket of Basket trial within the Cancer Core Europe Consortium to do the same in a pancancer population.

# UROLOGIC ONCOLOGY

André Bergman, Martijn Kerst, Michiel van der Heijden, Vincent Dezentje, Jeantine de Feijter, Elsbeth van der Laan, Anoesjka Lechner, Suzanne van der Kolk, Helga Schrijver, Helga Hoogenhout, Rebecca Louhanepessy, Sushil Badrising, Marit Vermunt, Nick van Dijk, Jeroen van Dorp, Hielke-Martijn de Vries

#### **Background and objectives**

The urologic oncology group is dedicated to the treatment of prostate, bladder, testicular and penile cancer. This subdivision of the division of Medical Oncology aims to contribute to international trials and to play a leading role in initiation of national trials and translational research.

# Prostate cancer

Multiple clinical trials in metastasized castration resistant prostate cancer (mCRPC) patients were open for recruitment in 2018, both investigator-initiated and industry-sponsored trials. Investigator-initiated trials included the OSTRICh study, randomizing patients between cabazitaxel and abiraterone or enzalutamide as a second line treatment. Biomarker studies include serum levels of cytokines involved in neutrophil homeostasis and analysis of cfDNA. In the PRESTO study, biopsies of metastatic sites are taken prior to enzalutamide treatment. In the biopsies, binding profiles of the androgen receptor to the chromatin are assessed, which may hold biomarker properties as a predictor of response to enzalutamide. The ROTOR registry aimed to assess the course of pain in a non-study population treated with radium-223. This year, the study was completed after including the 300<sup>th</sup> patient. Biomarker studies include serum levels of indicators of osteoblasts and osteoclasts activity, levels of osteoclasts precursors and chemical markers of bone metabolism and inflammation.

# Bladder cancer

# Activity of checkpoint inhibitors in urothelial cancer

An important focus of current research is to bring immunotherapeutics to the pre-operative setting. In January 2018, we have started the NABUCCO trial, in which locoregionally advanced bladder cancer patients are treated with preoperative combination immunotherapy (ipilimumab / nivolumab). This study will not only provide important clinical data, but will also provide an important biobank of pre- and on-treatment bladder cancer tissue. Using this biobank, we will explore the effects of combined inhibition of the PD1/PDL1 axis and CTLA4 on the tumor-immune microenvironment.

# Characterization of urothelial cancer in the neo-adjuvant setting.

A large cohort of bladder cancers treated with pre-operative platinum-based chemotherapy is molecularly analyzed. Previously we found an unexpected association between ERBB2 mutations and response to chemotherapy. Our group participated in a large international cohort, to test the association between molecular subtypes, chemotherapy response and prognosis in muscle-invasive bladder cancer. Results showed that some tumors assume an immune-infiltrated expression pattern. We will further explore the immunological effects of platinum-based chemotherapy on the bladder cancer microenvironment.

# Testicular cancer

The AVL multidisciplinary testicular cancer group (Expert Centre for rare urological diseases) has an ongoing focus on patient treatment, including salvage chemotherapy and robotical laparoscopic surgery and on studies on long-term effects of platinum-containing therapy (cardio-vascular risks and second tumors). In addition, the group works on introducing the sentinal-node procedure in Clinical Stage I testicular cancer

#### Penile cancer

In 2018, we initiated the PERICLES study. In this study, advanced penile cancer patients are treated with atezolizumab (anti-PDL1). A subset of patients, having loco-regional lymph node metastases, will additionally be treated with radiotherapy.

# **CLINICAL IMMUNOTHERAPY**

John Haanen, Christian Blank, Hans van Thienen, Sofie Wilgenhof, Sandra Adriaansz, Henk Mallo, Elsbeth van der Laan, Wilma Uyterlinde, Judith Lijnsveld, Marieke Groot-Obbink, Marnix Geukes Foppen, Lisette Rozeman, Irene Reijers, Maartje Rohaan, Annette Compter, Maaike Schuur, Dieta Brandsma

# **Background and Objectives**

The clinical immuno- and targeted therapy group is primarily involved in the treatment of melanoma and renal cell carcinoma patients. Translational immunotherapy research focuses on neo-adjuvant targeted and immunotherapies, on dissection of immunological changes upon immune checkpoint inhibition in combination with targeted agents, combination with local therapy (RFA, oncolytic viruses) and on adoptive cellular therapies, such as T-cell receptor gene therapy and treatment with tumour-infiltrating lymphocytes (TIL) for melanoma and DNA vaccination studies for HPV-related squamous cell cancers. For renal cell cancer our group implementing or participating in trials to improve the treatment with small molecule receptor tyrosine kinase inhibitors (RTKI), combinations of checkpoint inhibitors, and novel immunological approaches using combination therapy with immune checkpoint inhibition.

# Clinical adoptive T cell transfer program

Based on promising phase I/II feasibility data gathered at our institute and ongoing clinical research in few other centres in the world, we have initiated a European randomized controlled phase III trial, comparing TIL therapy to ipilimumab as 1<sup>st</sup> or 2<sup>nd</sup> line treatment for patients with stage IV melanoma. This trial is a collaborative effort with the Herlev hospital in Copenhagen, Denmark, and for TIL production with Sanguin blood transfusion services in Amsterdam. The primary objective is improvement in PFS at 6 months. Starting in October 2014, between both institutes a total of 67 patients have been randomized so far. It is the first randomized phase 3 TIL trial worldwide. The vast majority of patients that have been enrolled in this trial have failed 1<sup>st</sup> line anti-PD-1 treatment. Currently, there is an unmet medical need for patients who have failed anti-PD-1 treatment as the objective response rate of ipilimumab following anti-PD-1 is only 12%. We received financial support from the Dutch Cancer Society to open 2 additional clinical centres to increase accrual. Between 2011 and 2018 we have enrolled 12 patients in a phase I/II trial with T cell receptor (TCR) gene therapy. This trial was one of the first world-wide studying the use of TCR gene modified T cells for the treatment of cancer. HLA-A\*0201 positive patients with MART-1 expressing metastatic melanoma, including uveal melanoma and no further treatment options, are infused with genetically modified autologous peripheral blood T lymphocytes. These modified cells express a TCR specific for the melanocyte differentiation antigen MART-1 presented by HLA-A\*0201, expressed in 80% of melanomas. The study was stopped in November 2018 and results will be published in 2019.

#### Immune checkpoint inhibition in melanoma

Anti-CTLA4 (ipilimumab) and anti-PD-1 (nivolumab, pembrolizumab) monotherapies, as well as the combination of ipilimumab plus nivolumab have become standard therapies for metastatic melanoma in the Netherlands. In 2018 both nivolumab and pembrolizumab were approved for adjuvant therapy in stage III melanoma. We published this year the data from our phase I study (Opacin) comparing neoadjuvant versus adjuvant ipilimumab + nivolumab for patients with stage IIIB/C melanoma. We found a high frequency of major pathologic responses after neoadjuvant therapy (pRR, 78%), a stronger expansion of tumor-resident T cell clones in the peripheral blood as compared to adjuvant treatment, and none of the responder relapsing (median follow-up 30 months). However, this high efficacy came at the cost of a grade 3/4 toxicity rate of 90%, hampering a broader application. This has led to the subsequent OpACIN-neo trial, testing two (instead of four) courses ipilimumab + nivolumab using three different schedules. At ESMO 2018 Congress, we presented the results from OpACINneo, identifying an equally effective schedule of ipilimumab plus nivolumab (77% pRR), but that was better tolerated (20% grade 3/4 toxicities). Once again only in the group of non-

responders relapse have been observed (with a short FU time of 8.3 months). The subsequent PRADO extension cohort aims to confirm the observed response and toxicities in 100 patients and addresses whether a complete lymph node dissection can be omitted in patients achieving a major pathologic response after the neoadjuvant immunotherapy. In addition, we presented the first data from the ImPemBra trial at ESMO 2018 Congress. Based on mouse models (see section IV, Prof Blank) a feasibility phase I/II trial (Impembra) has been started combining anti-PD1 (pembrolizumab) with short-term combination targeted therapy (dabrafenib + trametinib) in BRAF V600 mutated metastatic melanoma patients. This intermittent targeted therapy in addition to PD-1 blockade was better tolerated than continuous combinations, and shall be tested in a subsequent neoadjuvant study for melanoma patients that have a unfavourable baseline biomarker profile, and are thus unlikely respond to the neoadjuvant ipilimumab + nivolumab combination.



Jos Beijnen

Head Division Pharmacology



Harm van Tinteren Head Division Biometrics

DIVISION PHARMACOLOGY

Jos Beijnen PhD Group leader Alwin Huitema PhD Academic staff Bastiaan Nuijen PhD Academic staff Hilde Rosing PhD Academic staff Joost van den Berg PhD Academic staff Cynthia Nijenhuis PhD Academic staff Thomas Dorlo PhD Academic staff Jeroen Hendrikx PhD Academic staff Bart Jacobs PhD Hospital pharmacistin-training

Lotte van Andel MSc PhD Post-doc Hedvig Arnamo MSc PhD student Rene Boosman MSc PhD student Maaike Bruin MSc PhD student Maarten van Eijk MSc PhD student Marie-Rose Flint-Crombag MSc PhD student

Steffie Groenland MSc PhD student Julie Jansen MSc PhD student Maikel Herbrink MSc PhD student Eveline van Kampen MSc PhD student Jonathan Knikman MSc PhD student Sven de Krou MSc PhD student Laura Kuijsten MSc PhD student Merel van Nuland MSc PhD student Jeroen Roosendaal MSc PhD student Ignace Roseboom MSc PhD student Luka Verrest MSc PhD student

### Aurelia de Vries Schultink MSc PhD student Michel Hillebrand Technical staff Luc Lucas Technical staff Matthiis Tibben Technical staff Abadi Gebretensae Technical staff Niels de Vries Technical staff Bas Thiisen Technical staff Lianda Nan Technical staff Joke Beukers Technical staff Nikkie Venekamp Technical staff Ciska Koopman Technical staff Joke Schol Technical staff Maaike Van Zon Technical staff Rhianne Voodd MSc Technical staff Saskia Scheij Technical staff

# DIVISION BIOMETRICS DEPARTMENT

Harm van Tinteren PhD Group leader Vincent van der Noort PhD Academic staff

Karolina Sikorska PhD Academic staff Marta Lopez Yurda PhD Academic staff Erik van Werkhoven MSc Academic staff Merel Abbenhuis Technical staff Aziza Absalah Technical staff Lisette Al Technical staff Rebecca Astill PhD Technical staff Danny Baars Technical staff Nathalie Barbier Technical staff Marieke van de Belt Technical staff Frauwkie Bessels Technical staff Esther de Boer Technical staff Mandy Boer Technical staff Samira van den Bogaard Technical staff Suzanne Bongers Technical staff Henk Botma Technical staff Tineke Bruinsma Technical staff Heleen Bussing Technical staff Ruth Cohen Technical staff Jacques Craenmehr Technical staff Antonios Daletzakis Technical staff Sirith Douma Technical staff Brigitte Dufournij Technical staff Renske Fles Technical staff Lindsay Grijpink Technical staff Yvonne Groot Technical staff Mariolein van den Haak MSc Technical staff

Florianne Hafkamp Technical staff Patricia Hagen Technical staff **Christiane Hagenaars** Technical staff Song-Hieng Hau MSc Technical staff Inlanda Hes Technical staff Annelies Hiemstra Technical staff Floor Hogenboom Technical staff Nienke Hooghiemstra Technical staff Eduard Ivanov Technical staff Karin Janmaat Technical staff Marissa Jansen Technical staff Nicky Janssens Technical staff Abi Javakkumaran Technical staff Gerda de Jong Technical staff Josien Kant Technical staff Karin Kaptiin Technical staff Astrid Keijser Technical staff Nawel Khelil Technical staff Marieke de Kock Technical staff Danja Koersvelt Technical staff Lies Kolmschate Technical staff Tobias Koster Technical staff Daan Latuihamallo Technical staff

# Division of Pharmacology & Biometrics

The division of Pharmacology & Biometrics was founded in 2016. In 2017 and 2018 we organized a symposium to exchange information and tighten mutual cohesion between the Pharmacology and Biometrics departments. Drug research is one of the major themes and what connects us. Our research programs in *Pharmacology* focus on drug manufacturing including cellular immunotherapies, bioanalysis and pharmacokinetics of (anticancer) drugs for both preclinical and clinical projects and in *Biometrics* we focus on collection of clinical data and interpretation.

# PHARMACOLOGY

# Drug manufacturing

We support >20 mono- and (international) multi-center clinical trials (*e.g.* DRUP, POSEIDON, SUBITO, SENSOR) with drug manufacturing, packaging and distribution. In-house manufacturing of vorinostat capsules and oral solid dispersion tablet formulations of docetaxel (ModraDoc006) and paclitaxel (ModraPac005) is performed for ongoing clinical studies. Research to develop and/or to improve oral formulations of anticancer agents is continued by the introduction in 2019 of a new technique: hot melt extrusion. The BioTherapeutics Unit (BTU; headed by pharmacist Joost van den Berg) is the biotech facility from the Antoni van Leeuwenhoek Pharmacy where biotechnological products are developed and manufactured for clinical trials. In 2018, we continued the production of Tumor Infiltrating Lymphocytes (TIL) infusions for metastatic melanoma patients treated in the first multi-center phase III trial with TIL therapy in the world.

BTU has previously produced DNA vaccines for HPV induced malignancies. The second generation of vaccines are currently tested by the Gynaecology department (prof. G. Kenter), and promising results have been observed.

In parallel to current clinical production activities, BTU is preparing itself for future clinical trials. We are aiming to apply TIL therapy in other malignancies. In our collaboration with NEON therapeutics (Cambridge, MA), we develop new T cell therapies directed against patient specific neo-antigens. For this collaboration, large scale optimization runs are currently ongoing. Submission of the Investigational Medicinal Product Dossier (IMPD) is scheduled for mid 2019.

The pharmacy holds a governmental GMP (Good Manufacturing Practice) license for these manufacturing activities of pharmaceutical products.

# Bioanalytical method development and implementation in pharmacokinetic studies

In 2018, the bioanalytical laboratory of the department of Pharmacy & Pharmacology continued to support clinical and pre-clinical pharmaceutical research. In collaboration with the Alfred Schinkel group, we studied the pharmacokinetic interactions of several anticancer drugs with multidrug efflux transporters and the multidrug metabolizing enzymes in vitro transport assays and knockout and transgenic mouse models. Plasma pharmacokinetics and tissue distribution of capecitabine, irinotecan, vinorelbine, ribociclib, palbociclib, abamaciclib and galunisertib were measured. Studies are still ongoing, however, preliminary results from these studies provide lots of insights on tissue accumulation, toxicity and systemic exposure, important information for the clinical application of these drugs. For all drugs we have developed and validated bioanalytical assays based on the hyphenated technique of liquid chromatography coupled to tandem mass spectrometry detection (LC-MS/MS).

The mammalian target of rapamycin (mTOR) inhibitor everolimus is used in the treatment of breast cancer, neuroendocrine tumors, and renal cancer. We developed and investigated less invasive sampling techniques, like Dried Blood Spots (DBS) and Volumetric Absorptive Microsampling (VAMS) could facilitate pharmacokinetic studies and personalized dosing based on whole blood concentrations, however, the expected advantage of VAMS over DBS sampling could not be demonstrated. To support a prospective, randomized, pharmacokinetic, crossover trial comparing everolimus 10 mg once daily with 5 mg twice daily, venous whole blood samples were collected and analyzed. The approved 10 mg once-daily dose is associated with considerable adverse effects and it has been suggested that these are associated with the maximum concentration of everolimus. We demonstrated that switching from a once-daily to a twice-daily everolimus dose schedule reduces maximum concentration without negatively impacting the minimum concentration or the area under the plasma concentration-time curve.

SGI-110, also known as guadecitabine, is currently being investigated in a mass balance study. SGI-110 is a prodrug of decitabine, a DNA methyltransferase inhibitor. After cellular uptake and intracellular metabolic activation to decitabine triphosphate, it is incorporated into the DNA where it traps DNA methyltransferases, resulting in reduced 5-methyl-2'deoxycytidine (5mdC) DNA content. To support the mass balance study we have developed and validated LC-MS/MS assays for the quantification of SGI-110 and decitabine in plasma, whole blood and urine. To investigate the incorporation and its effect on DNA methylation, methods for the total intracellular decitabine triphosphate concentrations, as well as decitabine and 5mdC DNA incorporation relative to 2'-deoxycytidine (2dC) DNA content were developed. A total number of 5 patients were treated in the mass balance study and results indicate that SGI-110 is rapidly metabolized and excreted in urine. The metabolic pathway of SGI-110 has been elucidated and new metabolites have been identified. Moreover, a metabolite profiling study was performed with lurbinectedin (PM01183), a synthetic analogue of the marine derived drug trabectedin (Yondelis®). For this compound faeces is the main route of excretion with a mean total recovery of 91.4 (±11.9)%. The majority of the identities of

Merel Latuihamallo Technical staff Suzanne Latuihamallo Technical staff Michiel de Looii Technical staff Marianne Mahn MSc Technical staff Ingrid Mandjes MSc Technical staff Else Meijer Technical staff Nina Michielsen Technical staff Gordana Milinovic Technical staff Lindsey Minnaard Technical staff Pietie Muller Technical staff **Rick Muusers** Technical staff Gabry van Netten Technical staff Ruud van der Noll Technical staff Carla Noordhout Technical staff Elvira Nuiiten Technical staff **Caroline Pauwels** Technical staff Kenneth Pengel PhD Technical staff Patricia Plasier Technical staff Loes Pronk MSc Technical staff Anneke Reinders Technical staff Jolanda Remmelzwaal Technical staff Valerie Rhemrey Technical staff Vénice van Rhiin Technical staff Sanne van Roekel Technical staff Jacob Rousseau Technical staff Lydia Ruiter Technical staff Aysegűl Sari Technical staff Emmie van Schaffelaar Technical staff Mariëtte Schrier PhD Technical staff Helga Schriiver Technical staff Ernst Smienk Technical staff Carine Sondermeijer Technical staff Michiel Sondermeijer Technical staff Roos Steenhuis Technical staff Dax Steins Technical staff Suzan Stijger Technical staff Adriana Thano Technical staff Loraine Thompson Technical staff Alex Torres Acosta Technical staff Adriaan Touw Technical staff Ludy Valkenet MD Technical staff Steven Vanhoutvin PhD Technical staff Tony van de Velde Technical staff Maarten Venema Technical staff Marrit Vermeulen Technical staff Michel Vergouwen Technical staff Joëlle Vergroesen Technical staff Carla Vianen Technical staff Jeltje de Vries Technical staff Marioliin de Waal MSc Technical staff Anneke Wals Technical staff Rosa Wartena Technical staff Tatjana Westphal Technical staff Lidwina Wever Technical staff Yvonne Wiinands Technical staff FIs Willemse Technical staff Janna Winnubst Technical staff Dayenne de Wit Technical staff Regina Zucker Technical staff

# Selected publications

#### DIVISION PHARMACOLOGY

Herbrink M, Groenland SL, Huitema ADR, Schellens JHM, Beijnen JH, Steeghs N, Nuijen B. Solubility and bioavailability improvement of pazopanib hydrochloride. Int J Pharm. 2018;544(1):181-190. Janssen JM, Zwaan CM, Schellens JHM, Beijnen JH, Huitema ADR. Clinical trial simulations in paediatric oncology: A feasibility study from the Innovative Therapies for Children with Cancer Consortium. Eur J Cancer. 2017;85:78-85.

Van Andel L, Rosing H, Tibben MM, Lucas L, Lubomirov R, Avilés P, Francesch A, Fudio S, Gebretensae A, Hillebrand MJX, Schellens JHM, Beijnen JH. Metabolite profiling of the novel anti-cancer agent, plitidepsin, in urine and faeces in cancer patients after administration of (14) C-plitidepsin. Cancer Chemother Pharmacol. 2018;82:441-455.

Rohaan MW, van den Berg JH, Kvistborg P, Haanen JBAG. Adoptive transfer of tumor-infiltrating lymphocytes in melanoma: a viable treatment option. J Immunother Cancer. 2018;6:102.

#### **BIOMETRICS DEPARTMENT**

Brok J, Lopez-Yurda M, Tinteren HV, Treger TD, Furtwngler R, Graf N, Bergeron C, van den Heuvel-Eibrink MM, Pritchard-Jones K, Olsen E, de Camargo B, Verschuur A, Spreafico F. Relapse of Wilms' tumour and detection methods: a retrospective analysis of the 2001 Renal Tumour Study Group-International Society of Paediatric Oncology Wilms' tumour protocol database. Lancet Oncol. 2018;19(8); 1072-1081.

Cats A, Jansen EPM, van Grieken NCT, Sikorska K, Lind P, Nordsmark M, et al. Chemotherapy versus chemoradiotherapy after surgery and preoperative chemotherapy for resectable gastric cancer (critics): An international, open-label, randomised phase 3 trial. Lancet Oncol. 2018;19(5):616-28

De Ruysscher D, Dingemans AC, Praag J, Belderbos J, Tissing-Tan C, Herder J, Haitjema T, Ubbels F, Lagerwaard F, El Sharouni SY, Stigt JA, Smit E, van Tinteren H, van der Noort V, Groen HJM. Prophylactic Cranial Irradiation Versus Observation in Radically Treated Stage III Non-Small-Cell Lung Cancer: A Randomized Phase III NVALT-11/ DLCRG-02 Study. J Clin Oncol. 2018:10;36(23):2366-2377

Van Ramshorst MS, van der Voort A, van Werkhoven ED, Mandjes IA, Kemper I, Dezentjé VO, Oving IM, Honkoop AH, Tick LW, van de Wouw AJ, Mandigers CM, van Warmerdam LJ, Wesseling JP, Vrancken MJ, Linn SC, Sonke GS. Neoadjuvant chemotherapy with or without anthracyclines in the presence of dual HER2 blockade for HER2-positive breast cancer (TRAIN-2): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2018;19(12):1630-1640 the metabolites have been elucidated. It was found that the drug undergoes de-alkylation (demethylation), oxidation, aliphatic ring-opening, and loss of water. The chemical formula of several metabolites were confirmed by high resolution and accurate mass spectrometry analysis.

Fluoropyrimidines (capecitabine, 5-fluoro-uracil) can result in severe toxicity, often due to the reduced activity of the metabolic enzyme dihydropyrimidine dehydrogenase (DPD). This is mostly caused by genetic variants in the gene encoding for DPD (DPYD). We have performed the bioanalysis for a multicenter prospective study in which more than 1,000 patients were included to investigate the effect of prospective screening for the four most relevant DPYD variants on patient safety and subsequent DPYD genotype-guided dose individualization in daily clinical care. Prospective DPYD genotyping was feasible in routine clinical practice, and *DPYD* genotype-based dose reductions improved patient safety. To further improve fluoropyrimidine treatment, the LC-MS/MS bioanalysis for a study to determine the effect of food intake on uracil and dihydrouracil plasma levels was performed. These levels are a promising marker for DPD activity and for individualizing fluoropyrimidine anticancer therapy and might be used instead of genotyping. Uridine plasma levels showed curves with similar patterns as for uracil. It was shown that both uracil and dihydrouracil levels were higher in fasting state than in fed state. This is hypothesized to be an direct effect of uridine plasma levels, which were previously shown to be elevated in fasting state and reduced after intake of food. These findings show that, when assessing plasma uracil and dihydrouracil levels for adaptive fluoropyrimidine dosing in clinical practice, sampling should be done after overnight fasting to avoid bias caused by circadian rhythm and food effects. Our therapeutic drug monitoring (TDM) service for the optimization of drug treatment has been extended with antihormonal drugs: abiraterone, its active metabolite  $\Delta(4)$ abiraterone, anastrozole, bicalutamide, endoxifen, enzalutamide and its active metabolite N-desmethyl enzalutamide, and exemestane. This year we have received more than 5,000 samples for analysis. New state-of-the-art LC-MS/MS equipment is installed in 2019 including a triple Q-TOF instrument (figure 1).

# Pharmacokinetic and Pharmacodynamics (PK/PD) modelling and simulation

The modelling and simulation group of the department of Pharmacy & Pharmacology maintains a high performance computational server, part of the NKI Research HPC facility, dedicated to PK/PD modelling and simulation purposes. The group develops modelling methodologies to relate drug exposure to diverse measures of treatment outcome for both toxicity and efficacy. PK/PD modelling and simulation has been applied to optimize therapy of approved anticancer agents and novel agents used in clinical trials. This research focussed mainly on PK and PD in special patient populations typically underrepresented in clinical trials. The number of elderly treated with anticancer agents is increasing and, therefore, it is of importance to study the impact of older age on the PK and PD of anticancer agents. For paclitaxel it was shown that older age does not have a relevant effect on PK. For pediatric patients we have identified the need for dose adjustments for several compounds, which led in 2018 to the evaluation a novel pediatric model-based dosing regimen for the repurposed anticancer

PI3K/Akt inhibitor miltefosine. Furthermore, the effects of pregnancy on the PK of several cytotoxic agent have been explored, in collaboration with the group of Frédéric Amant. A semi-mechanistic physiologically-based PK (PBPK) framework to predict the effects of pregnancy on the PK of these agents based on known physiological changes and dynamics during pregnancy has been developed and is currently validated.

Most kinase inhibitors have a narrow therapeutic index, however, the currently approved dosing paradigm is a "onesize-fits-all" approach. We implemented TDM for these drugs in clinical practice, where plasma concentrations are routinely measured and reported to the treating physician together with a clinical pharmacological review and dosing advice. In 2018 this program was expanded to 33 approved oral anticancer agents including some active metabolites. In this program we reported patients with severe toxicity on the standard dose of pazopanib who could safely and effectively be treated with pazopanib with a up to 8-fold lower dose based on measured plasma levels. Furthermore, it has been shown that elderly treated with kinase inhibitors do not exhibit relevantly higher plasma concentrations or required lower dose intensity. Our program on treatment optimization of the repurposed anticancer PI3K/Akt inhibitor miltefosine for the neglected tropical parasitic disease leishmaniasis has been largely extended, with various clinical PK/PD studies initiated in 2018 in India, Bangladesh, Sudan and Kenya, funded partially through H2O2O.

# BIOMETRICS

The Biometrics Department serves as the medical data center of the institute and provides the infrastructure for clinical research through biostatistical support, centralized patient data collection and documentation, data processing and coordinated administration and monitoring of clinical trials. The statisticians and project managers collaborate in clinical research projects both within the institute and in national and international multicenter studies. Working procedures follow Good Clinical Practice and reporting and data sharing are in compliance with National and International laws and guidelines.

### **Tumor registries**

The tumor registry is responsible for completing and maintaining three important registries for the institute. Since 1977, the department maintains an electronic Tumor Register containing information on patients visiting the hospital with benign tumors, pre-malignant and malignant tumors. Depending on the clinical involvement at the hospital with respect to the diagnosis and therapy of the tumor, the number of items collected ranges from minimal to very extended. From July 2017 until July 2018 about 10.049 tumors are added to the full register. This database is a valuable source for research and contains now almost 250.000 records. A selection of cases of about 3.500 tumors, of people who have been diagnosed and treated primarily in the Netherlands Cancer Institute, is sent to the National Cancer Registry at regular intervals.

A second series of registries belong to the category of quality registers. Most of these registries are developed by the Dutch Institute for Clinical Auditing (DICA). DICA aims at creating valid monitoring systems for quality in healthcare by collecting a fixed set of items of interest per area over time. The system is set up to continuously auditing quality of care through online benchmarking taking patient- and disease characteristics into account. Currently, the tumor registration group participates in audits for breast cancer (NBCA), colorectal cancer (DSCA), upper gastro-intestinal cancer (DUCA), lung surgery (DLSA) and lung radiotherapy (DLRA), melanoma treatment (DMTR), gynecologic cancer (DGOA), liver cancer (DHBA) and head and neck cancer (DHNA), an implant registry (DBIR) and a prostate cancer registry (ProZib). In the period July 2017- June 2018 almost 2.300 patients were registered for this purpose and the demand for new registers continues to increase. A third registry, starting from July 2015 is the Landelijke Basisregistratie Ziekenhuiszorg (LBZ). This is a registry of medical, administrative and financial data of patients at the outpatient clinic, the day care department or patients who have been hospitalized. Key aspects are the use of ICD-10, an international coding system for diagnosis, and a standardized list of medical activities. In 2018, 11.388 patients were added to this register.

# **Clinical studies and services**

The Biometrics Department provides logistic support for clinical trials performed in and by the institute. Clinical Project Managers or Clinical Research Associates facilitate the development of protocols and submission to Medical Research-Ethics Committee (MREC) and coordinate the projects. Local data managers facilitate the initiation of studies and perform the registration of pre-screening, screening and entry of patients into clinical trials. They perform drug resupplies and are the source of information with regard to clinical trials in general. Central data management designs the Case Record Forms an takes care of the quality of the central data bases of investigator initiated studies and monitors ensure that the clinical trials are conducted, recorded, and reported in accordance with the protocol, Standard Operating Procedures (SOPs), Good Clinical Practice (GCP) and the applicable regulatory requirement(s). In 2018 an overall Quality Management System was delivered, based in ICH-GCP(R2) and published on the internal document management system.

The number of studies – approved according to the Medical Research Involving Human Subjects Act (WMO) – open for patient inclusion over the past 5 years is ranging between 230 and 250, while the number of patients registered still increases. About one in every 5 patients who receives treatment in the AVL participates in WMO-studies.

# Methodological support to national and international clinical trials

After the successful completion of the TRAIN and TRAIN-2 studies, the research program to investigate possible deescalation of neoadjuvant chemotherapy was continued. In collaboration with the group of Dr. Gabe Sonke and the Dutch Breast Cancer Research Group (BOOG), the TRAIN-3 study (BOOG 2018-01) was designed. The purpose of the TRAIN-3 study will be to assess whether image-guided de-escalation is possible without compromising event-free survival (EFS) relative to the current standard of care. A particular challenge in the design of this one-arm study was the requirement to



Figure 1: The new Sciex Triple TOF 6600

plan an interim analysis, which allows for stopping the study early if the EFS seems to be worse than expected on the basis of literature. The problem was addressed by assuming that the event rate is fairly constant over time, and recognizing that that the event rate is small enough that the true distribution may be approximated by a Poisson distribution. Because the Poisson distribution function has a closed form, it was then possible to study the operating characteristics of the trial via the behavior of its underlying martingale process using exact methods. This made it possible to choose a stopping boundary which guarantees the safety of the patients in the study, while controlling the significance level and the power of the study. The protocol was recently approved by the ethics committee and the study is expected to be opened in January 2019.

In May 2018 the paper titled 'Chemotherapy versus chemoradiotherapy after surgery and preoperative chemotherapy for resectable gastric cancer (CRITICS): an international, open-label, randomised phase 3 trial', co-authored by Harm van Tinteren and Karolina Sikorska, was published. In this paper the intention-to-treat (ITT) analysis of the CRITICS trial is presented. CRITICS was a superiority trial aiming to show the benefits of preoperative chemotherapy-curative surgerypostoperative chemoradiotherapy as compared to preoperative chemotherapy-curative surgery-postoperative chemotherapy. In the ITT analysis no superiority was found and the estimates of overall survival were very similar between the arms. However, only about 60% of patients started postoperative treatment. A natural question from the clinical perspective is to perform a so called per protocol analysis in which only those 60% of patients are analyzed. This type of analysis suffers from many flaws and potential sources of bias. We attempted to reduce them by applying several methods intended to deal with confounding such as multivariable Cox model, propensity score analysis and time-dependent inverse probability weighting. Nevertheless, the results are still prone to bias and should be treated with caution by medical readers. Currently a manuscript is drafted from the methodological perspective, which is nevertheless aimed for clinicians, explaining the possible flaws and dangers of the per-protocol analysis. We performed a large simulation study exploring the influence of an unmeasured confounder(s) on the results of per-protocol analyses. We explored the robustness of different analytical methods to unmeasured confounders. The simulated data are as much as possible resembling the CRITICS data. We also discuss the results of a sensitivity analysis exploring how the conclusion of the per-protocol analysis would change if an important confounder has been unmeasured or measured but forgotten in the model. Our goal is to publish this article early 2019.

Over the past few years, the introduction of immunotherapy has radically changed the treatment of advanced stage non-small cell lung cancer (NSCLC). While PD-1 inhibitors Pembrolizumab and Nivolumab yield unprecedented survival benefit in a subgroup of patients, in a majority of patients no tumorresponse is seen. Hence there is a clear clinical demand for biomarkers that are able to recognize these non-responders as early as possible, enabling physicians to switch to a different treatment (e.g. chemotherapy) or at at least avoid the costs and side effect of immunotherapy for these patients. However: the demands in terms of specificity on such a marker is high:

no one wants to withhold a patient a potentially beneficial treatment. The statistics group of the WA is actively involved in several projects aiming at finding such a biomarker. Candidate biomarkers are developed based on data from thrombocytes (collaboration with VUmc), liquid biopsies (collaboration with AKL and Radboud MC), exhaled breath (collaboration with VUmc), pleural effusion and PET-scan data. Besides we are working with the AKL on the development of an ICT infrastructure and tools for data visualizing that aim to simplify the use of lab data collected in routine clinical care for biomarker development. Both training and development and the evaluation and validation of biomarkers have a strong statistical component. Various statistical and machine learning techniques are employed to condense high-dimensional measurement data into a simple classifier distinguishing prospective responders from nonresponders. Translating these classifiers into a form that enables predicting the response or non-response of a single patient without access to the entire training dataset is often an additional mathematical challenge. In the validation phase, the study design is interesting as the relative importance of the two different types of mistakes that each marker will inevitably make (predicting that a patient will respond when in reality he will not and vice versa) as well as the amount of uncertainty we are willing to accept in our estimates of their frequency, vary from case to case based on the relative proportion of each group, the availability of alternative treatments and the invasiveness of the data collection needed for the prediction, among other consideration. An invaluable tool in both development and validation of these markers has been the NVALT Registry, established in 2016 and maintained by the WA.

Since 2015, the department provides statistical services to the area of Innovative Therapies for Children with Cancer (ICTT) of the Princess Máxima Center (PMC). The PMC (prof. CM Zwaan) is leading in a few international phase I/II studies with novel drugs such as Bosutinib for chronic myeloid leukemia, Inotuzumab Ozogamicin as a single agent and in combination with chemotherapy for CD22-positive relapsed/refractory acute lymphoblastic leukemia and Crizotinib for ALK, ROS1 or MET positive malignancies. These projects use rule-based as well as model-based designs for dose-escalation, such as escalation with overdose control (EWOC), as well as a longitudinal dosetime-toxicity model to integrate data from all courses to help determine the recommended phase II dose level. Additional projects include, among others, iTHER and iTHER 2.0, that attempt to improve the treatment of relapse in pediatric cancer with no available curative options by implementing a pediatric cancer precision medicine program. Another initiative with the PMC is the organisation of the data collection of the SIOP-Renal Tumor Study Group. In 2018 the department has developed the database, including a `trusted-third-party' solution, for the upcoming world-wide study that will be launched in 2019.

One of the collaborations of the Biometrics department at the NKI is with BOOG is the Stop&Go study. This open randomized phase III study compares 8 continuous cycles of chemotherapy with 8 cycles of intermittent (2 times 4 cycles) chemotherapy in first line treatment, in combination with bevacizumab, and second line treatment of patients with HER2/neu negative, incurable, metastatic or unresectable locally advanced breast cancer. In the first line of treatment, the intermittent arm was

not found to be non-inferior to the continuous arm (Claessens et al., 2018). At the moment, a manuscript concerning results for the second line of treatment is in preparation, where the statistical analyses account for imbalances in the randomization among those patients going on to the second line.



# Figure 2

Number of WMO-studies open for inclusion over the past 5 years

Number of patients enrolled in WMOstudies over the past 5 years



Jan-Jakob Sonke

Head (ad int.) Division Radiation Oncology

Jan-Jakob Sonke PhD Head (ad int.) Berthe Aleman MD PhD Academic staff Abrahim Al-Mamgani MD PhD Academic staff

Harry Bartelink MD PhD Academic staff José Belderbos MD PhD Academic staff Gerben Borst MD PhD Academic staff Maarten Buiter Academic staff Eugène Damen PhD Academic staff Luc Dewit MD PhD Academic staff Judi van Diessen MD Academic staff Paula Elkhuizen MD PhD Academic staff Marloes Frantzen-Steneker PhD Academic staff

Rick Haas MD PhD Academic staff Olga Hamming-Vrieze MD Academic staff

Uulke van der Heide PhD Academic staff

Edwin Jansen MD PhD Academic staff Tomas Janssen PhD Academic staff Jeroen van de Kamer PhD Academic staff

Joost Knegjens MD Academic staff Folkert Koetsveld PhD Academic staff Joos Lebesque MD PhD Academic staff Anton Mans PhD Academic staff Luc Moonen MD PhD Academic staff Ben Mijnheer PhD Academic staff Anke van Mourik PhD Academic staff Floris Pos MD PhD Academic staff Peter Remeijer PhD Academic staff Nicola Russell MD PhD Academic staff Govert Salverda MD Academic staff Eva Schaake MD PhD Academic staff Christoph Schneider PhD Academic staff

Astrid Scholten MD PhD Academic staff Baukelien van Triest MD PhD Academic staff

Conchita Vens PhD Academic staff Marcel Verheij MD PhD Academic staff Wouter Vogel MD PhD Academic staff Francine Voncken MD Academic staff Iris Walraven PhD Academic staff Therry Wiersma MD Academic staff Thelma Witteveen MD Academic staff Mila Donker MD PhD Academic staff Renske de Jong MD PhD Academic staff Marlies Nowee MD PhD Academic staff Romy van Amelsfoort MD Clinical resident, PhD student Anouk Trip MD PhD Clinical resident, PhD student Sophie Bosma MD Clinical resident. PhD student Jos Elbers MD Clinical resident, PhD student Zeno Gouw MD Clinical resident, PhD student Rosemarie de Haan MD Clinical resident. PhD student Eline Hessen MD Clinical resident, PhD student Jolien Heukelom MD Clinical resident, PhD student Jules Lansu MD Clinical resident, PhD student Femke van der Leii MD Clinical resident. PhD student Pieter de Veii Mestdach MD Clinical resident, PhD student Charlotte Deijen MD Clinical resident Jan Groenewegen MD Clinical resident Carmen Liskamp MD Clinical resident Barbara Riiksen MD Clinical resident Quinten Telkamp MD Clinical resident Erik van der Biil PhD Physics resident Anne Lisa Wolf PhD Physics resident Milena Smolic PhD Physics resident Petra van Houdt PhD Associate staff scientist

Jonas Teuwen PhD Associate staff scientist

Masudur Al Arif PhD Post-doc Roeland Dilz PhD Post-doc Paul Essers PhD Post-doc Martin Fast PhD Senior post-doc Ghazaleh Ghobadi PhD Post-doc Patrick Gonzalez PhD Post-doc Rob de Graaf PhD Post-doc Brent Huisman PhD Post-doc Takahiro Kanehira PhD Post-doc Artem Khmelinskii PhD Post-doc Karen Kiers PhD Post-doc Simon van Kranen PhD Post-doc Matthew La Fontaine PhD Post-doc Kees Landheer PhD Post-doc Albert Licup PhD Post-doc Gordon Lim PhD Post-doc Lotte Lutkenhaus PhD Post-doc Scott Marshall PhD Post-doc Jasper Nijkamp MSc PhD Post-doc René van Oers PhD Post-doc Igor Olaciregui-Ruiz PhD Post-doc Pavlos Papaconstadopoulos PhD Post-doc

Roel Rozendaal PhD Post-doc Stijn van der Schoot PhD Post-doc Barbara Stam MSc PhD Post-doc Aldemar Torres Valderrama PhD Post-doc

Gijs van der Veen PhD Post-doc Steven van de Water PhD Post-doc Marnix Witte PhD Post-doc Wouter van den Wollenberg PhD Post-doc

Geert Wortel PhD Post-doc Ahmed Bani Yassien PhD student Chris Beekman PhD student Catarina Dinis Fernandes PhD student Roelant Eijgelaar PhD student Elselien Frijlink PhD student Beatrix Gomez Solsona PhD student

# Division of Radiation Oncology

The research activities within the division of Radiation Oncology are clustered within three of the five institution wide themes: personalized radiotherapy, image guided radiotherapy and survivorship. Most research projects have a multi-disciplinary character, combining clinical, physics, biology and/or epidemiology and a strong focus on translational research and innovation.

Marcel Verheij, the former chair of our department and head of division of Radiation Oncology has recently moved to Nijmegen as the chair of the department of Radiation Oncology of the Radboud University Medical Center in Nijmegen. Per March 1, 2019, Corry Marijnen has been appointed as the new chair of the department of Radiation Oncology and head of the division of Radiation Oncology.

In June 2018 we treated our first patient on the ICON Gamma Knife, a stereotactic radiosurgery system equipped with a CBCT to facilitate frameless and fractionated treatments. On July 5 and 6 we organized a symposium, the art of ART, with internationally renowned speakers covering a broad spectrum of topics on adaptive radiotherapy followed by the inaugural speech titled "Radiotherapy and the art of continuous learning" by Jan-Jakob Sonke. In September 2018, we treated the first patient on our Elekta Unity MR-Linac system.

# Personalized Radiotherapy

Personalized radiotherapy aims to individualize treatment through the use of genetic profiling and biology driven imaging for patient selection and the use of targeted agents during radiotherapy. The ongoing and future research addresses 1) novel insights in the irradiation response of tumors, 2) better patient selection for better individualized treatment management, and 3) optimization of combined-modality-targeted therapeutics to increase the therapeutic window. Our research follows the bench to bedside approach with the focus on the clinical needs and opportunities in our daily clinical practice. Importantly, we initiated new and promising collaborations with other research groups to use state-of-the-art pre-clinical tools and to enable innovative translational studies contributing to the personalized radiotherapy treatment approach.

# Preclinical research

# Modulation of targeted agents to optimize the radiotherapy outcome

Our preclinical studies aim to optimize the timing and duration of targeted agents in relation to the RT in glioblastoma. Interestingly, the start of adjuvant immunotherapy did improve the survival of mice in contrast to concurrently started IT. In collaboration with the Akkari group we further study the sequence and timing of immunotherapy and fractionated radiotherapy to optimize the radiotherapy outcome. Another strategy to improve the radiotherapy outcome for glioblastoma patients is to increase the mitotic fraction in the tumor which is most radiosensitive cell cycle phase. Previous clinical attempts failed due to cytotoxicity and inappropriate timing. In collaboration with the van Tellingen group we observed recently both *in vitro* and *in vivo* very promising results and are currently working on the introduction of this concept into the clinic.

#### Identification and exploitation of DNA repair defects

Recent genomic data demonstrate the role of DNA damage response and repair in tumorigenesis or patient outcome in an increasing number of cancer types. DNA damage repair pathway defects inherent to some cancers may therefore define radiotherapy outcome. Previously, we identified DNA repair defects in HNSCC and tested opportunities to exploit those by the combination of radiation and PARP inhibitors. To allow the identification of such defects in clinical material, we tested and developed multiple genetic biomarkers in collaboration with the Department of Head and Neck Surgery and Oncology. In preliminary studies these showed promise, identifying a subgroup of patients with different outcome parameters that warrant validation in an independent cohort.

### **Clinical research**

# PARP inhibitors in combination with radiotherapy

PARP inhibitors are currently evaluated in combination with radiotherapy and/or chemotherapy. As sensitizers, PARP inhibitors are active at very low concentrations therefore requiring highly sensitive pharmacodynamic (PD) assays. Current clinical PD-assays partly fail to provide such sensitivities. Our department developed a valuable and clinically implementable PD-assay for such combination purposes and provides proof of clinically relevant cellular PARP inhibitory activities at low daily olaparib doses.

#### Individualizing preoperative radiation for sarcoma patients

Opposed to myxoid liposarcomas, in other sarcoma subtypes pathologists frequently report an absence of treatment response with high percentages of remaining viable tumor cells. Increasing radiation dose in patients that still have to undergo definitive surgery is probably not clinically feasible. Obviously, investigations into radiation sensitizers maintaining radiation dose are warranted and angiogenesis inhibitors seem logic candidates. After completing a phase I study on the combination with pazopanib, (NCT01985295), in 2018 we have confirmed our prior observation of a high pathological complete remission rate in the subsequent phase II study (NCT02575066) investigating the phase I recommended dose of 25 x 2 Gy radiotherapy and once-daily 800 mg pazopanib, such that the trial could be amended to continue with a lower radiation dose (18 x 2 Gy), while maintaining pazopanib dose (not yet published).

### Survivorship

In the last decades, cancer treatments have improved significantly, leading to improved cure rates. Consequently, increasing numbers of cancer survivors are at risk of developing (late) adverse effects, which in turn may affect quality of life (QOL) and long-term survival. Therefore, treatment individualization and optimization to decrease adverse event risk, as well as early detection and monitoring strategies of adverse events are warranted.

Natasia Janssen PhD student Celia Juan de la Cruz PhD student Edzo Klawer PhD student Ernst Kooreman PhD student Maria Lambrecht PhD student Tessa van de Lindt PhD student Kai Lønning PhD student Vineet Mohan PhD student Karin Ortega Marin PhD student Kleopatra Pirpinia PhD student Angjelina Protik PhD student Marcel van Schie PhD student Lukas Schröder PhD student Paul Slangen PhD student Bruno Soares Vieira PhD student Uros Stankovic PhD student Iban Torres Xirau PhD student Barry Doodeman Physician assistant Marcel Jonker Physician assistant Robin Kalisvaart Physician assistant Margriet Kwint Physician assistant Cherita Sombroek Physician assistant Sandra Vreeswiik Physician assistant Gerbert Vrijenhoek Physician assistant Corine Veenstra Physician assistant Hester Visser Physician assistant Anja Betgen MSc Technical staff Suzanne van Beek Technical staff Natascha Bruin Technical staff Casper Carbaat Technical staff Mariska Geldorp Technical staff Di Geno Technical staff Emmy Lamers Technical staff Wai Kong Mok Technical staff Thi Minh Anh Nguyen Technical staff Priyanka Ojha Technical staff Vivian van Pelt Technical staff Lennert Ploeger PhD Technical staff Mohsen Rahimimoghaddam Technical staff Maddalena Rossi MSc Technical staff

Georgios Sotiropoulos Technical staff Evalien Veldhuijzen Technical staff

# Selected publications

Barazas M, Gasparini A, Huang Y, Küçükosmanoğlu A, Annunziato S, Bouwman P, Sol W, Kersbergen A, Proost N, de Korte-Grimmerink R, van de Ven M, Jonkers J\*, Borst GR\*, Rottenberg S\*. Radiosensitivity is an acquired vulnerability of PARPiresistant BRCA1-deficient tumors. Cancer Res. 2018

Beekman C, van Triest B, van Beek S, Sonke JJ, Remeijer P. Margin and PTV volume reduction using a populationbased library of plans strategy for rectal cancer radiotherapy, Med Phys. 2018;45(10):4345-4354 Boekel NB, Jacobse JN, Schaapveld M, Hooning MJ, Gietema JA, Duane FK, Taylor CW, Darby SC, Hauptmann M, Seynaeve CM, Baaijens MHA, Sonke GS, Rutgers EJT, Russell NS, Aleman BMP\*, van Leeuwen FE\*. Cardiovascular disease incidence after internal mammary chain irradiation and anthracycline-based chemotherapy for breast cancer. Br J Cancer. 2018;119(4):408-418

Cats A, Jansen EPM, van Grieken NCT, Sikorska K, Lind P, Nordsmark M,Meershoek-Klein Kranenbarg E, Boot H, Trip AK, Swellengrebel HAM, van Laarhoven HWM, Putter H, van Sandick JW, van Berge Henegouwen MI, Hartgrink HH, van Tinteren H, van de Velde CJH, Verheij M; CRITICS investigators. Chemotherapy versus chemoradiotherapy after surgery and preoperative chemotherapy for resectable gastric cancer (CRITICS): an international, open-label, randomized phase 3 trial. Lancet Oncol. 2018;19:616-628

De Haan R, Pluim D, van Triest B, van den Heuvel M, Peulen H, van Berlo D, George J, Verheij M, Schellens JHM, Vens C. Improved pharmacodynamic (PD) assessment of low dose PARP inhibitor PD activity for radiotherapy and chemotherapy combination trials. Radiother Oncol. 2018

De Veij Mestdagh PD, Janssen T, Lamers E, Carbaat C, Hamming-Vrieze O, Vogel WV, Sonke JJ, Al-Mamgani A. SPECT/CT-guided elective nodal irradiation for head and neck cancer: Estimation of clinical benefits using NTCP models. Radiother Oncol 2018

Fast M, van de Schoot A, van de Lindt T, Carbaat C, van der Heide U, Sonke JJ. Tumor trailing for liver SBRT on the MR-Linac. Int J Radiat Oncol Biol Phys. 2018

Haas RL, Gronchi A, van de Sande MAJ, Baldini EH, Gelderblom H, Messiou C, Wardelmann E, Le Cesne A. Perioperative management of extremity soft tissue sarcomas. J Clin Oncol 2018;36:118-124

Haas RL, Baldini EH, Chung PW, van Coevorden F, DeLaney Th. Radiation Therapy in Retroperitoneal Sarcoma Management. J Surg Oncol 2018;117:93-98

Jacobse JN, Duane FK, Boekel NB, Schaapveld M, Hauptmann M, Hooning MJ, Seynaeve CM, Baaijens MHA, Gietema JA, Darby SC, van Leeuwen FE, Aleman BMP\*, Taylor CW\*. Radiation Dose-Response for Risk Of Myocardial Infarction In Breast Cancer Survivors. Int J Radiat Oncol Biol Phys. 2018 Mijnheer B, Jomehzadeh A, González P, Olaciregui-Ruiz I, Rozendaal R, Shokrani P, Spreeuw H, Tielenburg R, Mans A. Error detection during VMAT delivery using EPID-based 3D transit dosimetry. Phys Med. 2018;54:137-145

Monninkhof EM, van Loon JWL, van Vulpen M, Kerkmeijer LGW, Pos FJ, Haustermans K, van den Bergh L, Isebaert S, McColl GM, Jan Smeenk R, Noteboom J, Walraven I, Peeters PHM, van der Heide UA. Standard whole prostate gland radiotherapy with and without lesion boost in prostate cancer: Toxicity in the FLAME randomized controlled trial. Radiother Oncol. 2018;127(1):74-80

Olaciregui-Ruiz, R. Rozendaal, B. Mijnheer, A. Mans. Site-specific alert criteria to detect patient-related errors with 3D EPID transit dosimetry. Medical Physics 2019;46,45

Torres-Xirau I, Olaciregui-Ruiz I, Baldvinsson G, Mijnheer BJ, van der Heide UA, Mans A. Characterization of the a-Si EPID in the unity MR-linac for dosimetric applications. Phys Med Biol. 2018;63(2):025006

Van de Lindt T, Sonke J-J, Nowee M, Jansen E, van Pelt V, van der Heide U, Fast M. A Self-Sorting Coronal 4D-MRI Method for Daily Image Guidance of Liver Lesions on an MR-LINAC. Int J Radiat Oncol Biol Phys. 2018

Van Diessen J, De Ruysscher D, Sonke JJ, Damen E, Sikorska K, Reymen B, van Elmpt W, Westman G, Fredberg Persson G, Dieleman E, Bjorkestrand H, Faivre-Finn C, Belderbos J. The acute and late toxicity results of a randomized phase II dose-escalation trial in non-small cell lung cancer (PETboost trial). Radiother Oncol. 2018

Velikova G, Williams LJ, Willis S, Dixon JM, Loncaster J, Hatton M, Clarke J, Kunkler IH, Russell NS; MRC SUPREMO trial UK investigators. Quality of life after postmastectomy radiotherapy in patients with intermediate-risk breast cancer (SUPREMO): 2-year follow-up results of a randomised controlled trial. Lancet Oncol. 2018;19(11):1516-1529. Erratum in: Lancet Oncol. 2018;19(12):e668 Verhagen CVM, Vossen DM, Borgmann K, Hageman F, Grénman R, Verwijs-Janssen M, Mout L, Kluin RJC, Nieuwland M, Severson TM, Velds A, Kerkhoven R, O'Connor MJ, van der Heijden M, van Velthuysen ML, Verheij M, Wreesmann VB, Wessels LFA, van den Brekel MWM, Vens C. Fanconi anemia and homologous recombination gene variants are associated with functional DNA repair defects in vitro and poor outcome in patients with advanced head and neck squamous cell carcinoma. Oncotarget. 2018;9:18198-213

# Identification of risk groups at increased risk of treatment related adverse events

In a Dutch hospital-based cohort of 14,645 breast cancer (BC) patients, we found that women treated with anthracycline-based chemotherapy and internal mammary irradiation (in an older era) with a considerable mean whole heart dose (MWHD) have a substantial increased incidence of several Cardiovascular diseases. Screening may be appropriate for some BC patient groups. Furthermore, a case-control study (183 cases and controls) nested within a cohort of BC survivors showed that myocardial infarction rate after radiation for BC increased linearly with MWHD. This result will be used in future risk prediction models.

#### Treatment individualization and optimization

An international, randomized, controlled trial (SUPREMO trial) was performed (2006-2013; n=1,688) to define the role of radiotherapy in intermediate risk breast cancer patients. The two-year results of the QOL sub-study showed that compared to patients who were only treated with surgery, patients receiving postmastectomy radiotherapy reported slightly worse chestwall symptoms but the difference was small and of uncertain clinical significance. Furthermore, symptoms improved from year 1 to 2. These reassuring results will facilitate shared decision making while awaiting the survival results (primary endpoint).

Radiotherapy for locally advanced non-small lung cancer (LA-NSCLC) may cause severe esophageal and/or pulmonary toxicity. The PET-boost randomized phase II trial (NCT01024829) investigated dose-escalation to the entire primary tumor or redistributed to regions of high pre-treatment FDG-uptake in inoperable non-small cell lung cancer (NSCLC) patients. The toxicity results of the PET-boost trial revealed that hypofractionated dose-escalation to the primary tumor, but not the lymph nodes, is associated with higher acute and late toxicities compared to conventional chemoradiotherapy.

#### Accurate monitoring of adverse event development

Recent trials showed that the use of patient reported outcomes (PROs) to monitor symptoms during and after cancer treatment does not only improve adverse event management but also significantly improves QOL and overall survival. These promising results emphasize the increasingly important role of the PRO symptom monitoring tools and the need to implement these tools within clinical practice. To implement PRO symptom monitoring, we successfully translated and linguistically validated the Dutch version of the PRO-CTCAE, which is now publicly available (https://healthcaredelivery.cancer.gov/pro-ctcae/pro-ctcae\_ dutch.pdf).

### Image Guided Radiotherapy

Spatiotemporal inter- and intra-tumor variability challenge optimal treatment selection and delivery. Imaging allows to quantify such variability non-invasively. Image guided radiotherapy is the process of image acquisition, image processing and treatment modification for optimal treatment selection and delivery. Our image guided research activities span a broad range of disease sites and all major imaging modalities.

\* authors contributed equally

### Adaptive Radiotherapy

Day-to-day shape variation in the rectum CTV results in considerable geometric uncertainties during rectal cancer radiotherapy. The purpose of this study was to increase the accuracy of treatment delivery by building a population-based library of planning CTVs for rectal cancer patients and to evaluate its potential for rectum PTV margin and PTV volume reduction. We created signed distance maps from the planning rectum CTV to each of the repeat CTVs to create the library of nine planning CTVs. For each of the repeat CTVs the best fitting CTV structure in the library was automatically selected and residual distance maps were calculated from which a new PTV margin was constructed. Residual errors were found to decrease with the number of plans in the library, but adding more than five plans yields negligible further error reduction. Margin reduction of up to 50% was achieved at the upperanterior site of the mesorectum. In conclusion, a library of plans strategy for rectal cancer based on population statistics is feasible and results in a considerably reduced average rectum PTV volume compared to conventional radiotherapy.

#### MRI-guided radiotherapy

To improve the precision of dose delivery in the clinic, the department of Radiation Oncology has started MRI-guided radiotherapy with the Elekta Unity system. The department participates in the MR-linac consortium to further develop the methodology and conduct joint clinical trials. The NKI leads the consortium tumor site groups on rectal cancer and oligometastases.

Building on the experience gained with cone-beam CT-guided radiotherapy, we are developing methods to make optimal use of the on-line imaging capacity of the MR-linac. For treatment of rectal cancer, library-of-plans are generated that allow us to select an optimal plan for the anatomy of a given day. For treatment of cancers in the abdomen, a 4D-MRI technique was developed from which the mid position of the tumor during breathing motion can be derived, as well as the amplitude of the motion. We intend to use this first for patients with liver cancer. As the time-averaged position can drift during irradiation, this potentially results in deterioration of target coverage. A continuous adjustment of beam apertures in a process called trailing, can restore target coverage. To test the feasibility of these and other techniques, we have started the Umbrella-II study. While the regulatory environment has become challenging, we aim to continue to bring these novel technologies to routine clinical care.

As the imaging performance of integrated MR-Linac systems is critical for their application, within the MR-linac consortium a comprehensive commissioning protocol was developed that combines standard MRI performance measurements with dedicated hybrid tests that specifically assess the interactions between the Linac and the MRI system. Importantly, the homogeneity of the static magnetic field of the scanner is not influenced at all by the accelerator mounted on the gantry around the MRI. The results show that high-quality MR imaging is feasible during irradiation and while the gantry is moving around the patient. In the absence of guidelines for commissioning MR-linac systems, the test results from 4 consortium centers provide initial bench mark data for future MR-linac installations. Now that the MR-linac is used clinically, we will start clinical trials to investigate the potential benefit for a range of patient groups. To accelerate the technical and clinical development of MR-guided radiotherapy and facilitate the evidence-based introduction of the MR-linac into clinical practice, the MR-linac consortium has initiated the Momentum trial and project. Technical and clinical data are gathered to develop further functionality and evaluate treatment outcomes.

# **EPID Dosimetry**

Systems for pre-treatment and in vivo dosimetric QA of radiation treatments are traditionally commissioned without knowledge of their sensitivity to clinically relevant errors. In this work, we developed a framework in which virtual dose reconstructions is combined with synthetic patient data allows to assess the sensitivity of our 3D EPID transit dosimetry method to patient-related variations. Translation and rotation patient setup errors and uniform contour changes were studied for 104 VMAT plans of 4 treatment sites. The detectability of each introduced error is specific to the treatment site and indicator used. The area under the curve (AUC) of the receiver operating characteristic curve (ROC) was >0.8 for 3 out of 4 sites. Optimal alert criteria were determined to ensure excellent detectability for each combination of error type and indicator.

Last year, we have presented a characterization of the EPID positioned on the MR-linac for portal dosimetry applications. This year, the next step towards in vivo portal dosimetry was taken by demonstrating the possibility to perform 2D portal dosimetry on the MR-linac. Our conventional back-projection algorithm was adapted for the MR-linac geometry. It was commissioned using absolute dose values obtained from ionization chamber (IC) array measurements. Furthermore, a method was presented to correct for the (gantry-angle dependent) influence of the couch, bridge and cryostat. Dosimetric verification of 25 IMRT beams showed excellent agreement between IC array measurements and EPID-based 2D dose distributions reconstructed at 10 cm depth in a phantom at isocenter.

# Individualizing irradiation treatment for Head and Neck patients

The SPECT-guided elective unilateral nodal irradiation lead by Dr. Al-Mamgani was completed in January 2018. In this proof-of-concept study, 50 patients with T1-3NO2b head and neck squamous cell carcinoma limited to the midline were treated electively to one side of the neck instead of the current standard of care where patients with these tumors are electively treated to both sides of the neck in order to reduce the risk of contralateral recurrence. The preliminary results are very promising. After a median follow-up of 12 months, only one patient (2%) developed contralateral regional failure after unilateral elective irradiation. Furthermore, the severity, frequency and duration of different troublesome acute and late radiation-related toxicities such as the need for tube feeding and xerostomia were significantly reduced, compared to the historical cohort treated to both sides of the neck at our institute.

### Dose painting for prostate cancer

The FLAME trial, a multi-center phase III randomized trial of dose escalation in prostate cancer using external-beam radiotherapy,

has finalized inclusion. In this study, a focal boost to the visible tumor inside the prostate to a dose of 95 Gy was given and compared to the standard treatment of 77 Gy to the gland. In total 571 patients have been randomized. We analyzed the toxicity up to two years after treatment and found that the focal boost did not result in an increase in GU and GI toxicity when compared to the standard treatment. This suggests that the described focal dose escalation technique is safe and feasible. The primary endpoint, 5-year biochemical failure free survival, will be reached in 2020.

# Chemotherapy versus chemoradiotherapy after surgery and preoperative chemotherapy for resectable gastric cancer (CRITICS)

This investigator-initiated, open-label, randomized phase 3 trial enrolled 788 patients to compare perioperative chemotherapy with preoperative chemotherapy and postoperative chemoradiotherapy in patients with resectable gastric adenocarcinoma. Postoperative chemoradiotherapy did not improve overall survival compared with postoperative chemotherapy in patients with resectable gastric cancer treated with adequate preoperative chemotherapy and surgery. In view of the poor postoperative patient compliance in both treatment groups, future studies should focus on optimizing preoperative treatment strategies.



# Theo Ruers

Head Division Surgical Oncology

#### BOARD

Theo Ruers MD PhD Division Head Henk van der Poel MD PhD Academic staff Christianne Lok MD PhD Academic staff

# SURGICAL ONCOLOGY

Geerard Beets MD PhD Head Arend Aalbers MD Academic staff Alexander van Akkooi MD PhD Academic staff Marie-Jeanne Baas-Vrancken Peeters MD PhD Academic staff Frits van Coevorden MD PhD Academic staff Frederieke van Duijnhoven MD PhD LLM Academic staff Koen Hartemink MD PhD Academic staff Winan van Houdt MD PhD Academic staff Houke Klomp MD PhD Academic staff Niels Kok MD PhD Academic staff Koert Kuhlmann MD PhD Academic staff Hester Oldenburg MD PhD Academic staff Marianne Piek-den Hartog MD Academic staff Iris van der Ploeg MD PhD Academic staff Theo Ruers MD PhD Academic staff Emiel Rutgers MD PhD Academic staff Johanna van Sandick MD PhD Academic staff Xander Veenhof MD PhD Academic staff Michel Wouters MD PhD Academic staff Miranda Kusters MD PHD Temporary staff Nienke Dols MD PhD Temporary staff Marjolein Schrijver PhD Fellow

Karlijn Woensdregt MD Fellow Danny Evers MD PhD Fellow Tjeerd Aukema MD PhD Fellow Karla Martin Telez PhD Fellow Behdad Dasht Bozorg Post-doc Matteo Fusaglia Post-doc Harald Groen Post-doc Wout Heerink Post-doc Denise Hilling Post-doc Jasper Nijkamp Post-doc Lisanne Baltussen PhD student Stephanie Blankenstein PhD student Lisanne de Boer PhD student Luuk Buiis PhD student Chris Dickhoff MD PhD student Lotte Elshof PhD student Roeland Eppenga PhD student Viola Franke PhD student Matthijs van Gool PhD student Eric Heeg PhD student Hester Haak PhD student Britt Hupkens PhD student Natasia Janssen PhD student Pieter Joosten PhD student Esther Kho PhD student Willem Koemans MD PhD student Esther Kok PhD student Rosa van der Kraaii MD PhD student Niels Langhout PhD student Ariane van Loevezijn PhD student Max Madu PhD student Marieke van der Noordaa PhD student Julianne de Ruiter PhD student Marit van der Sande PhD student Bram Schermers PhD student Jasper Smit PhD student Pauline Spronk PhD student Frik Tanis PhD student Suzana Teixeira PhD student Niels Vos MD PhD student Maxime van der Valk PhD student Eva Huis in 't Veld PhD student Lisa van der Woude PhD student **Dick Sterenborg** Physicist Ruben van Veen Technical physician

# HEAD AND NECK ONCOLOGY AND SURGERY

Michiel van den Brekel MD PhD Head Fons Balm MD PhD FRCS FACS Academic staff Marc van Beurden MD PhD Academic

staff Frans Hilgers MD PhD Academic staff

Gwen Honnef DDS Academic staff Baris Karakullukcu MD PhD Academic staff

Martin Klop MD PhD Academic staff Menno Krap DDS Academic staff Peter Lohuis MD PhD Academic staff Pim Schreuder MD DDS Academic staff Ludi Smeele MD DDS PhD Academic staff

Bing Tan MD PhD Academic staff Corina van As-Brooks PhD Academic staff

Lilly-Ann van der Velden MD PhD Academic staff

Charlotte Zuur MD PhD Academic staff Luc Karssemakers MD Fellow Marjolijn Oomens MD Fellow Thomas Pézier MD PhD Fellow Joan Birkhoff PDT coordinator Ann-Jean Beck MD PhD student Danique Berger MD PhD student, resident

Amy Dohmen MD PhD student Charlotte Duinkerken MD PhD student Jos Elbers MD PhD student Roel Henneman MD PhD student Kilian Kappert MSC PhD student Rebecca Karsten MD PhD student Liset Lansaat MSC PhD student Maartje Leemans MSC PhD student Inge Oskam MD PhD student Ellen Passchier MSC PhD student Marije Petersen MD PhD student

# Division of Surgical Oncology

# IMAGE GUIDED SURGERY

This research line aims to optimize surgical procedures by better surgical guidance during operative procedures. To this end new imaging technologies are developed and tested to improve tumor mapping and staging pre and intra-operatively. These imaging and surgical guidance procedures should lead to more radical resections while sparing normal tissue and organ function. The research line is a strong collaboration between the NKI-AVL, Technical Universities and industrial partners. For the moment 3 project lines are running. In the first project we are developing a tool for optical guidance during surgery by means of spectroscopy and fluorescence techniques. In 2018 we developed our own spectroscopy hardware to allow research activities independent form industry. We published for the first time that the technique can be used seamlessly in the current workflow for breast cancer diagnosis. Breast cancer malignancies could be detected with an accuracy of over 95%. We will further concentrate to incorporate the developed technology into surgical tools and started a STW project in 2018 to further develop this technology in combination with ultrasound as well. In a second project we aim to improve the balance between radical surgery and preventing morbidity in extensive surgery, by bringing innovative navigation technology to the OR. We introduced the first in world electromagnetic navigation system for abdominal and pelvic surgery. Over 100 patients have been operated this way with great success and enthusiasm amongst the surgeons working with the system. The project team was able to obtain funding from the KWF/Alp d'HuZes and the Vriendenloterij. In 2018 we published the first in man navigation study for abdominal tumor tracking. A third project line concentrates on the introduction of hyperspectral imaging for cancer surgery. This project is funded by the European project Astonish and received a grant from the Dutch Cancer Society (KWF). We aim that in the near future all tumor resection samples can be analyzed almost real time within the OR enabling additional resection when necessary.

# SURGICAL ONCOLOGY

Patient care and clinical research is largely organized in subunits who work in multidisciplinary teams: breast, melanoma, sarcoma, thoracic tumours, upper gastro-intestinal, and a combined unit of lower gastro-intestinal, liver, and colorectal peritoneal metastases. The goal of our research is twofold: to improve the survival for patients with more advanced disease, and to improve the quality of life of all patients by minimizing the side-effects and trauma of oncological treatment. A first common theme is to explore better combinations of systemic therapy, radiotherapy and surgery, and to incorporate the recent advances in immunotherapy. These therapies are increasingly applied in a neo-adjuvant setting, and with a focus on a better assessment of the response it becomes possible to individually tailor the extent of the surgery to the type response. Some well-responding tumours can be removed with less extensive surgery, and in some patients, surgery can be omitted altogether. Some very advanced unresectable tumours may become resectable after neoadjuvant therapy. A second common theme is the technical development and clinical use of intra-operative imaging and tissue differentiation techniques that allow more precise identification of tumour tissue, allowing both a better complete removal of the tumour and sparing of non-involved tissues.

The department of surgery has initiated many phase I and II trials, and is participating in multicenter phase III trials, some of which have been initiated by NKI-AVL. In addition to the surgical staff, over 40 researchers were associated with the department. In 2018 this resulted in close to 200 publications in peer reviewed journals, 6 PhD theses, and regular media coverage.

# Upper GI cancer

Translational research focusses on the identification of genetic patterns based on copy number variation in relation to treatment response of the tumour, immune activity, and patients' survival. The results of the multicenter clinical NKI-AVL study on (neo)-adjuvant multimodality treatment in gastric cancer was internationally well recognized with a major Lancet Oncology publication. Ongoing studies in this field are further investigating the role of multimodality neo-adjuvant treatment, e.g. neoadjuvant chemoradiotherapy and immunotherapy for gastric cancer and a surgery-as-needed protocol for oesophageal cancer. An ongoing clinical and research focus is on the role of hyperthermic intraperitoneal chemotherapy (HIPEC) in gastric cancer patients with peritoneal metastases.

# Thoracic surgery

Clinical innovations in surgical treatment for NSCLC include minimally invasive surgical techniques such as 3D-video assisted thoracoscopic surgery (VATS), robotic surgery and segmental resections. Scientific research focusses on multimodality treatment, including the role of chemoradiation followed by surgery and the role of neoadjuvant and adjuvant immunotherapy and targeted therapies in combination with surgery. There are ongoing studies on response evaluation after chemoradiotherapy and immunotherapy. Another research focus is on the role of Tumor Infiltrating lymphocytes (TIL) therapy and organoids.

# Colorectal - Liver - Peritoneal metastases

In both rectal cancer and liver tumours there are many ongoing intraoperative imaging studies. In rectal cancer NKI-AVL has established itself as a world leader in organ preservation, with a major publication in the Lancet. The program is continuously expanded with ongoing multicenter trials, and with now a fully operational contact radiotherapy device. The concept of neoadjuvant immunotherapy is tested in an exploratory study in colonic cancer, and a new trial for rectal cancer is expected to start in 2019. For liver metastases the concept of adjuvant intra-arterial chemotherapy is tested in a phase II trial, expected to lead to a phase III trial in 2019. Advanced MR imaging studies are continued in the field of rectal cancer and peritoneal Matthijs Valstar MD PhD student Martijn van der Heijden MD PhD student Manon van der Laaken MSc PhD student Tessa van Doeveren PhD student Simone van Dijk MD PhD student Michel van Harten MD PhD student Klaske van Sluis PhD student, SLP Joris Vos MD PhD student Luuk Voskuilen MSc PhD student David Vossen MSc PhD student Judith Zecha MD PhD student Lisette van der Molen PhD Post-doc, SLP

Maarten van Alphen MSc Post-doc Rob van Son PhD Post-doc Robert van Veen PhD Post-doc Renske Fles MSc Research coordinator Wim Vallenduuk Research staff Gill Yaron Research staff

#### UROLOGY

Simon Horenblas MD PhD Head Henk van der Poel MD PhD Academic staff

Bas van Rhijn MD PhD Academic staff Axel Bex MD PhD Academic staff Esther Wit, MD Academic staff Kees Hendricksen MD PhD Academic staff

Pim van Leeuwen MD PhD Academic staff

Roderick de Bruijn MD Fellow Teele Kuusk MD Fellow Oscar Brouwer MD PhD AIOS Max Bruins MD AIOS Rianne Lammers MD PhD AIOS Tessa van Ginkel MD AIOS Sarah Ottenhof MD Research physician Charlotte Voskuilen MD Research physician Hielke-Martijn de Vries MD Research physician

#### GYNAECOLOGY

Frédéric Amant MD PhD Head Marc van Beurden MD PhD Academic staff

Monique Brood MD Academic staff Christianne Lok MD PhD Academic staff Willemien van Driel MD PhD Academic staff

Henry Zijlmans MD PhD Academic staff Nienke van Trommel MD PhD Academic staff

Hans Trum MD PhD Academic staff M.J. Rijken Fellow

#### PLASTIC AND RECONSTRUCTIVE SURGERY

Leonie Woerdeman MD PhD Head Marieke van der Berg MD Academic staff

Marin Citges MD Academic staff Joris Hage MD PhD Academic staff Marije Hoornweg MD PhD Academic staff

Martine van Huizum MD Academic staff Brigitte Drost MD Academic staff

#### DERMATOLOGY

Marianne Crijns MD PhD Head Germaine Relyveld MD PhD Academic staff Biljana Zupan-Kajcovski MD Academic staff

Soe Janssens MD PhD Academic staff

# ANESTHESIOLOGY

Sandra Huissoon MD Head Aletta Houwink MD Academic staff Anita Rothengatter-Ophof MD Academic staff

Bart Schieveld MD Academic staff Christoph Hahn MD PhD Academic staff Esther Wolthuis MD PhD Academic staff

Herlina Hakim MD Academic staff Ingeborg Vergouwe MD Academic staff Julia ten Cate MD Academic staff Karin Ariese MD Academic staff Katina Efthymiou MD Academic staff Lenie Hulshoff MD Academic staff Marloes Bolman MD Academic staff Michael Šrámek MD PhD Academic staff

Mischa Simon MD PhD Academic staff Peter Schutte MD Academic staff Sannine Buma MD Academic staff Tom Leuverink MD Academic staff Vivian Winia MD Academic staff

# Selected publications

Bex A, Mulders P, Jewett M, Wagstaff J, van Thienen JV, Blank CU, van Velthoven R, Del Pilar Laguna M, Wood L, van Melick HHE, Aarts MJ, Lattouf JB, Powles T, de Jong IJ, Rottey S, Tombal B, Marreaud S, Collette S, Collette L, Haanen J. Comparison of Immediate vs Deferred Cytoreductive Nephrectomy in Patients with Synchronous Metastatic Renal Cell Carcinoma Receiving Sunitinib: The SURTIME Randomized Clinical Trial. JAMA Oncol. 2018

Blank CU, Rozeman EA, Fanchi LF, Sikorska K, van de Wiel B, Kvistborg P, Krijgsman O, van den Braber M, Philips D, Broeks A, van Thienen JV, Mallo HA, Adriaansz S, ter Meulen S, Pronk LM, Grijpink-Ongering LG, Bruining A, Gittelman RM, Warren S, van Tinteren H, Peeper DS, Haanen J, van Akkooi ACJ, Schumacher TN. Neoadjuvant versus adjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma. Nat Med. 2018;24(11):1655-1661

Buma S, van Klinken M. Hospitalizations in cancer patients in the last three months of life. 10th World Research Congress of the European Association for Palliative Care (EAPC 2018). Palliative Medicine, 32(1\_suppl), 3-330 Cats A, Jansen EPM, van Grieken NCT, Sikorska K, Lind P, Nordsmark M, Meershoek-Klein Kranenbarg E, Boot H, Trip AK, Swellengrebel HAM, van Laarhoven HWM, Putter H, van Sandick JW, van Berge Henegouwen MI, Hartgrink HH, van Tinteren H, van de Velde CJH, Verheij M. Chemotherapy versus chemoradiotherapy after surgery and preoperative chemotherapy for resectable gastric cancer (CRITICS): an international, open-label, randomised phase 3 trial. Lancet Oncol. 2018;19(5):616-628

De Boer LL, Bydlon TM, van Duijnhoven F, Vranken Peeters MTFD, Loo CE, Winter-Warnars GAO, Sanders J, Sterenborg HJCM, Hendriks BHW, Ruers TJM. Towards the use of diffuse reflectance spectroscopy for real-time in vivo detection of breast cancer during surgery. J Transl Med. 2018;16(1):367

De Haan J. Verheecke M. van Calsteren K, van Calster B, Shmakov RG, Mhallem Gziri M, Halaska MJ, Fruscio R, Lok CAR, Boere IA, Zola P. Ottevanger PB. de Groot CJM. Peccatori FA, Dahl Steffensen K, Cardonick EH, Polushkina E, Rob L. Ceppi L. Sukhikh GT. Han SN. Amant F: International Network on **Cancer and Infertility Pregnancy** (INCIP). Oncological management and obstetric and neonatal outcomes for women diagnosed with cancer during pregnancy: a 20-year international cohort study of 1170 patients. Lancet Oncol. 2018:19(3):337-346

Eskes M, Balm AJM, van Alphen MJA, Smeele LE, Stavness I, van der Heijden F. Simulation of facial expressions using person-specific sEMG signals controlling a biomechanical face model. Int J Comput Assist Radiol Surg. 2018;13:47-59

Janssen NNY, van la Parra RFD, Loo CE, Groen EJ, van den Berg MJ, Oldenburg HSA, Nijkamp J, Vrancken Peeters MTFD. Breast conserving surgery for extensive DCIS using multiple radioactive seeds. Eur J Surg Oncol. 2018;44(1):67-73

Hage JJ, Lange M, Zijlmans HJ, van Beurden M. Repeated use of gluteal fold flaps for post-oncologic vulvoperineal reconstruction. Ann Plast Surg. 2018;80(6):648-652

Lansaat L, van der Noort V, Bernard SE, Eerenstein SEJ, Plaat BEC, Langeveld TAPM, Lacko M, Hilgers FJM, de Bree R, Takes RP, van den Brekel MWM. Dutch Head and Neck Society. Predictive factors for pharyngocutaneous fistulization after total laryngectomy: a Dutch Head and Neck Society audit. Eur Arch Otorhinolaryngol. 2018;275:783-94 Mureau MAM, van der Hulst RRWJ, Woerdeman LAE, van Turnhout AAWM, Posch NAS, Menke-Pluijmers MBE, Luiten EJT, Westenberg AH, Gopie JP, Zonderland HM, Westerhof M, Krol-Warmerdam EMM. Dutch breast reconstruction guideline. J Plast Reconstr Aesthet Surg. 2018;71(3):290-304

Neto AS, Juffermans NP, Hemmes SNT, Carmen S. V. Barbas CSV, Wolthuis EK, Schultz MJ et al. Interaction between peri-operative blood transfusion, tidal volume, airway pressure and postoperative ARDS: an individual patient data meta-analysis. Ann Transl Med 2018;6(2):23

Nijkamp J, Kuhlmann KFD, Ivashchenko O, Pouw B, Hoetjes N, Lindenberg MA, Aalbers AGJ, Beets GL, van Coevorden F, KoK N, Ruers TJM. Prospective study on image-guided navigation surgery for pelvic malignancies. J Surg Oncol. 2018

Ottenhof SR, Djajadiningrat RS, Thygesen HH, Jakobs PJ, Jóźwiak K, Heeren AM, De Jong J, Sanders J, Horenblas S, Jordanova ES. The Prognostic Value of Immune Factors in the Tumor Microenvironment of Penile Squamous Cell Carcinoma. Front Immunol. 2018 Jun 11:9:1253

Srámek M. Compendium Anaesthesia in Surgical Oncology, version 1.8. ISBN: 978-90-824409-0-4

Van Baal JOAM, van Noorden CJF, Nieuwland R, Van de Vijver KK, Sturk A, van Driel WJ, Kenter GG, Lok CAR. Development of peritoneal carcinomatosis in epithelial ovarian cancer: a review J Histochem Cytochem. 2018;66(2):67-83

Van der Valk MJM, Hilling DE, Bastiaannet E, Meershoek-Klein Kranenbarg E, Beets GL, Figueiredo NL, Habr-Gama A, Perez RO, Renehan AG, van de Velde CJH, Consortium I. Long-term outcomes of clinical complete responders after neoadjuvant treatment for rectal cancer in the International Watch & Wait Database (IWWD): an international multicentre registry study. Lancet. 2018;391(10139):2537-254

Van Driel WJ, Koole SN, Sikorska K, Schagen van Leeuwen JH, Schreuder HWR, Hermans RHM, de Hingh IHJT, van der Velden J, Arts HJ, Massuger LFAG, Aalbers AGJ, Verwaal VJ, Kieffer JM, Van de Vijver KK, van Tinteren H, Aaronson NK, Sonke GS. Hyperthermic Intraperitoneal Chemotherapy in Ovarian Cancer. N Engl J Med. 2018;378(3):230-240 metastases. New studies on the use of liquid biopsies in primary and metastatic colorectal cancer have been explored and will be initiated.

# Breast

The breast cancer group focuses their main research activities on three programs. The first is personalized breast cancer treatment with the goal to de-escalate breast cancer treatment. In close collaboration with the radiology and pathology divisions, we work on trials investigating which patients are eligible for active surveillance instead of local treatment both in the primary surgery setting and in the neo-adjuvant systemic treatment setting. Together with the Division of Medical Oncology we work on multicenter trials to personalize (neoadjuvant) systemic treatment based on response prediction and monitoring. The second research focus is on the development of 'shared decision making' programs for breast cancer patients. Our third research focus is on outcome of breast cancer care; we actively participate in the NBCA and in close collaboration with the division of quality of care we invest in research focused on both the long term psychological and physical outcome of breast cancer care.

# Melanoma and skin tumours

Together with the Division of Medical Oncology the melanoma unit has invested in the development of new neo-adjuvant therapies in stage III disease, allowing a reduction of the extent of surgery. Other areas of interest have been the treatment and outcome of Merkel Cell Carcinoma (MCC), and loco-regional therapies such as oncolytic viruses. In all these areas our unit has established itself as leaders in the field with high-ranking publications in NEJM, Lancet and Nat Med.

### Soft tissue tumours

The sarcoma unit focusses their research activities on three programs. The first is the development of (international) neo-adjvuant trials for angiosarcoma and retroperitoneal sarcoma. The second is the development of a multi-disciplinary translational research collaboration on the prediction of response to neo-adjuvant systemic therapy, radiotherapy and isolated limb perfusion, and on exploring new therapeutic options. The third is outcome research on different surgical strategies in DFSP, angiosarcoma and retroperitoneal sarcoma.

# HEAD AND NECK SURGERY AND ONCOLOGY

The department is active in clinical and translational research. In 2018 there were several highlights.

In April Lisette van der Molen PhD, Speech and Linguist Pathologist and one of the founders of the first head and neck rehabilitation program in the world, received the national Michel Keijzerfonds Price (of the head and neck cancer patients' society) for the clinically most significant PhD thesis in the last 10 years. In October Martijn van der Heijden has received the first price for the best scientific presentation at the 6<sup>th</sup> World Conference of the IFHNOS in Buenos Aires for his work on epithelialmesenchymal transition. Michiel van den Brekel became an honorary member of the German ENT society.

The head and Neck Co-operative Group organised the Annual Scientific Day of the Dutch Head and Neck Society on the theme: Breaking Barriers in Head and Neck Care. Major topics were: image guided treatments, patient centered care and immunotherapy.

Several research projects published important articles. Several studies on quality of care in laryngectomy surgery and rehabilitation were published. The phase one study on induction immunotherapy before surgery (IMCISION), led by C.L Zuur was completed. The results were very promising with several major responses. A phase 2 study has been started. Also, a study on combining immunotherapy with cetuximab and radiotherapy, led by JP de Boer was finished with promising results. The SPECT-guided elective unilateral (instead of bilateral) elective nodal irradiation lead by Al-Mamgani was completed in January 2018 and the preliminary results are very promising. A phase 2 will start shortly. The Virtual Therapy Group published on the simulation of facial expressions using person-specific sEMG signals controlling a biomechanical face model. This is an important step in the project on personalized prediction of functional defects after head and neck cancer treatment.

# UROLOGY

In 2018 science on the department of urology covered both clinical and preclinical studies. The most important prominent will be addressed by tumor-working group.

#### **Bladder cancer**

#### Bladder sparing treatment options

Urothelial non-muscle invasive carcinoma is being treated with intravesical hyperthermia using mitomycine-C (HIVEC). HIVEC treatment is an option for patients unresponsive to BCG instillations for whom cystectomy is often considered. In a collaboration with the VU-medical center we showed that for muscle invasive smaller bladder cancers brachytherapy using both open and robot brachy-loops implantation was found a viable option for bladder preservation. A retrospective analysis of patients from the world-wide largest cohorts on prostate-sparing cystectomy the functional outcome data were superior to cysto-prostatectomy series without compromising oncological outcome.

### Chemotherapy

A retrospective analysis revealed improved outcome of neoadjuvant chemotherapy and cystectomy in particular in cT4 bladder cancer. In a prospective phase II study with cisplatinbased chemotherapy, the EGFR inhibitor panitumumab and radiotherapy a 94% complete response rate was obtained with 4 patients experiencing local recurrence during 34 months of follow up.

### **Renal cancer**

The group from Axel Bex has finalized a multicenter randomized trial on the use of cytoreductive nephrectomy (CN) showing the

Verhagen CVM, Vossen DM, Borgmann K, Hageman F, Grénman R, Verwijs-Janssen M, Mout L, Kluin RJC, Nieuwland M, Severson TM, Velds A, Kerkhoven R, O'Connor MJ, van der Heijden M, van Velthuysen ML, Verheij M, Wreesmann VB, Wessels LFA, van den Brekel MWM, Vens C. Fanconi anemia and homologous recombination gene variants are associated with functional DNA repair defects in vitro and poor outcome in patients with advanced head and neck squamous cell carcinoma. Oncotarget. 2018;9:18198-213

Young-Afat DA, Hoornweg MJ, van Huizum MA. Autologous breast reconstruction in sickle cell trait: A fine line between success & failure. Breast J. 2018;24(2):193-195 delayed CN did not improve progression free survival but may improve overall survival. Survival in patients with microscopic sentinel node metastases during nephrectomy is long.

# Penile cancer

PDL1 expression in penile cancer was found associated with poor outcome. These observations have led to the initiation of the PERICLES trial where atezolizumab is combined with radiotherapy for patients with advanced penile cancer.

# Prostate cancer

Active involvement of patients in treatment decision making was found to improve outcome in a prospective national trial. MRI anatomical imaging allows personalized prediction of functional outcome after prostatectomy. 68Ga-PSMA PET imaging was found predictive of outcome after prostatectomy. Ultrasensitive PSA analyses after prostatectomy allow multiparameter prediction of biochemical recurrence intervals.

# GYNAECOLOGY

Center for Gynecologic Oncology Amsterdam (CGOA)

The integration of the clinical groups at the NKI-AVL and Amsterdam UMC into Center for Gynecologic Oncology Amsterdam was further structured. Interdisciplinary teams with members from both locations are now established per organ. The teams aim to facilitate guideline writing, conduct clinical and translational research, contribute to teaching and collaborate on (inter)national level.

In addition, in 2019 we will focus on overarching projects we considered as pivotal in an academic clinical setting. We developed a strategic plan for 2019. The ultimate goal remains to install CGOA on one location in Amsterdam.

# Ovarian carcinoma

Ovarian carcinoma is a disease with a high mortality due to the fact that symptoms are present when the disease has spread to the abdomen. In 2018, a large clinical trial evaluating the effect of adding HIPEC to the interval cytoreductive surgery was published. It showed that HIPEC improves overall survival with almost one year. Advanced disease with extensive peritoneal carcinomatosis is difficult to treat and more knowledge about the peritoneum is indispensable. Another method to improve patient outcome, is early detection of ovarian cancer. Research in serum and molecular biomarkers can contribute to this. Ovarian carcinoma is a heterogenous disease with different histological subtypes. Research to clinical characteristics and molecular background of ovarian cancer and the subtypes is another focus of research.

# **Endometrial cancer**

Endometrial cancer is the most common gynecological malignancy in high-income countries. Although the overall prognosis is relatively good, high-grade endometrial cancers tend to recur. Our focus is to develop a risk stratification based on molecular and other tumor characteristics and imaging that helps us to identify patients with extra uterine disease. Minimal invasive surgery including the studies with sentinel node biopsy are ongoing. We contribute in the development of European (ESMO) and national guidelines (oncoline)

### **Cervical Cancer**

Cervical cancer affects 700 women in the Netherlands on an annual basis. On third of these women are younger than 40 years and a significant part of these women still have a child wish. Current treatment modalities to preserve fertility in early stage cervical cancer consist of an operation with poor pregnancy outcomes. In 2018, we started an observational trial for treatment with chemotherapy to reduce the size of the tumor enabling less radical surgery. We expect the number of women who will be able to carry a child after this increases by 5-fold. Besides, we aim to improve the current procedure to screening for cervical cancer by introduction of molecular markers as a triage test in hrHPV positive women in urine and cervical scrapes because many women do not attend the screening program, possibly because of fear for a gynecological examination.

# Vulva

Vulvar cancer is a relatively uncommon disease. Surgery is treatment of choice, causing frequently postoperative morbidity in patients with high stage disease. An alternative treatment, starting with neo adjuvant chemotherapy, could reduce tumour size, thereby diminishing the chance for morbidity. In case of lymph node metastases, prognosis is worse. Tumor-derived factors are an important factor in these metastases and we investigate how this mechanism works and determine if immunotherapeutic strategies could be useful. Also, premalignant vulvar disease is investigated to determine optimal treatment.

# Cancer and pregnancy

On behalf of the International Network on Cancer Infertility and Pregnancy, we reported on the evolution of clinical management over 20 years. We observed a trend towards more chemotherapy administration during pregnancy resulting in less terminations and less prematurity. Chemotherapy administration itself was associated with small for gestational age babies and admission at the neonatal intensive care unit, emphasizing the need for management in high risk obstetric units.

### Gestational Trophoblastic Disease

Gestational trophoblastic disease (GTD) is a heterogeneous group of disorders characterized by abnormal proliferation of trophoblastic tissue. Since GTD is a rare disease, little evidence is available from randomized controlled trials on optimal treatment and follow-up. In Amsterdam, the ATT (Amsterdam Trophoblastic Team) was founded in 2018, to advice on treatment and follow up of GTD. We cooperate with the EOTTD (European Organisation for Treatment of Trophoblastic diseases) and ISSTD (international Society for the Studies on Trophoblastic Disease). In 2018, we started an RCT on providing digital information for these patients. We are also finetuning therapy for very rare subtypes of GTD.

# PLASTIC AND RECONSTRUCTIVE SURGERY

Our research is focused on innovative reconstructive techniques after ablative surgery by other specialists. Additionally, multidisciplinary research is being executed in collaboration with the NKI-AVL Division of Psychosocial Research and Epidemiology, as well as with the oncologic breast task force of the Erasmus University - Daniel den Hoed Clinic in Rotterdam, The Netherlands.

Breast-conserving therapy is defined as a breast-conserving wide local excision of a mammary tumour combined with postoperative radiotherapy. Women who find out after such therapy that they are carrier of a BRCA germ line mutation may still opt for prophylactic bilateral ablative surgery. Because the conservingly treated breast has been previously irradiated, the prophylactic completing ablation is usually performed in a nonskin sparing fashion and possible breast reconstruction may, then, done only secondarily.

Immediate breast reconstruction has been shown to psychologically support women who undergo ablative surgery. We therefore performed 28 prophylactic combined completing skin-sparing mastectomies and implant-based immediate reconstruction. To prevent radiation-induced complications, the implant was covered with the latissimus dorsi muscle. Because this leads to satisfactory results with no increase of oncological risk, we now advocate to contemplate apply this combined approach rather than opting for delayed, secondary breast reconstruction.

Because of the associated high recurrence rate, future reconstructive options should be reckoned with during surgical treatment of primary or recurrent (pre)malignant vulvoperineal lesions. One of the claimed, but never proven advantages of the gluteal fold flap is the possibility of repeated use of the flap in case of recurrence.

A mean of 27 months after initial use, 10 subcutaneously pedicled or perforator-based V-Y advancement or propellerrotation flaps were elevated from previously used gluteal fold flaps in 9 women presenting with recurrent vulvoperineal (pre) malignancy. Five of these women had undergone radiotherapy prior to flap reuse. Although short-term complications were observed in 3 women, all flaps survived and healed completely. With this series, we showed the feasibility of successful reuse of subcutaneous pedicled or perforator-based gluteal fold flaps for repeated vulvoperineal reconstruction, both in non-irradiated and irradiated women.

# ANESTHESIOLOGY, INTENSIVE CARE MEDICINE AND PAIN MEDICINE

The principal aim of our department is to deliver the highest standard of anesthesiological, intensive care and pain therapy and to continually work on the development of best practices in everyday patient care. In 2018 there has been ongoing work on a comprehensive review on the effects of anesthetics on cancer recurrence and patient outcome.

In the supportive care department, a prospective study investigating an intervention to decrease hospital admissions at the end of life is currently running.

Furthermore, clinical studies in the surgical field involve optimal treatment after prostatectomy and breast cancer surgery.




## **Technology Transfer Office**



Koen Verhoef

Head Technology Transfer Office

Koen Verhoef Manager Marije Marsman Senior business developer Tim Moser Senior business developer Anje Raven Business developer Hylke Galama Senior legal counsel Marin Hubertus Legal counsel Stephanie de Meza Legal counsel The Technology Transfer Office (TTO) of the NKI helps NKI researchers and clinicians in concluding contractual agreements around research collaborations and materials, both with other academic research institutions as well as with industry. To this end, it has established a contracts database that is used to maintain an overview of existing rights and obligations to third parties and monitor the performance of contractual arrangements.

In addition, TTO is charged with advancing the application of NKI research results in healthcare. One of the major aims of the Netherlands Cancer Institute is to see its scientific breakthroughs being turned into novel products and services that benefit cancer patients and their families. On occasion, NKI applies for patent protection for promising new technology developed within the institution as a means to attract investment from companies for new product development. TTO manages the patent portfolio and other intellectual property assets of the institute and actively engages with life science/healthcare companies and investors who have the commitment and resources to bring our innovations to the market.

In addition, TTO also handles all consultancy agreements for the institute and has a sizeable portfolio of research materials which it licenses to industry.

### **SELECTED HIGHLIGHTS FOR 2018**

#### Collaboration agreement with the Princess Máxima Centre

Starting November 1<sup>st</sup> 2018, NKI has entered into a collaboration agreement with the Princess Máxima Centre (PMC) on Technology Transfer. In particular, the NKI TTO will assist the PMC with drafting, reviewing and negotiating research-related contracts, as well as provide advice on valorization issues, in particular around the commercial potential of inventions coming out of the PMC's research groups and the optimal way of progressing these to the clinic.

PMC has employed a legal counsel who is supervised by senior staff in and is part of the NKI tech transfer team. Both parties anticipate a long-standing and durable relationship. Once the tech transfer function within the PMC has sufficiently developed, it may be possible for PMC-based tech transfer staff to support activities within NKI as well.

#### **Oncode Institute**

Oncode Institute is an independent research institute with a mission to create impact in the lives of cancer patients. It has three cornerstones: excellent research, intensive cooperation and bringing new treatments faster into the clinic. Over the course of 2018, Oncode Institute has appointed a team of valorization experts to help build on and further develop research results from the various Oncode teams and, in doing so, aim to eventually increase the quality of life of patients.

The NKI TTO has supported Oncode Institute in 2018 as it built up its Valorization Team by continuing to provide support to the NKI research groups that are affiliated with Oncode. Since then, two NKI TTO team members are seconded for part of their time to Oncode, working one day per week out of Oncode's offices in Utrecht. In addition, the legal team within the NKI TTO provides advice to Oncode on legal matters. Formalization of this arrangement is expected early 2019.

### SPIN-OFF COMPANY FOUNDED IN 2018 SlideScore

SlideScore (www.slidescore.com) was founded by Jan Hudecek, a scientific programmer with the Research IT group at NKI, who – learning about the frustration of pathologists around their experiences with standard software solutions that are bundled with digital slide scanners – developed an intuitive, easy to use and online platform for scoring pathology slides. By working with pathologists at the Netherlands Cancer Institute during development, he obtained crucial feedback that allowed him to finetune the software to match the end-users needs.

The company was founded in Q2 of 2018 and a license agreement was agreed with NKI later in the year. Thus far, more than 400,000 answers have been submitted to the platform, which is growing very rapidly through positive referrals among pathologists.



### TTO 2018 IN NUMBERS\*

\* some numbers are still provisional at this stage as financial records for 2018 are still to be finalized.

### **Research facilities**

Modern day biomedical research depends on expensive equipment and extensive experience with very specialized techniques. Individual researchers need to use a wide range of techniques for their work. It is impossible for anyone to master them all or to be given the budget to buy all the equipment they are likely to need. The NKI has resolved this problem and used its funding in the most efficient way by creating dedicated, centralized technology (core) facilities that serve the whole Institute. These research facilities play an essential role in almost all research performed at the NKI.

The facilities of the NKI are offered free of charge to NKI-researchers. In some cases, the costs of consumables are charged to the project budget of the group. There is in principle no restriction on the amount of time one can utilize a certain facility. When extensive support from a facility is required, this is discussed beforehand and group leaders transfer some of their budget to the facility in order to finance the support (e.g. for recruitment of extra staff). In 2018 we published an internal guideline for recognition of the contribution of personnel at research facilities in publications. Most facilities of the NKI are supervised by a user committee. The Research Council installs these user committees, which consist of faculty members and postdocs, PhD students and/ or technicians. The user committees meet at least once a year and they see to the quality of the service provided by the facility and make sure that the facility caters to the need of the researchers. They also review requests for new equipment for the facility. The head of the facility and the director of operations are invited to the user committee meetings.

The research facilities of the NKI are presented on the next pages. In addition to those facilities we also provide the researchers with the following facilities:

- sequencing facility performing DNA sequence and fragment analysis for users in the research divisions and the DNA-diagnostics laboratory of the Department of Human Pathology. The Sequencing Facility has an important role in the diagnostic analysis of patient samples. Its procedures and protocols are therefore accredited by the CCKL. Researchers from all divisions make use of the service provided by the facility. The facility is equipped with a 3730 DNA analyzer capillary sequence machine, which can handle up to 96 samples simultaneously, and a 3500xL Genetic Analyzer capillary sequence machine. The sequence facility handled approximately 46,000 samples;
- electron microscopy support for staff members of the NKI and for others through collaborations with NKI staff. The facility performs the whole procedure from fixation until the generation of the final pictures, from tissues to proteins. The facility is supervised by a facility committee and supported by colleagues from the AMC EM-group for EM-related backup. The NKI has no EM of its own anymore; we now buy time on the EMs at the AMC. The most frequently used techniques are Immuno-EM on tokuyasu cryosections for localization of proteins within cells, negative staining and cryo-EM for visualization of large proteins or protein complexes. The AMC EM is used for quality checking of cryo-EM grids before going to the high-end EMs at NECEN. We offer IT support for the development of software and databases;
- library with dedicated support for data management and literature searches and providing access to a large collection of electronic journals and books;
- cryogenic storage of cells and tissues in a centralized liquid nitrogen storage facility;
- culture labs at different containment levels;
- dedicated labs for working with radionuclides or carcinogens;
- technical workshop that can make modifications to existing equipment or develop new tools;
- glassware cleaning.

## **Proteomics Facility**



Maarten Altelaar

Head Proteomics Facility

Maarten Altelaar PhD Head Onno Bleijerveld PhD Senior post-doc Liesbeth Hoekman BSc Technical staff

# Selected publications

Simonetta M, de Krijger I, Serrat J, Moatti N., Fortunato D, Hoekman L, Bleijerveld OB, Altelaar AFM, Jacobs JJL. H4K20me2 distinguishes pre-replicative from post-replicative chromatin to appropriately direct DNA repair pathway choice by 53BP1-RIF1-MAD2L2. Cell Cycle 2018;17(1):124-36

Spel L, Nieuwenhuis J, Haarsma R, Stickel E, Bleijerveld OB, Altelaar M, Boelens JJ, Brummelkamp TR, Nierkens S, Boes M. Nedd4-Binding Protein 1 and TNFAIP3-Interacting Protein 1 control MHC-1 display in neuroblastoma. Cancer Res 2018;78(23):6621-31

Stelloo S, Nevedomskaya E, Kim y, Hoekman L, Bleijerveld OB, Mirza T, Wessels LFA, van Weerden WM, Altelaar AFM, Bergman AM, Zwart W. Endogenous androgen receptor proteomic profiling reveals genomic subcomplex involved in prostate tumorigenesis. Oncogene 2018;37(3):313-22 The Proteomics Facility started its activities in July 2013 aided by the NWO project Proteins@Work, part of the National Roadmap Large-scale Research Facilities of the Netherlands, and provides proteomics services to all researchers within the NKI. Occasionally, projects are also run for researchers outside the institute that do not have the experience and/or equipment available. Since July 2018 the Proteomics Facility became a permanent facility within the Institute. As of yet, over 330 proteomics experiments have been performed for (ongoing) projects of more than 20 research groups within the NKI.

### Equipment

Our Facility operates a Thermo Orbitrap Fusion hybrid mass spectrometer equipped with a Proxeon nLC1000 nano-LC system for LC-MS/MS-based peptide/protein identification and quantification. Aided by funding from the NWO X-Omics Initiative, we just purchased a second, state-of-the-art Thermo Q Exactive HF-X hybrid Quadrupole-Orbitrap mass spectrometer with a Proxeon nLC1200 nano-LC system which will be installed in early 2019. Depending on sample complexity and when required, samples are pre-fractionated at the protein level by SDS-PAGE, or at the peptide level using a dedicated offline High-pH HPLC fractionation system (Agilent 1200) in order to increase depth of proteome coverage.

### Proteomics

Projects to which the NKI Proteomics Facility has provided their services include mostly immunoprecipitation experiments aimed at unraveling protein-protein interactions, global proteome profiling of cell lines and post-translational modification-focused profiling such as protein phosphorylation and ubiquitination. In 2018 we performed over 60 proteomics experiments for 19 research groups. We saw a slight increase in requests for targeted protein quantitation using parallel reaction monitoring (PRM).

Our efforts have contributed to several publications. In a publication by the Zwart lab, combination of proteomic and genomic data revealed subclasses of Androgen Receptor (AR) transcriptional complexes, differentiating normal AR behavior from the oncogenic state. With the Jacqueline Jacobs lab, identification of MAD2L2 protein interactors aided in the discovery that the differential H4K20 methylation status between pre-replicative and post-replicative DNA represents an intrinsic mechanism that locally ensures appropriate recruitment of the 53BP1-RIF1-MAD2L2 complex at DNA double-strand breaks, to engage the correct DNA repair pathway. Furthermore, in a collaboration between the Brummelkamp lab and the Translational Immunology Laboratory of UMC Utrecht, proteomics provided a valuable insight into the mechanism by which N4BP1 controls MHC-1 display in neuroblastoma.



### Roderick Beijersbergen

Head Robotics and Screening Center

Roderick Beijersbergen PhD Head Cor Lieftink MSc Bioinformatician Ben Morris Technical staff

# Selected publications

Matlung HL, Babes L, Zhao XW, van Houdt M, Treffers LW, van Rees DJ, Franke K, Schornagel K, Verkuijlen P, Janssen H, Halonen P, Lieftink C, Beijersbergen RL, Leusen JHW, Boelens JJ, Kuhnle I, van der Werff Ten Bosch J, Seeger K, Rutella S, Pagliara D, Matozaki T, Suzuki E, Menke-van der Houven van Oordt CW, van Bruggen R, Roos D, van Lier RAW, Kuijpers TW, Kubes P, van den Berg TK. Neutrophils Kill Antibody-Opsonized Cancer Cells by Trogoptosis. Cell Rep. 2018;23(13):3946-3959

Serresi M, Siteur B, Hulsman D, Company C, Schmitt MJ, Lieftink C, Morris B, Cesaroni M, Proost N, Beijersbergen RL, van Lohuizen M, Gargiulo G. Ezh2 inhibition in Kras-driven lung cancer amplifies inflammation and associated vulnerabilities. J Exp Med. 2018;215(12):3115-3135

Wang C, Jin H, Gao D, Wang L, Evers B, Xue Z, Jin G, Lieftink C, Beijersbergen RL, Qin W, Bernards R. A CRISPR screen identifies CDK7 as a therapeutic target in hepatocellular carcinoma. Cell Res. 2018;28(6):690-692

## Robotics and Screening Center

The NKI Robotics and Screening Center (NRSC) was established in early 2005 with the goal of developing technology platforms for the discovery of gene function, the unraveling of molecular pathways, the identification of novel drug targets and to support small molecule screening. In addition, the NRSC is a resource center that provides robotic technologies for medium to high throughput applications, provides support and expertise for automated cell and biochemical assays and is used for the development, production and maintenance of large functional genomic screening reagent collections.

A strong focus of the NRSC is on the development and application of large-scale functional genomic screening technologies. Since the generation of the first NKI human shRNA library in 2002, we have extended our RNAi platform with several large (genome-wide) collections for human and mouse. These collections are available as individual reagents and can be used to generate smaller sub-collections for specific screening projects. We have generated sub-collections for the human kinome, the PI3K/MAPK signaling network, a DNA damage collection, a hypoxia response collection and an epigenetic modifier collection. Besides our RNAi platforms we have also invested in the CRISPR/CAS9 technology. We have acquired different genome-wide sgRNA libraries for human and mouse and we have set-up a pipeline for the production of custom libraries for subsets of genes or specific applications using custom vector designs. In addition, we have incorporated technologies that allow for the (inducible) inhibition (CRISPRi) or activation (CRISPRa) of gene expression in mammalian cells.

Most screens are performed as pooled screens, a technology pioneered by us in 2002. We have continued to improve this technology and have developed an analysis pipeline for screening results. We assist individual researchers with setting up pooled screens and provide reagents, protocols and analysis tools to research groups within and outside of the NKI.

In addition to the generation and application of genomic tools we have the ability to perform automated small molecule screens. The NRSC provides a state-of-the-art infrastructure for medium to high-throughput screening projects including automated liquid handling, plate handling and sealing, well dispensers and plate readers. We provide access to several collections of small molecules including the SPECS collection (23,225 diverse compounds), the LOPAC collection (1,250 pharmacological active compounds), the NCI diversity and oncology sets, the John Hopkins FDA and foreign approved drugs and bioactive compounds (1,450 compounds) and several enzyme specific collection and the protease inhibitor library. These collections are used in both cell-based and biochemical assays to identify compounds that can be used as biological tools or possibly as starting points for chemical optimization and lead development.

## **Biolmaging Facility**



Lenny Brocks Facility Manager



## Marjolijn Mertz

Facility Manager

Lenny Brocks PhD Facility Manager Marjolijn Mertz MSc Facility Manager Bram van den Broek PhD Post-doc Amalie Dick PhD Microscopy manager

### Publications

Halim VA, García-Santisteban I, Warmerdam DO, van den Broek B, Heck AJR, Mohammed S, Medema RH. Doxorubicin-induced DNA damage causes extensive ubiquitination of ribosomal proteins associated with a decrease in protein translation. Mol Cell Proteomics. 2018

Gogola E, Duarte AA, de Ruiter JR, Wiegant WW, Schmid JA, de Bruijn R, James DI, Guerrero Llobet S, Vis DJ, Annunziato S, van den Broek B, Barazas M, Kersbergen A, van de Ven M, Tarsounas M, Ogilvie DJ, van Vugt M, Wessels LFA, Bartkova J, Gromova I, Andújar-Sánchez M, Bartek J, Lopes M, van Attikum H, Borst P, Jonkers J, Rottenberg S. Selective Loss of PARG Restores PARylation and Counteracts PARP Inhibitor-Mediated Synthetic Lethality. Cancer Cell. 2018;33(6):1078-1093.e12 The Biolmaging Facility provides scientific and technical support in basic and advanced light microscopy and image processing and analysis. We manage a diverse collection of light microscopes systems for brightfield and fluorescence applications, including widefield, confocal, and superresolution systems. We provide dedicated application trainings to microscope users of the institute and offer courses in light microscopy and image analysis. The Biolmaging Facility participates in LCAM (van Leeuwenhoek Centre for Advanced Microscopy, Amsterdam), a formal collaboration between three innovative microscopy centres, located at the University of Amsterdam (UvA), the Academic Medical Centre (AMC) and the Netherlands Cancer Institute (NKI). The Biolmaging Facility, together with the Jalink lab and Van Rheenen lab, constitutes the NKI part of LCAM.

### The Biolmaging staff provide the following services:

- Setup daily maintenance and regular quality checks of the microscopes
- Expert advice on experimental design and sample preparation
- Microscopy and image analysis training (introductions, workshops, courses)
- Custom solutions for image processing and quantification
- Data storage and backup on a central server
- Minor repairs of microscopes in other departments
- Technical advice for grant applications and microscopy purchases
- Access to and assistance with functional and/or advanced imaging techniques (FRET, FLIM, FCS, SuperResolution, Multiphoton, Intravital Imaging)

### Training/Courses

- Introduction to microscopy
- In the footsteps of Antoni van Leeuwenhoek (5-day graduate school basic microscopy course)
- ImageJ/Fiji (image processing & analyses course)
- We regularly (-annually) participate in FEBS- and EMBO-sponsored advanced imaging courses (organized via LCAM)

### Equipment list

- Spinning Disk Confocal (Andor Dragonfly)
- Four Confocal Microscopes (Leica SP5)
- TIRF microscope (Leica)
- Three (live imaging) widefield microscopes (Zeiss Z Observer Z1)
- Color widefield microscope (Zeiss AxioVert 200M)
- Macroscope (Zeiss AxioZoom V16 Stereo microscope)
- Three high-end workstations with image processing & analysis software (Huygens, Imaris, Matlab, Leica en Zeiss Zen)



#### **Annegien Broeks**

Head Core Facility Molecular Pathology & Biobanking

Annegien Broeks PhD Head Ingrid Hofland Technical staff Dennis Peters Technical staff Linde Braaf Technical staff Sten Cornelissen Technical staff Maartje Alkemade Technical staff Charlotte van Rooijen Technical staff Rianne van der Wiel Technical staff Rianne van de Linden Technical staff Donne Majoor Technical staff Wouter Kievit IT staff Yush Lam IT staff



Blank CU, [...], Schumacher TN. Neoadjuvant versus adjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma. Nat Med. 2018;24:1655-1661

Sobral-Leite M, [...], Schmidt MK. Assessment of PD-L1 expression across breast cancer molecular subtypes, in relation to mutation rate, BRCA1-like status, tumorinfiltrating immune cells and survival. Oncoimmunology. 2018;11

Visser LL, [...], Wesseling J. Clinicopathological Risk Factors for an Invasive Breast Cancer Recurrence after Ductal Carcinoma In Situ-A Nested Case-Control Study. Clin Cancer Res. 2018;24:3593-3601

# Core Facility Molecular Pathology & Biobanking

### Activities

The Core facility Molecular Pathology & Biobanking (CFMPB) was established in 2010 to ensure that human material is used properly and efficiently, especially in the case of scarce, valuable samples. The CFMPB registers, evaluates, coordinates, assists and facilitates research involving human related biospecimens (serum, blood, circulating DNA, FFPE and fresh frozen biopsies, DNA, RNA etc.). The facility provides professional expertise and support regarding medical-ethical issues in translational research with human biospecimen. All CFMPB activities are supported by an in house developed web application Application and Request Tool (ART). ART-CFMPB and ART-Biobank are the online tools for e.g. study registration, Institutional Review Board (IRB) review, lab logistics, track and trace of biospecimens and cost recovery. All the user activities are stored in the ART database and by doing so, information about the applications, biospecimen identifiers, succeeding actions and derivatives accumulates and this enriches the data already available.

The CFMPB has fully equipped and dedicated Molecular and Histology/Immunohistochemistry (IHC) labs. All routine IHC and newly developed IHC protocols (single & multiplex, brightfield and fluorescent), RNA scope and FISH are performed using the BenchMark & Discovery (Ventana) automated stainers (269 protocols up and running; 116 in research setting only), all in close collaboration with the Pathology department and pathologists. The Aperio & Vectra-3 scanners in combination with slidescore and HALO software tools enable digital pathology and multi-spectral image analysis. Next year we will explore and implement new multi-spectral image analysis techniques as the Nanostring Digital Spatial Profiling (DSP) and Codex (Akoya). To guarantee standard high quality, all DNA and RNA isolations from human (Biobank) samples (FFPE, FF, serum, blood etc.) are performed by, or under supervision of, the CFMPB technicians. All DNA and RNA isolations from human biospecimens are performed using the Qiacube or Qiasymphony, according to standard protocols and QC. Molecular analysis techniques like (RT)-PCR, MLPA and nCounter Nanostring are offered. In 2018 we have registered 97 new studies (431 studies up and running) and handled 844 lab requests (including e.g. 21.399 FFPE& 872 FF samples, 6949 DNA/RNA isolations and 10.521 IHC & 5604 HE stains).

## **Protein Facility**



Patrick Celie Head Protein Facility

Patrick Celie PhD Head Alexander Fish PhD Post-doc Magda Stadnik-Spiewak MSc Technical staff John de Widt Technical staff



Stolt-Bergner P, Benda C, Bergbrede T, Besir H, Celie PHN, Chang C, Drechsel D, Fischer A, Geerlof A, Giabbai B, van den Heuvel J, Huber G, Knecht W, Lehner A, Lemaitre R, Nordén K, Pardee G, Racke I, Remans K, Sander A, Scholz J, Stadnik M, Storici P, Weinbruch D, Zaror I, Lua LHL, Suppmann S. Baculovirus-driven protein expression in insect cells: A benchmarking study. J Struct Biol. 2018;203:71-80

Uckelmann M, Densham RM, Baas R, Winterwerp HHK, Fish A, Sixma TK, Morris JR. USP48 restrains resection by site-specific cleavage of the BRCA1 ubiquitin mark from H2A. Nat Commun. 2018;9:229

Van Beusekom B, Heidebrecht T, Adamopoulos A, Fish A, Pardon E, Steyaert J, Joosten RP, Perrakis A. Characterization and structure determination of a llama-derived nanobody targeting the J-base binding protein 1. Acta Crystallogr F Struct Biol Commun. 2018;74:690-695 The genes within the DNA encode all the proteins that a cell requires to stay vital and function properly within a living organism. Proteins are essential molecules involved in almost all biological processes. DNA damage – as occurs in cancer – may cause mutations within genes and hence can lead to generation of dysfunctional proteins. These mutated proteins could become inactive or even hyper-active and cause deregulation of cellular function and -growth. To understand the (dys)function of proteins, e.g. in the context of cancer development, recombinant proteins can be designed, produced, purified and subsequently be characterized by a variety of functional and structural methods *in vitro*. The Protein Facility provides dedicated equipment, knowledge and experienced personnel to support all these experiments. Access is offered to both internal and external academic researchers.

### Internal projects

Within the past year, the facility has provided support to multiple projects requested by 12 research groups within the NKI. A significant number of the projects involved the expression and purification of recombinant proteins. These were subsequently used by researchers as reagent for their own experiments, e.g. as reagent within biochemical assays, as tool in microscopy studies, for raising antibodies, etc. In a number of projects, biophysical characterization follow-up was requested to analyze protein oligomerization, stability and interaction with other molecules. A subset of proteins were specifically produced for structural studies (NMR and X-ray crystal diffraction). In addition to customized support to each individual project, the facility also maintains a repository of reagents that are of common use to many researchers. These include generally used proteins (enzymes, proteases, antibodies), cloning utilities (expression vectors, cloning reagents) and stock cell cultures.

#### External access

The facility is open to external academic researchers. Access is provided through direct contact, but also via European projects and infrastructures: the facility is part of Instruct-ERIC (https://instruct-eric.eu/), a European infrastructure in structural biology which provides access to high-end technology, and also participates in iNEXT (Infrastructure for NMR, EM and X-rays for Translational Research; www.inext-eu.org/), funded by the Horizon2020 program. About 20 % of the total capacity of the facility was dedicated to projects that were delivered through these infrastructures. A substantial part of this time was allocated to the access of our biophysical platform and to the so-called Structural Audit (which is part of iNEXT), a protein-quality control service to select proteins that are amenable for follow-up structural studies.

### Networks

Implementation of new methods and technologies is essential to keep up-to-date with the latest developments in protein research. A useful source has been provided by two EU networks in which the facility participates as an active member: P4EU, which consist of various protein expression facilities and the biophysical network ARBRE MOBIEU. Both networks organize courses, meetings, benchmarking experiments, sharing of reagents/protocols and discussion of new methods. An example of the collaboration within the P4EU network is the publication of a benchmarking study on protein expression methods in Sf9 insect cells.

## **Biostatistics Center**



Michael Hauptmann

Head Biostatistics Center

Michael Hauptmann PhD Group leader Katarzyna Jozwiak PhD Academic staff Sander Roberti MSc PhD student John Zavrakidis MSc Junior researcher

# Selected publications

Groot HJ, Gietema JA, Aleman BMP, Incrocci L, de Wit R, Witjes AJ, Groenewegen G, de Brouwer P, Meijer OWM, Hulshof MCCM, van den Berg HA, Smilde TJ, Vanneste BGL, Aarts MJ, van den Bergh ACM, Kerst JM, van den Belt-Dusebout AW, Lubberts S, Jozwiak K, Horenblas S, van Leeuwen FE, Schaapveld M. Risk of diabetes after para-aortic radiation for testicular cancer. Br J Cancer 2018;119:901-907

Halldorsson MO, Hauptmann M, Snaebjornsson P, Haraldsdóttir KH, Aspelund T, Gudmundsson EF, Gudnason V, Jonasson JG, Haraldsdottir S. The risk of developing a mismatch repair deficient colorectal cancer after undergoing cholecystectomy. Scand J Gastroenterol 2018;53(8):972-975

Krul IMK, Opstal-Van Winden AWJ, Janus CPM, Daniels LA, Appelman Y, Maas AHEM, de Vries S, Jozwiak K, Aleman BMP, van Leeuwen F. Cardiovascular disease risk after treatment-induced premature ovarian insufficiency in female survivors of Hodgkin lymphoma. J Am Coll Cardiol, 2018;72(25):3374-3375 The Biostatistics Center provides statistical expertise to researchers and doctors on diverse topics from all areas of observational and experimental biomedical cancer research. This involves developing and implementing statistical approaches to cover a wide range of topics including the design and analysis of epidemiologic studies and clinical trials, the identification of prognostic and predictive biomarkers, sample size calculations, risk prediction, missing data imputation, as well as animal and in vitro experiments. In 2018, the Biostatistics Center has been involved in, for instance, studies of late effects of cancer treatment. Using a case-cohort design within a multicenter cohort comprising survivors treated for testicular cancer before 50 years of age between 1976 and 2007 in 13 Dutch hospitals, risk of subsequent malignant neoplasms and risk of diabetes mellitus were investigated (Groot et al, 2018). Among Dutch women who were treated for Hodgkin lymphoma before 41 years of age between 1965 and 2000, risk of cardiovascular disease in relation to early artificial menopause was evaluated (Krul et al, 2018). Multiple imputation and linear excess relative risk modelling were employed. Conditional polytomous logistic regression was used for a case-control study nested in a cohort of all subjects diagnosed with colorectal cancer in Iceland in the period 2000-2009. There was no evidence of an increased risk of developing a mismatch repair deficient colorectal cancer among subjects who had undergone a prior cholecystectomy (Halldorsson et al, 2018).

Moreover, the group offers annual statistical training for NKI-AVL employees and graduate students from the Amsterdam University Medical Centre and elsewhere. A one-week course on Basic Medical Statistics covers explanation of standard statistical techniques for the evaluation of biomedical data. It provides an introduction into design aspects, methods of summarizing and presenting data, estimation, confidence intervals and hypothesis testing, and multivariable regression methods for the assessment of association. Additionally, several half-day workshops on specific methodological challenges such as sample size calculation, interaction analysis or missing data are also organized by the group.

Currently, the group has developed a web-based infrastructure for choosing an optimal design and innovative statistical analysis of animal studies conducted at the NKI. Researchers can use the website http://statsinvivo.nki.nl/ for explanations of basic statistical concepts and for online sample size calculations needed for planning and conducting informative, efficient and ethically acceptable mice experiments.



### Ivo Huijbers

Head MCCA transgenic facility / animal facility T2

#### Ivo Huijbers PhD Head

Rahmen Bin Ali BSc Technical staff Tanya Vermeeren-Braumuller BSc Technical staff Fina van de Ahé Technical staff Jan Paul Lambooij BSc Technical staff Colin Pritchard MSc Technical staff Linda Henneman PhD Technical staff Lona Kroese MSc Technical staff Leo Ennen BSc Team leader T2 12 Animal care takers

# Selected publication

Maia ARR, Linder S, Song JY, Vaarting C, Boon U, Pritchard CEJ, Velds A, Huijbers IJ, van Tellingen O, Jonkers J, Medema RH. Mps1 inhibitors synergise with low doses of taxanes in promoting tumour cell death by enhancement of errors in cell division. 2018;118:1586-1595

# MCCA transgenic facility / animal facility T2

### Activities

In 2018 the organizational structure of the animal facility has been adjusted. The animal facility has been divided in three units, T1, T2 and T3, each with their own specialty, focus and head of facility. T2 is a combined experimental and breeding unit where mice are kept under specific pathogen free conditions (SPF). T2 houses the MCCA transgenic facility that creates custom-made genetically engineered mouse strains for researchers and performs the cryopreservation of mouse strains by freezing sperm or embryos.

In 2018, T2 has seen an increase in cages of 9%. Most mice at T2 have a defined genetic alteration or are mouse models of cancer. The latter are mice with the similar genetic alterations as seen in cancer patients. These mice develop cancer over time and are studied for basic cancer biology or to test new anti-cancer treatments. The 12 animal caretakers and their team leader look after the day-to-day care of animals. They also provide specialized biotechnical support making sure the best treatment is provided. In 2018, an optimized pain relief protocol has been implemented providing optimal pain relief with minimal discomfort to the mice. Also in 2018, a new revitalization pipeline was successfully implemented allowing the introduction of new strains in the facility by performing *in vitro fertilization* (IVF) using cryopreserved sperm.

In 2018, the MCCA transgenic facility created - 30 new genetically modified mouse strains for 20 unique customers. About half of the customers are group leaders at the NKI, the other half is divided equally between customers from national and international academia. Almost all mouse strains were made under full-service conditions covering all steps from vector design to screening of the founder mice and their respective offspring. The main innovations from 2018 are the creation of knock-in alleles in endogenous loci using CRISPR/Cas9 with long-single strand DNA (IssDNA) templates and the implementation of the goGermline technology. The latter technology is acquired from Ozgene and ensures 100% embryonic stem (ES) cell derived mice. This technology greatly improves the success rate of creating genetically engineered mice from ES cells and is a clear 3R improvement.



#### Robbie Joosten

Manager Research High-Performance Computing facility

Robbie Joosten PhD Facility manager Ismail Koraichi BSc Technical staff Torben Wriedt MSc Technical staff

# Selected publications

Kaaij LJT, Van der Weide RH, Ketting RF, De Wit E. Systemic Loss and Gain of Chromatin Architecture throughout Zebrafish Development. Cell Rep. 2018;24(1):1-10.e4

Kluin R, Kemper K, Kuilman T, Iyer V, Forment JV, de Ruiter J, ter Brugge P, Jonkers J, Velds A, Adams DJ, Peeper DS and Krijgsman O. XenofilteR: computational deconvolution of mouse and human reads in tumor xenograft sequence data. BMC Bioinformatics 2018;19:366

Van Beusekom B, Joosten K, Hekkelman ML, Joosten RP, Perrakis A. Homology-based loop modeling yields more complete crystallographic protein structures. IUCrJ, 2018;5:585-94

# Research High-Performance Computing facility

Our facility deploys, maintains, and secures High-Performance Computing solutions for eighteen research groups in the NKI and one research facility. The facility takes care of the backbone infrastructure and the group-owned computing platforms, so the research groups have the freedom to focus on the science of their computational work. This covers almost the entire spectrum of the research at the NKI as is exemplified by the publications that involved the facility's setup.

2018 was our first full year of operations. The facility has grown to 160 users of 17 machines with in total 850 CPUs, 3 TB of RAM, and 530 TB of storage. The growing user base has broad IT needs. Next to the compute nodes, the facility features 3 high-end GPU-computing workstations, two code repositories, a large scientific databank, several scientific webservers and services, and a lab equipment booking system.

Scientific computing requires a great deal of connectivity to the outside world. At the same time patient privacy is an important concern. Therefore, the network of RHPC is separate from the regular NKI-AVL network. This improves the safety of patient data, but makes data transfer to the facility from within the institute less convenient. Together with the Genomics Core Facility, a user-friendly data transfer system was implemented in the fall of 2018. Data transfer with external collaborators is increasing and many case-specific solutions were set up. The security of the facility was found to be very good in a third-party penetration test early 2018. Nevertheless, together with our users (notably the Molecular Carcinogenesis division) the security for interactive computing was further increased.

### Genomics core facility



Ron Kerkhoven

Head Genomics core facility

Ron Kerkhoven PhD Head

Marja Nieuwland MSc Wet-lab team leader

Arno Velds MSc Bioinformatic team leader

Roel Kluin MSc Bioinformatic staff Iris de Rink MSc Bioinformatic staff Shan Baban MSc Technical staff Wim Brugman MSc Technical staff Charlaine van Steenis MSc Technical staff

Stéphanie van Zoelen MSc Technical staff

Samanta Zweers MSc Technical staff

Selected publications

Kluin RJC, I....], Krijgsman O. XenofilteR: computational deconvolution of mouse and human reads in tumor xenograft sequence data. BMC Bioinformatics. 2018;19(1):366

Scheper W, I....1, Schumacher TN. Low and variable tumor reactivity of the intratumoral TCR repertoire in human cancers. Nat Med. 2019;25(1):89-94

Verhagen CVM, I....], Vens C. Fanconi anemia and homologous recombination gene variants are associated with functional DNA repair defects *in vitro* and poor outcome in patients with advanced head and neck squamous cell carcinoma. Oncotarget. 2018;9(26):18198-18213 The Genomics Core Facility (GCF) supports users in all aspects of Next Generation Sequencing experiments in their research projects. The facility provides advice, performs library preparation at consumable cost prize, runs the sequencing machines, manages the data storage and performs data analysis. The facility is involved in many research projects and reports on these subjects in lectures, scientific publications with NKI investigators and conference presentations. The facility also has an interest in making available new technologies and innovative sequencing applications and welcomes collaborations that enable this. Education of students and post-docs is supported by the core.

#### Equipment

The facility is equipped for deep sequencing with two Illumina HiSeq2500 and an Illumina MiSeq machine. In 2018 we renewed a set of PCR machines and acquired a qPCR setup for better library quantification. A new cleanroom with flow-cabinet was established for SmartSeq2 applications and a 10X Chromium controller was installed for droplet based Single Cell applications. This year the Covaris machine (fragmentation of nucleic acids) was replaced by a newly developed 8 tube version of the machine. Several instruments (BioAnalyzer, Qubit, Covaris and E-gel) were setup to be used hands-on by customers on request. Via collaborations with the NKI Oncode Institute research groups we acquired funding for a dedicated NextSeq500 machine for single cell applications.

#### Workflows

Standard routine is that users register new samples from their own PC in the sample tracking database GCFdb using a web based portal. Sample tracking, sequencing monitoring, billing administration, reporting and data maintenance are the main features of this in-house designed software package. In 2018, features for data sharing and for easy data transport to in house network systems were added. During the actual sample delivery to the core, sequencing setup, settings and expected results are discussed with the user. Projects are assigned to lab technicians keeping users informed of subsequent steps like sample preparation, pooling, sequencing and analysis. Data generated by the sequencing machines is stored centrally and secured at the NKI-IT department. Users receive links to primary data files (FASTQ) and have the choice to perform data analysis on their own or to collaborate with the facility for more in-depth analysis. Upon finalization of the work, the system calculates the costs for the work done, and a money transfer order is sent out.

#### **Experiment types**

The facility aims to be very flexible regarding the types of samples that can be delivered as well as the workflows that are available. A user can hand in tissue, cells, extracted nucleic acids or libraries ready for sequencing. The facility has acquired a lot of expertise in library preparation both from fresh samples as well as from formalin fixed (FFPE) samples. Common experiment types are RNAseq, miRNAseq, ChIPseq, CNVseq, PCRseq, Methyl-seq and Target Enrichment strategies. The latter comprise Exomes, Kinomes, as well as custom designed panels which can be ordered in collaboration with the facility. Besides preparing sequence libraries, the facility also performs sequencing on custom prepared libraries. Examples are the TRC (Mission) short hairpin screens, functional screens in haploid cells, CRISPR/Cas9 screens and screens for nuclear organization and epigenetics (DamID, TRIP).

#### New developments

The facility is involved in Low Input Sample preparation (Smart-seq2, Cell-seq2) and in Single Cell sequencing. After an educational visit to Harvard Medical School we started out using DropSeq single cell sequencing. Later this year this was repaced by the 10X-Genomics "Chromium" machine. By tagging cell populations with labeled antibodies, pooling strategies can be applied reducing the experimental costs of library preparation. Even combined analyses work in single cells: while counting mRNA molecules in thousands of indivual T-cells, the T-cell receptor sequence, was determined simultaneously in over 6,000 human T-cells.



Sjoerd Klarenbeek Head Experimental Animal Pathology

Sjoerd Klarenbeek Pathologist Ji-Ying Song Pathologist Jelrik van der Meer Technical staff Joost van Ooij Technical staff Ellen Riem Technical staff Lex de Vrije Technical staff Valerie Wirokromo Technical staff

# Selected publications

Boshuizen J, Koopman LA, Krijgsman O, Shahrabi A, van den Heuvel EG, Ligtenberg MA, Vredevoogd DW, Kemper K, Kuilman T, Song JY, Pencheva N, Mortensen JT, Foppen MG, Rozeman EA, Blank CU, Janmaat ML, Satijn D, Breij ECW, Peeper DS, Parren PWHI. Cooperative targeting of melanoma heterogeneity with an AXL antibody-drug conjugate and BRAF/MEK inhibitors. Nat Med. 2018;24(2):203-212

Kas SM, de Ruiter JR, Schipper K, Schut E, Bombardelli L, Wientjens E, Drenth AP, de Korte-Grimmerink R, Mahakena S, Phillips C, Smith PD, Klarenbeek S, van de Wetering K, Berns A, Wessels LFA, Jonkers J. Transcriptomics and Transposon Mutagenesis Identify Multiple Mechanisms of Resistance to the FGFR Inhibitor AZD4547. Cancer Res. 2018;78(19):5668-5679

Maia ARR, Linder S, Song JY, Vaarting C, Boon U, Pritchard CEJ, Velds A, Huijbers IJ, van Tellingen O, Jonkers J, Medema RH. Mps1 inhibitors synergise with low doses of taxanes in promoting tumour cell death by enhancement of errors in cell division. Br J Cancer. 2018;118(12):1586-1595

## Experimental Animal Pathology

### Activities

The Experimental Animal Pathology facility provides broad pathology support for research projects involving the use of animals. Our activities include consultancy and collaboration with scientists in all phases of a project, from study design to publication. We help with the dissection of animals and tissue sampling, our technicians process and embed tissues, cut slides and perform a wide range of histochemistry and immunohistochemistry stains. We often develop and optimise staining protocols such as new immunohistochemistry procedures for epitopes of interest. Occasionally we process other types of samples, such as organoids or cells, or provide support for other institutes. Our pathologists partner with researchers in their projects, train and educate personnel, help to perform dissections, and provide detailed microscopic analysis of pathologic changes and content for scientific presentations and publications. The pathologists also perform diagnostic pathology analysis of sick animals, for the benefit of the health and welfare of animals in the institute.

It is important to identify the abnormalities that are induced by the experiment, but also to distinguish these findings from spontaneous or background pathology. The correct interpretation and reporting of findings by a comparative pathologist contributes to better and more effective research, avoiding the pitfalls of do-it-yourself pathology. Mammals are complex organisms with many interacting organ systems, and the effects of experiments or genetic events can be difficult to predict. Phenotypes may occur in any tissue, experimental procedures may lead to many local or systemic changes, and administered substances may have unexpected effects or toxicities. To add to the complexity, all these changes are often dynamic over time. This is why we offer a thorough and complete analysis of the pathology of animals when researchers are developing a new animal model or experimental setup. We aim to offer accessible specialised pathology support and a personal approach, with our doors open for all researchers.

## **Flow Cytometry Facility**



Martijn van Baalen Head Flow Cytometry Facility

Martijn van Baalen Head Debajit Bhowmick Operator Frank van Diepen Operator Anita Pfauth Operator

# Selected publications

Boshuizen J, Koopman LA, Krijgsman O, Shahrabi A, van den Heuvel EG, Ligtenberg MA, Vredevoogd DW, Kemper K, Kuilman T, Song JY, Pencheva N, Mortensen JT, Foppen MG, Rozeman EA, Blank CU, Janmaat ML, Satijn D, Breij ECW, Peeper DS, Parren PWHI. Cooperative targeting of melanoma heterogeneity with an AXL antibody-drug conjugate and BRAF/MEK inhibitors. Nat Med. 2018;24(2):203-212

Dijkstra KK, Cattaneo CM, Weeber F, Chalabi M, van de Haar J, Fanchi LF, Slagter M, van der Velden DL, Kaing S, Kelderman S, van Rooij N, van Leerdam ME, Depla A, Smit EF, Hartemink KJ, de Groot R, Wolkers MC, Sachs N, Snaebjornsson P, Monkhorst K, Haanen J, Clevers H, Schumacher TN, Voest EE. Generation of Tumor-Reactive T Cells by Co-culture of Peripheral Blood Lymphocytes and Tumor Organoids. Cell 2018;174(6):1586-1598.e12

Scheper W, Kelderman S, Fanchi LF, Linnemann C, Bendle G, de Rooij MAJ, Hirt C, Mezzadra R, Slagter M, Dijkstra K, Kluin RJC, Snaebjornsson P, Milne K, Nelson BH, Zijimans H, Kenter G, Voest EE, Haanen JBAG, Schumacher TN. Low and variable tumor reactivity of the intratumoral TCR repertoire in human cancers. Nat Med. 2019;25(1):89-94 The Flow Cytometry Facility provides access to high-end flow cytometric analytical and state-of-theart cell sorting equipment. We actively support NKI investigators with tailored advice and practical assistance in all phases of their experiments with regard to analytical flow cytometry and cell sorting.

The Flow Cytometry Facility maintains seven analytical flow cytometers for basic and highparameter interrogation of experimental samples on a single cell level (up to 30 fluorescent labels), and five high-end cell sorters (up to 18 fluorescent labels) for isolation of the cells of interest with high purity. Quality Assurance and Quality Control is performed routinely to ensure consistent and robust performance, and timely scheduled preventative maintenance and repairs. All instruments are housed in BSL 2 lab environment to allow for safe handling of samples with known and unknown infectious pathogens. The available equipment provides flexibility and allows for tailored approaches to address a wide range of scientific problems and biological questions.

Our full cell sorting service by expert sort operators allows for bulk isolation and (indexed) single cell sorting of specific cell subsets from heterogeneous samples, based on scatter parameters up to complex immunological panels with 18 fluorescent labels, for a wide range of post-isolation applications. Some examples of post bulk sorting applications are: in vitro expansion and functional assays, *in vivo* transplantation, protein, DNA and RNA extraction for applications like mass spectrometry, and sequencing for genetic screens or gene expression. Common post-sort single cell applications include: cloning, DamID assays, qPCR, and sequencing.

We strive to meet the investigators' specific needs by providing tailored assistance with experimental design, sample preparation, data acquisition, and analysis, enabling the highest possible resolution, data quality and reproducibility. We provide introductory courses to allow independent use of the available analytical instruments and to ensure a high level of theoretical knowledge, optimal instrument use, and data quality. Additionally, we provide introductory and advanced training sessions on theoretical and technical topics related to flow cytometry, and independent operation of cell sorting instruments. We also organize specialized workshops and seminars on topics such as tumor dissociation and other sample preparation methods, optimizing protocols for staining of intracellular targets, and data analysis methods.

Finally, we are actively involved in (inter)national and virtual cytometry networks and instrument user groups to exchange knowledge with colleagues from the wider community, and allow investigators of the NKI to benefit from the latest developments and insights in the field of cytometry.



Marieke van de Ven

Head Mouse Cancer Clinic / animal facility T1

Marieke van de Ven PhD Head T1 Charlotte Baak BSc Technical staff Renske de Korte-Grimmerink BSc Technical staff Natalie Proost BSc Technical staff Bjørn Siteur Technical staff Rebecca Theeuwsen BSc Technical staff Niels de Wit BSc Head Imaging facility Olaf van Tellingen Head Pharmacology facility Artur Burylo Technical staff Ben van de Graaff Team leader T1 7 animal caretakers

# Selected publications

Buoninfante OA, Pilzecker B, Aslam MA, Zavrakidis I, van der Wiel R, van de Ven M, van den Berk PCM, Jacobs H. Precision cancer therapy: profiting from tumor specific defects in the DNA damage tolerance system. Oncotarget. 2018;9(27):18832-18843

Duarte AA, Gogola E, Sachs N, Barazas M, Annunziato S, R de Ruiter J, Velds A, Blatter S, Houthuijzen JM, van de Ven M, Clevers H, Borst P, Jonkers J, Rottenberg S. BRCA-deficient mouse mammary tumor organoids to study cancer-drug resistance. Nat Methods. 2018;15(2):134-140

Gogola E, Duarte AA, de Ruiter JR, Wiegant WW, Schmid JA, de Bruijn R, James DI, Guerrero Llobet S, Vis DJ, Annunziato S, van den Broek B, Barazas M, Kersbergen A, van de Ven M, Tarsounas M, Ogilvie DJ, van Vugt M, Wessels LFA, Bartkova J, Gromova I, Andújar-Sánchez M, Bartek J, Lopes M, van Attikum H, Borst P, Jonkers J, Rottenberg S. Selective loss of PARG restores PARylation and counteracs PARP inhibitor-mediated synthetic lethality. Cancer Cell. 2018;11;33(6):1078-1093

# Mouse Cancer Clinic / animal facility T1

### Activities

The Mouse Cancer Clinic / T1 is a facility where advanced mouse models are used as surrogate for cancer patients to identify and validate targets that can be exploited by anti-cancer therapy. The Mouse Cancer Clinic is composed of an intervention unit, a preclinical imaging facility and a bio-pharmacy unit working together in close collaboration with research groups at the NKI, other academic partners and pharmaceutical companies. The main objective is to find and test novel anti-cancer treatments, using the advanced cancer models, such as transgenic (spontaneous) mouse models, orthotopic transplantation models, human xenograft models that have been developed/ established at the NKI.

The knowledge of the molecular pathology of cancer cells is rapidly expanding and this now helps to design interventions that specifically interfere in the critical steps that drive cancer cells. This holds the promise of generating more efficacious therapies with fewer side effects. In order to more accurately translate preclinical studies to clinical outcome, it is essential to use cancer models that faithfully recapitulate the human disease. Moreover, when the treatment involves testing of new agents, it is necessary to consider the pharmacokinetic behavior of the experimental drugs in relation to their pharmacodynamics effects (target inhibition), especially since species-differences in pharmacokinetics of drugs is a potentially confounding factor. Obviously, it is not very useful when a drug demonstrates pre-clinical efficacy only at a dose level that results in plasma concentrations that cannot be achieved in patients. Therefore, we include the collection of data on plasma exposure ( $C_{max}$  and AUC, half-life) of test compounds in these intervention studies.

With the knowledge on pharmacokinetic behavior being established, an intervention study using one of our advanced mouse models can be designed guided by novel insights from basic research and clinical demands. Various approaches to treat cancer with classical chemotherapy, molecularly targeted agents, immuno-modulators, radiotherapy or combinations thereof are currently ongoing. In addition to systemically administered agents, we are also investigating loco-regional applications of drugs, surgery and radiation. The pre-clinical intervention unit can take care of the whole trajectory of preclinical trial design and execution, including support in the design/setup of the study, design suitable drug formulations, planning and execution of treatments, follow-up of tumor growth and/or metastasis formation, assessment of therapy response, collection of tissues and reporting of data. The longitudinal follow-up of tumors is greatly facilitated by dedicated state-of-the-art small animal imaging systems, including SPECT/CT, PET/CT and 7T MRI. Local and precise radiation beams can be delivered using the image-guided radiation therapy system for small animals. The lab of the bio-pharmacy unit is equipped with analytical instruments (LC-MS/MS, LC-UV/PDA, LC-FD and GFAAS) to execute bioanalytical assays.

In 2018 the Mouse Cancer Clinic carried out more than 120 projects for more than 12 research groups inside the NKI. 31 of the projects were for external academic customers and 4 for small pharmaceutical companies.

### Education in oncology

The Netherlands Cancer Institute offers a variety of opportunities for practical and theoretical training to (trainee) technicians, University Master students, PhD students, and post-doctoral fellows. Research and clinical staff and their group members are involved in theoretical and practical training. Many staff members have joint appointments as professors at Dutch universities and even more contribute to the regular curriculum at various universities. The research divisions attract students from universities throughout the The Netherlands. The NKI has a formal affiliation with the Science faculty of the University of Amsterdam (UvA) and is committed to make a contribution to Master student teaching. The institute participates in the Oncology Graduate School Amsterdam, together with the medical faculties of the University of Amsterdam (AMC) and the VU University (VUmc), now merged into the Amsterdam University Medical Centers. All educational activities are supervised by the Teaching Committee, which consists of Jannie Borst (chair and dean Master students), Hein te Riele (general affairs and dean PhD students), Fred van Leeuwen (dean post-docs), Roderick Beijersbergen (Master course), Wilbert Zwart (HLO students and publicity), and Fons Balm (clinical teaching).

### MASTER STUDENTS

The program in Experimental Oncology attracts Master students of all national universities (see www.nki.nl/topmenu/master-students/). Students generally have a background in (Medical) Biology, Health Sciences, Chemistry, Pharmacology, Medicine, or Psychology. The program offers combined practical and theoretical training in various aspects of experimental oncology. Practical training includes participation in ongoing research projects for a minimum of 4 months.

In 2018, 52 Dutch university Master students completed a placement of 6 to 10 months at the biomedical research divisions. The students came primarily from the University of Amsterdam (UvA) (23) and the VU University Amsterdam (VU) (17), but also from the universities of Utrecht (3), Leiden (7) and Rotterdam (3). 8 master students from universities outside the Netherlands completed an internship at NKI. The institute also provides practical training opportunities for Bachelor students of the HLO (Universities of Applied Science), who stay for similar periods of time as the university students and like these, often make significant contributions to research progress of the PhD students and post-docs who supervise them.

The core element of theoretical training is the course in Experimental Oncology (Table 1). This master course is a compulsory course for UvA Master students in Biomedicine, track Oncology. It is also offered as an elective to master students who do an internship at the NKI in a biomedical discipline. Other interested parties such as PhD students are welcome to attend the lectures as listener upon enrollment as attendee. The master course has a interactive program consisting of tutorials, student presentations and discussion and assignments. In addition, the students have to pass four exams in order to get study points. The course evolved around four main themes for which assignments and exams were organized, in addition to lectures covering the latest developments in the respective fields.

### TABLE 1 COURSE IN EXPERIMENTAL ONCOLOGY

#### LECTURES

| Explore your options                |
|-------------------------------------|
| Cancer epidemiology                 |
| Next generation sequencing          |
| Early diagnostics                   |
| Medical imaging                     |
| Epigenetics in cancer               |
| Radiotherapy                        |
| Conventional chemotherapy           |
| Telomeres and cancer                |
| Chromosome morphogenesis            |
| Mouse models of cancer              |
| Non-coding landscape and cancer     |
| RNA translation and the ribosome    |
| Functional genomics                 |
| Cancer genomics                     |
| Targeted therapy in melanoma        |
| (Immunogenic) cell death            |
| Tumor microenvironment              |
| Radioimmunotherapy                  |
| Macrophages in the microenvironment |

M van den Boom Fl van Leeuwen R Kerkhoven B Carvallo, R Fijneman E Veqt B van Steensel. Fr van Leeuwen R Haas F Opdam J Jacobs **B** Rowland I Huijbers R Agami W Faller T Brummelkamp L Wessels D Peeper J Borst K de Visser I Verbrugge L Akkari

### THEMATIC BLOCKS

INTRODUCTORY LECTURE, STATE-OF-THE ART LECTURES, STUDENT PRESENTATIONS + QUESTIONS, RESEARCH PROPOSALS AND EXAMS Hormone regulated cancers DNA damage and genomic instability Targeted therapy and resistance Immunology and immunotherapy

W Zwart, H Horlings C Vens, H Jacobs, M Tijsterman (guest) R Beijersbergen, R Bernards J Borst, P Kvistborg

### **PHD STUDENTS**

PhD students at the NKI-AVL participate in the Oncology Graduate School Amsterdam (OOA), an alliance of the oncology research divisions of the NKI-AVL and the Amsterdam University Medical Centers. The number of PhD students has been rising rapidly in the past years. In 2018, the institute had 249 PhD students registered at the OOA. 34 students defended a PhD thesis at a Dutch university.

Besides joining interdepartmental work discussions, the students follow the OOA training program that offers courses, meet-the-expert sessions and an annual retreat (Table 2). The OOA course program includes in-depth courses on different topics in cancer research, but also technical courses such as English writing, biostatistics and -informatics, microscopy and animal handling. Students with an insufficient background in cancer research can attend the Experimental Oncology course for Master students. PhD students also have the opportunity to meet with experts in the field of oncology: the Friday morning seminar speakers are invited to a lunch meeting with a delegation of PhD students. Each graduate student can participate several times a year.

The annual PhD student retreat is entirely focused on the research of the graduate students themselves. First-year students present their work in the form of a poster; advanced students give an oral presentation. Importantly, students are in charge of chairing sessions, monitoring discussions and selecting prizewinners for the best poster and best presentation. In this way, the retreat not only provides an overview of the research in the OOA at an early stage of the student's career, but also training in

### TABLE 2

#### OOA PHD STUDENT COURSES AND EVENTS 2018

| DATE           | COURSE                   | ECTS | ORGANIZERS                        | # STUDENTS | RATING |
|----------------|--------------------------|------|-----------------------------------|------------|--------|
| FEB 7, 14, 21  | Introduction to clinical | 1.0  | CTO Utrecht                       | 7          | ND     |
|                | and translational        |      |                                   |            |        |
|                | oncology                 |      |                                   |            |        |
| MARCH 12-16    | Knowledge gaps in        | 1.5  | J Wesseling, M Kok, W Zwart       | 36         | 4.1    |
|                | breast cancer            |      | (NKI-AVL)                         |            |        |
| MARCH 15       | Meet the expert Pandey   | 0.3  | E Ruhé (VUmc)                     | 14         | 5.0    |
| MARCH 26       | How to become a          | 0.05 |                                   | 39         | 3.7    |
|                | successful grant         |      |                                   |            |        |
|                | applicant                |      |                                   |            |        |
| APRIL 9-13     | Mouse morphology,        | 1.5  | J Seppen, E Reits (AMC)           | 16         | 3.9    |
|                | genetics and function    |      |                                   |            |        |
| APRIL 16-20    | In the footsteps         | 1.5  | E Reits, H van Veen, R Hoebe,     | 16         | 4.5    |
|                | of Antoni van            |      | J Stap, D Picavet, N van der Wel, |            |        |
|                | Leeuwenhoek - Basic      |      | M van den Bergh Weerman,          |            |        |
|                | microscopy               |      | L Brocks, M Mertz, H Janssen,     |            |        |
|                |                          |      | J Beliën, T O'Toole, J Garcia-    |            |        |
|                |                          |      | Vallejo (VUmc, AMC, NKI-AVL)      |            |        |
| APRIL 18 & 24  | Getting your             | 1.5  | Y Duijker, E Ruhé (VUmc)          | 32         | 3.2    |
|                | manuscript out for       |      |                                   |            |        |
|                | review                   |      |                                   |            |        |
| MAY 25         | OOA PhD day              | 0.2  | PhD council NKI-AVL               | 111        | 4.0    |
| SEPTEMBER 14   | Theatre skills for       | -    | P Lagerweij                       | 25         | 4.6    |
|                | presenters at the        |      |                                   |            |        |
| <u>.</u>       | retreat                  |      |                                   |            |        |
| SEPT 20 & 21   | Histopathology of        | 0.6  |                                   | 38         | 3.7    |
|                | human tumors             |      |                                   |            |        |
| OCTOBER 10-12  | Annual Graduate          | 2.0  | P Lagerweij, K van der Heijden,   | 230        | 4.2    |
|                | Student Retreat          |      | H te Riele (NKI-AVL)              |            |        |
| OCTOBER 15-19  | In the footsteps         | 1.5  | E Reits, H van Veen, R Hoebe,     | 15         | 4.2    |
|                | of Antoni van            |      | J Stap, D Picavet, N van der Wel, |            |        |
|                | Leeuwenhoek - Basic      |      | M van den Bergh Weerman,          |            |        |
|                | microscopy               |      | L Brocks, M Mertz, H Janssen,     |            |        |
|                |                          |      | J Beliën, T O'Toole, J Garcia-    |            |        |
|                |                          |      | Vallejo (VUmc, AMC, NKI-AVL)      |            |        |
| OCT 29 - NOV 9 | BioBusiness              | 3.0  | A Griffioen, E Huijber,           | 5          | 4.4    |
|                |                          |      | J van Beijnum (VUmc)              |            |        |
| NOVEMBER 13-17 | Basic Medical            | 1.5  | M Hauptmann, K Jozwiak, J         | 90         | 4.2    |
|                | Statistics / SPSS        |      | Zavrakidis, S Roberti, A Morra,   |            |        |
|                |                          |      | D Giardiello (NKI)                |            |        |
| NOVEMBER 22    | Masterclas prof Piccart  | 0.3  | E Ruhé (VUmc)                     | 13         | 4.8    |
| NOVEMBER 23    | Ethics and Integrity in  | 0.15 | P Borst, B van Steensel (NKI)     | 30         | 4.1    |
|                | Science                  |      |                                   |            |        |
| NOV 30 & DEC 6 | lmageJ/Fiji              | 0.6  | M Mertz, L Brocks (NKI)           | 21         | ND     |
| DECEMBER 6-14  | O2Flow Cytometry         | 1.5  | J Garcia Vallejo (VUmc)           | 14         | 4.1    |
| THROUGHOUT THE | Lunch meetings with      | -    | NKI seminar committee             | 150        | ND     |
| YEAR           | NKI-AVL seminar          |      |                                   |            |        |
|                | speakers                 |      |                                   |            |        |



PhD student retreat 2018

presentation and interaction skills. We hope to stimulate translational interactions and bottom-up research, in which graduate students actively establish collaborations with other research groups, strengthening scientific exchange between the Amsterdam oncology centers.

Senior graduate students can participate in a joint retreat with other cancer institutes in Europe. In 2018, this event was held in London, United Kingdom, organized by the students from the the Francis Crick Institute, with participants from:

- The CRUK Institutes (Cambridge, Glasgow, London, Manchester and Oxford)
- The Institute of Cancer Research (ICR)
- German Cancer Research Center (DKFZ)
- The Max Delbruck Center for Molecular Medicine (MDC)
- The Netherlands Cancer Institute (NKI, 7 participants)
- The European School of Molecular Medicine (SEMM: IFOM-IEO)

who attended and contributed to a program of scientific lectures and posters as well as an enthusiastic social session. This retreat gives students the opportunity to become acquainted with oncology centers of excellence throughout Europe.

Once a year, the PhD student meets with a supervisory committee to evaluate the progress of research. Each committee has independent members from within and outside the division. The committee discusses progress with the supervisor and the student jointly and separately. Two years after the appointment of the PhD student, a midterm review takes place. At this more elaborate meeting the likelihood of achieving a PhD within a reasonable time frame is discussed. This meeting can be used to redefine goals if necessary.

Each research division of the NKI-AVL has a delegate in the PhD student council that meets with the Dean of graduate students on a regular basis, as well as upon request. They also mediate communication between the graduate students and the

board of directors. In addition, an OOA PhD council has been installed consisting of representatives of the participating Amsterdam oncology centers, which organizes events specifically focused on career development of graduate students.

### POSTDOCS

In 2018 the NKI-AVL hosted approximately 140 postdoctoral fellows, almost half of which are from abroad and with equal gender representation. The postdocs at the NKI are represented by a very active postdoc committee (postdocs@nki). They organize workshops and special events such as (alumni) career development seminars and workshops about intellectual property and entrepreneurship. In addition, they regularly bring issues that matter to postdocs and others to the attention of NKI management.

The postdoc committee is also actively involved in the NKI Postdoc Career Development Program that is offered by the NKI to all its postdocs. This program has been developed together with AVL Academy and the postdoc dean. During their first year at the NKI, postdocs participate in a basic program, which consists of three one-day workshops. The basic program is mandatory for new NKI postdocs. In 2018, 53 postdocs started in the basic program.

#### Basic Postdoc Career Development Program 2018

- Day 1. Personal effectiveness: time and project management
- Day 2. Communication & cooperation
- Day 3. Creating your future, take ownership

All postdocs that have completed the basic program are invited in subsequent years to follow one of the one-day workshops as part of the Advanced Postdoc Career Development Program. In 2018, 59 postdocs registered for a workshop of the advanced program.

#### Advanced Postdoc Career Development Program 2018

- 1. Influence and impact
- 2. Shaping your Career
- 3. Influencing group dynamics
- 4. Scientific Project Management
- 5. Grant Writing

The goals of the program are to provide postdocs with the tools to take charge of their professional and personal development at the NKI, to promote maximum achievement of postdocs at the NKI, and to prepare postdocs for the next steps in their careers. The program, which is tailored to NKI postdocs, consists of special workshops of ~12 participants given by professional trainers but with input and active participation of NKI group leaders. The trainers all have a background in science and are fluent in English. The program is flexible and adjusted every year based on the evaluations of the workshops and suggestions from the postdocs.





# **Clinical trials**

| Type of      | Title | Study       | Phase | Activated |
|--------------|-------|-------------|-------|-----------|
| cancer study |       | coordinator |       | (closed)  |
| (nick name)  |       | in NKI-AVL  |       |           |
|              |       |             |       |           |

### ALL SITES

| C14EMB | Prospective study on the treatment of unsuspected pulmonary embolism in cancer patients                                                                                                                                                                                                                                                                                                                                                                                    | Joke Baars          | other | 07/01/2014<br>(29/11/2018) |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------|----------------------------|
| MO9NIB | The NIB-Cohort study, therapeutic drug monitoring of tyrosine kinase inhibitors                                                                                                                                                                                                                                                                                                                                                                                            | Neeltje Steeghs     | other | 09/06/09                   |
| МІІРСТ | Development of a platform for next-generation DNA sequencing based personalized<br>treatment for cancer patients : protocol to obtain biopsies from patients with<br>metastatic cancer (CPCT-O2 biopsy protocol)                                                                                                                                                                                                                                                           | Neeltje Steeghs     | other | 24/01/12                   |
| M12SEN | Observational study to evaluate pharmacokinetics and pharmacodynamics of<br>docetaxel, paclitaxel, doxorubicine, gemcitabine, vinorelbine and capecitabine in<br>elderly patients                                                                                                                                                                                                                                                                                          | Neeltje Steeghs     | other | 13/09/12                   |
| M14CDP | An open-label, multicenter, dose-escalation phase lb study to investigate the safety,<br>pharmacokinetics, pharmacodynamics, and therapeutic activity of R07009789<br>(CD40 agonist) in combination with MPDL3280a (anti-PD-L1) in patients with locally<br>advanced and/or metastatic solid tumors (BP29392)                                                                                                                                                              | Neeltje Steeghs     | I     | 23/01/2015<br>(7/12/2018)  |
| M14CIP | Cancer in Pregnancy (CIP-study)                                                                                                                                                                                                                                                                                                                                                                                                                                            | Christianne Lok     | other | 17/02/15                   |
| M14DPD | Safety, feasibility and cost-effectiveness of genotype- and phenotype-directed<br>individualized dosing of fluoropyrimidines                                                                                                                                                                                                                                                                                                                                               | Serena<br>Marchetti | other | 31/03/2015<br>(09/07/2018) |
| M14DTR | A phase II, open-label, study in patients with BRAF V600E-mutated rare cancers with several histologies to investigate the clinical efficacy and safety of the combination therapy of Dabrafinib and Trametinib (roar)                                                                                                                                                                                                                                                     | Neeltje Steeghs     | II    | 13/11/2014<br>(30/06/2018) |
| М14НОМ | A phase I, open label, multicenter, dose-escalation study of oral HDM201 in adult<br>patients with advanced solid and hematological tumors characterized by wild-type<br>TP53                                                                                                                                                                                                                                                                                              | Neeltje Steeghs     | I     | 18/12/2014<br>(01/06/2018) |
| M14HUM | Hubrecht Organoid Technology-Metastasis, a resource for functional studies on<br>drug development for cancer treatment                                                                                                                                                                                                                                                                                                                                                     | Emile Voest         | other | 11/08/14                   |
| M14HUP | Biobank Hubrecht Institute, a resource for functional studies on drug development for cancer treatment                                                                                                                                                                                                                                                                                                                                                                     | Emile Voest         | other | 11/08/14                   |
| M14MCL | A Phase I Study of MCLA-128, a Human IgG1 Bispecific Antibody Targeting HER2 and HER3, in Patients with Solid Tumours                                                                                                                                                                                                                                                                                                                                                      | Frans Opdam         | 1711  | 11/03/15                   |
| M14ROM | A Phase 1B, open-label, multi-center, dose-escalation study of the safety,<br>pharmacokinetics and therapeutic activity of RO6895882, an immunocytokine, which<br>consists of a viariant of Interleukin-2 (IL-2v), that targets carcinoembryonic antigen<br>(CEA), and MPDL3280A, an antibody that targets programmed death-ligand 1 (PD-<br>L1), administered in combination intravenously, in patients with locally advanced<br>and/or metastatic solid tumors (BP29435) | Neeltje Steeghs     | 1711  | 21/04/2015<br>(13/07/2018) |
| M14TBA | An open-label, multicenter, dose-escalation phase I study to evaluate the safety,<br>pharmacokinetics, and therapeutic activity of RO6958688, a novel T-cell bispecific<br>antibody that targets the human carcinoembryonic antigen (CEA) on tumor cells and<br>CD3 on T-cells, administered intravenously in patients with locally advanced and/or<br>metastatic CEA(+) solid tumors (BP29541)                                                                            | Neeltje Steeghs     | I     | 14/01/2015<br>(23/08/2018) |
| M15CEG | A phase I/II, multicenter, open-label study of EGFRmut-TKI EGF816, administered<br>orally in adult patients with EGFRmut solid malignancies                                                                                                                                                                                                                                                                                                                                | Egbert Smit         | 1711  | 28/06/16                   |
| M15DRU | A National Study to Facilitate Patient Access to Commercially Available, Targeted<br>Anti-cancer Drugs to determine the Potential Efficacy in Treatment of Advanced<br>Cancers with a Known Molecular Profile; The Drug Rediscovery Protocol (DRUP)                                                                                                                                                                                                                        | Emile Voest         | I     | 25/07/16                   |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |       |                            |

| Type of<br>cancer study<br>(nick name) | Title                                                                                                                                                                                                                                                                                                                                                                            | Study<br>coordinator<br>in NKI-AVL | Phase | Activated<br>(closed)      |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------|----------------------------|
|                                        |                                                                                                                                                                                                                                                                                                                                                                                  |                                    |       |                            |
| M15FAP                                 | An open-label, multicenter, dose-escalation, Phase I study to evaluate safety,<br>pharmacokinetics, and therapeutic activity of RO6874281, an immunocytokine<br>consisting of interleukin 2 variant (IL-2v) targeting fibroblast activation protein- $\alpha$<br>(FAP), in patients with advanced and/or metastatic solid tumors (BP29842)                                       | Neeltje Steeghs                    |       | 18/12/15                   |
| M15KEY                                 | A clinical trial of Pembrolizumab (MK-3475) evaluating predictive biomarkers in subjects with advanced solid tumors (KEYNOTE 158)                                                                                                                                                                                                                                                | Marloes<br>van Dongen              | Ш     | 29/02/16                   |
| M15MBG                                 | A phase I-Ib/II, open-label, multi-center study of the safety and efficacy of MBG453 as single agent and in combination with PDR001 in adult patients with advanced malignancies                                                                                                                                                                                                 | Sofie Wilgenhof                    | I/II  | 28/07/17                   |
| M15MPA                                 | An open-label, multicohort, phase II study of MPDL3280A in advanced solid tumors<br>(Basket)                                                                                                                                                                                                                                                                                     | Cecile<br>Grootscholten            | II    | 03/07/2015<br>(16/5/2018)  |
| M15MSR                                 | An Open Label, Phase Trial of the DNA-PK Inhibitor MSC2490484A in Combination with Radiotherapy in Patients with Advanced Solid Tumors                                                                                                                                                                                                                                           | Baukelien<br>van Triest            | I     | 17/07/15                   |
| M15PDR                                 | Open label multicenter Phase I/II study of the safety and efficacy of PDR001 administered to patients with advanced malignancies                                                                                                                                                                                                                                                 | Neeltje Steeghs                    | IZII  | 29/09/2015<br>(30/04/2018) |
| M15PEM                                 | A Phase I, open-label study of GSK3174998 administered alone and in combination with anticancer agents including Pembrolizumab in subjects with selected advanced solid tumors (ENGAGE-1)                                                                                                                                                                                        | Frans Opdam                        | I     | 04/05/16                   |
| M15PRM                                 | A phase I, open-label, dose escalation study to investigate the safety,<br>pharmacokinetics, pharmacodynamics and clinical activity of GSK3326595 in<br>subjects with solid tumors and non-Hodgkin's lymphoma (PRMT5i)                                                                                                                                                           | Frans Opdam                        | I     | 27/10/16                   |
| M15ROA                                 | An open-label, multicenter, dose-escalation and expansion phase Ib study to<br>evaluate the safety, pharmacokinetics, and therapeutic activity of R06958688 in<br>combination with Atezolizumab in patients with locally advanced and/or metastatic<br>CEA-positive solid tumors (CEA-TCB)                                                                                       | Neeltje Steeghs                    | I     | 26/02/2016<br>(23/08/2018) |
| M15RVA                                 | An open-label, multicenter, dose escalation phase 1b study with expansion cohorts<br>to evaluate the safety, pharmacokinetics, pharmacodynamics and therapeutic<br>activity of R07009789 (CD40 agonistic monoclonal antibody) in combination with<br>Vanucizumab (anti-ANG2 and anti-VEGF bi-specific monoclonal antibody) in patients<br>with metastatic solid tumors (BP29889) | Neeltje Steeghs                    | I     | 26/02/16                   |
| M15SRB                                 | Postoperative local stereotactic radiotherapy versus observation following<br>complete resection of a single brain metastasis                                                                                                                                                                                                                                                    | Dieta<br>Brandsma                  | Ш     | 09/09/2015<br>(31/10/2018) |
| M15SYD                                 | A two part first-in-human phase I study (with expanded cohorts) with the antibody-<br>drug conjugate SYD985 to evaluate the safety, pharmacokinetics and efficacy in<br>patients with locally advanced or metastatic solid tumours                                                                                                                                               | Frans Opdam                        | I     | 01/06/2016<br>(30/03/2018) |
| M15TRE                                 | A Phase II, multi-center, open-Label study of Tremelimumab monotherapy in patients<br>with advanced solid tumors (TremeBasket)                                                                                                                                                                                                                                                   | Neeltje Steeghs                    | Ш     | 18/12/2015<br>(29/10/2018) |
| M16AOX                                 | A Phase 1/2a Study of BMS-986178 Administered Alone and in Combination with<br>Nivolumab or Ipilimumab in Advanced Solid Tumors                                                                                                                                                                                                                                                  | Michiel<br>van der Heijden         | I/II  | 20/10/2016<br>(31/10/2018) |
| M16APF                                 | Analysis of pleural fluid and ascites to improve diagnostics for patients with cancer                                                                                                                                                                                                                                                                                            | Serena<br>Marchetti                | other | 24/03/2016<br>(17/07/2018) |
| M16BAN                                 | A Phase 1/2a Study of BMS-986179 Administered in Combination with Nivolumab<br>(BMS-936558, anti-PD-1 Monoclonal Antibody) in Advanced Solid Tumors                                                                                                                                                                                                                              | Neeltje Steeghs                    | I/II  | 02/09/16                   |
| M16BMN                                 | A Phase 1/2a Dose Escalation and Cohort Expansion Study for Safety, Tolerability,<br>and Efficacy of anti-GITR Monoclonal Antibody (BMS-986156) Administered Alone<br>and in Combination with Nivolumab (BMS-936558, anti PD-1 Monoclonal Antibody) in<br>Advanced Solid Tumors                                                                                                  | Neeltje Steeghs                    | 1/11  | 24/06/2016<br>(16/10/2018) |

| Type of<br>cancer study<br>(nick name) | Title                                                                                                                                                                                                                                                                                                                                                        | Study<br>coordinator<br>in NKI-AVL | Phase | Activated<br>(closed)      |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------|----------------------------|
|                                        |                                                                                                                                                                                                                                                                                                                                                              |                                    |       |                            |
| M16GAC                                 | A Phase I Open Label study of GSK3359609 administered alone and in combination<br>with anticancer agents in subjects with selected advanced solid tumors                                                                                                                                                                                                     | Frans Opdam                        | I     | 30/05/17                   |
| M16LAG                                 | A phase 1/2a dose escalation and cohort expansion study of the safety, tolerability,<br>and efficacy of anti-LAG-3 monoclonal antibody (BMS-986016) administered alone<br>and in combination with anti-PD-1 monoclonal antibody (Nivolumab, BMS-936558) in<br>advanced solid tumors                                                                          | Sofie Wilgenhof                    | 1/11  | 06/12/16                   |
| M16MDT                                 | A Phase 1 Multicenter, Open-label, Study to Evaluate the Safety, Pharmacokinetics,<br>Pharmacodynamics, Immunogenicity, and Antitumor Activity of MEDI0562 in<br>Combination with Immune Therapeutic Agents in Adult Subjects with Advanced Solid<br>Tumors                                                                                                  | Neeltje Steeghs                    | I     | 15/09/2016<br>(07/11/2018) |
| M16MET                                 | A Phase 1 Study of MEDI4736 (Anti-PD-L1 Antibody) in Combination with<br>Tremelimumab (Anti-CTLA-4 Antibody) in Subjects with Advanced Solid Tumors                                                                                                                                                                                                          | Michiel<br>van der Heijden         | I     | 08/08/2016<br>(07/06/2018) |
| M16MOL                                 | A phase I/II study of MEDI4736 (anti-PD-L1 Antibody) in combination with Olaparib<br>(PARP inhibitor) in patients with advanced solid tumors (MEDIOLA)                                                                                                                                                                                                       | Neeltje Steeghs                    | 1/11  | 01/09/16                   |
| M16NFC                                 | Multicenter study evaluating the hybrid approach using a novel fluorescence<br>camera – Identifying the value of intraoperative fluorescence imaging during<br>sentinel node biopsy procedures                                                                                                                                                               | Simon<br>Horenblas                 | other | 09/11/17                   |
| M16STT                                 | An open-label, multicenter, global phase 2 basket study of Entrectinib for the<br>treatment of patients with locally advanced or metastatic solid tumors that harbour<br>NTRK1/2/3, ROSI or ALK gene rearrangements (STARTRK-2)                                                                                                                              | Egbert Smit                        | II    | 24/08/16                   |
| M16SUP                                 | Decision support for couples with hereditary cancer and child wish: weighing pros<br>and cons of reproductive options regarding transmission of gene mutations                                                                                                                                                                                               | Lizet<br>van der Kolk              | other | 07/11/2016<br>(24/01/2018) |
| MIGTEM                                 | Phase II, exploratory, multicenter, non randomized, single agent study to determine<br>best tumor response with Trastuzumab Emtansine in HER2 overexpressing solid<br>tumors (Kameleon)                                                                                                                                                                      | Michiel<br>van der Heijden         | II    | 26/01/17                   |
| M17AFE                                 | A randomised, open-label, phase I study to determine the effect of food on the<br>pharmacokinetics of AZD1775 after oral dosing of a capsule formulation in patients<br>with advanced solid tumours                                                                                                                                                          | Frans Opdam                        | I     | 27/09/17                   |
| M17AZD                                 | An open-label, non-randomised, multicentre study to allow continued access to<br>and assess the safety and tolerability of AZD1775 for patients enrolled in AZD1775<br>clinical pharmacology studies                                                                                                                                                         | Frans Opdam                        | other | 02/10/17                   |
| M17CAN                                 | An open label, dose escalation followed by dose expansion, safety and toler-ability trial of CANO4, a fully humanized monoclonal antibody against IL1RAP, in subjects with solid malignant tumors (CANFOUR)                                                                                                                                                  | Neeltje Steeghs                    | IZII  | 14/11/17                   |
| M17ITR                                 | An open-label, Phase I study to asses the effect of itraconazole (CYP3A4 and P-gp<br>inhibitor) on the pharmacokinetics of anetumab ravtansine and to asses the ECG<br>effects, safety and immunogenicity of anetumab ravtansine given as a single agent<br>and together with itraconazole in subjects with mesothelin-expressing advandced<br>solid cancers | Neeltje Steeghs                    | I     | 06/10/17                   |
| M17LET                                 | An open-label, multi-center, roll-over study to assess long term safety of lenvatinib<br>monotherapy or lenvatinib combination regimen or comparator treatment arm to<br>cancer patients in Eisai sponsored lenvatinib trials                                                                                                                                | Marloes<br>van Dongen              | II    | 15/08/18                   |
| M17MIW                                 | A Phase lb, open label, multicenter study of the safety and efficacy of MIW815<br>(ADU-S100) administered by intratumoral injection with PDR001 to patients with<br>advanced/metastatic solid tumors or lymphomas                                                                                                                                            | Neeltje Steeghs                    | I.    | 02/02/18                   |
| М17МРЕ                                 | A Phase 1 Study of MK-5890 as Monotherapy and in Combination with<br>Pembrolizumab in Participants with Advanced Solid Tumors                                                                                                                                                                                                                                | Marloes<br>van Dongen              | 1     | 15/05/18                   |
|                                        |                                                                                                                                                                                                                                                                                                                                                              |                                    |       | 135                        |

| Type of<br>cancer study<br>(nick name) | Title                                                                                                                                                                                                                | Study<br>coordinator<br>in NKI-AVL | Phase | Activated<br>(closed) |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------|-----------------------|
|                                        |                                                                                                                                                                                                                      |                                    |       |                       |
| M17PCV                                 | A phase la/lb open-label, dose-escalation study of the safety and pharmacokinetics<br>of R07198457 as a single agent and in Ccombination with Atezolizumab in patients<br>with locally advanced or metastatic tumors | Neeltje Steeghs                    |       | 04/10/18              |
| M17QLQ                                 | Validation of the EORTC computerized adaptive testing (CAT) instrument - Feasibilty and field study                                                                                                                  | Neil Aaronson                      | other | 28/11/17              |
| M17QOL                                 | Phase III development of an EORTC QoL cancer survivorship questionnaire                                                                                                                                              | Lonneke<br>van de Poll -<br>Franse | III   | 12/06/18              |
| M17RIT                                 | A phase I/II study of safety and efficacy of ribociclib (LEE011) in combination with                                                                                                                                 | Neeltje Steeghs                    | IZII  | 23/05/17              |

|        |                                                                                                                                                                                                                 | van de Poll -<br>Franse |       |                            |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------|----------------------------|
| M17RIT | A phase I/II study of safety and efficacy of ribociclib (LEE011) in combination with trametinib (TMT212) in patients with metastatic or advanced solid tumors                                                   | Neeltje Steeghs         | 1711  | 23/05/17                   |
| M17TDM | Therapeutic drug monitoring for oral anti-cancer drugs                                                                                                                                                          | Neeltje Steeghs         | other | 09/08/17                   |
| M18COM | Communication in Second Opinions - the SO-COM study                                                                                                                                                             | Gemma<br>de Kenter      | other | 29/03/18                   |
| M18COP | Prospective, multi-centre trial to evaluate effectiveness of 45-min and 20-min<br>postinfusion cooling time for patients treated with scalp cooling to prevent<br>Paclitaxel-induced alopecia (COP)             | Carolien<br>Smorenburg  | other | 19/06/18                   |
| M18TLO | A Phase I, Open-Label Study of GSK1795091 Administered in Combination with<br>Immunotherapies in Participants with Advanced Solid Tumors                                                                        | Neeltje Steeghs         | I     | 25/09/18                   |
| N10CRC | Proof of principle and pharmacological phase 0 crossover study with controlled release capecitabine (ModraCape001)                                                                                              | Serena<br>Marchetti     | I     | 17/11/2011<br>(13/11/2018) |
| NIOMOP | Development and clinical activity of low dose metronomic chemotherapy with oral paclitaxel                                                                                                                      | Serena<br>Marchetti     | I     | 09/09/10                   |
| N12MTG | Middle ear thiosulfate-gel protection against cisplatin-induced hearing loss in<br>patients carrying a single nucleotide polymorphism in the TPMT, COMT or LRP2 gene                                            | Serena<br>Marchetti     | other | 11/04/13                   |
| N14CCT | Phase I pharmacological study of continuous and intermittent chronomodulated<br>capecitabine therapy                                                                                                            | Serena<br>Marchetti     | I     | 18/06/14                   |
| N15FED | Food-effect study of weekly administration of (bi-) daily Oral Docetaxel<br>(ModraDoc006) in combination with ritonavir                                                                                         | Serena<br>Marchetti     | I.    | 03/05/2017<br>(03/07/2018) |
| N15LDC | The effect of prehydration on the pharmacokinetics of low-dose Cisplatin                                                                                                                                        | Wouter Vogel            | other | 06/11/15                   |
| N15SGI | A phase I trial to assess the mass balance and pharmacokinetics of<br>14cguadecitabine in subjects with AML, MDS, or solid tumors                                                                               | Marloes<br>van Dongen   | I     | 29/08/2016<br>(21/08/2018) |
| N16CLT | The use of fecal calprotectin in detecting immunotherapy induced colitis and<br>feasibility for the use of immunohistochemical markers in patients receiving<br>checkpoint inhibitors'- a pilot study (COLIT-1) | Jolanda<br>van Dieren   | other | 23/05/16                   |
| N16CRY | The effect of Cryotherapy in preventing oral mucositis associated with doxorubicin<br>treatment                                                                                                                 | Carolien<br>Smorenburg  | other | 09/05/16                   |
| N16GEM | Phase 0 proof of concept study: a clinical pharmacokinetic microdosing trial with gemcitabine                                                                                                                   | Serena<br>Marchetti     | other | 19/04/17                   |
| NI6LNA | In vivo identification of liver tumors during liver surgery using electromagnetic<br>navigation: a pilot study (Navigation liver 1 study)                                                                       | Theo Ruers              | pilot | 06/07/16                   |
| N16LND | Targeted Abdominal Lymph nodE dissections randomized for surgical NavigaTion<br>(TALENT)                                                                                                                        | Theo Ruers              | other | 25/01/17                   |
|        |                                                                                                                                                                                                                 |                         |       |                            |

| Type of<br>cancer study<br>(nick name) | Title | Study Phase<br>coordinator<br>in NKI-AVL | Activated<br>(closed) |
|----------------------------------------|-------|------------------------------------------|-----------------------|
|----------------------------------------|-------|------------------------------------------|-----------------------|

| N16LUR  | Mass Balance Study of PM01183 (lurbinectedin) Administered as a 1- hour<br>Intravenous Infusion to Patients with Advanced Cancer                                                                | Frans Opdam           | 1     | 19/04/2017<br>(01/03/2018) |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------|----------------------------|
| N16NVG  | The effectiveness of patient navigation in cancer care (navigatie)                                                                                                                              | Eveline Bleiker       | other | 27/12/2016<br>(06/11/2018) |
| N16PDA  | Validation of Pharmacokinetic Assays for determination of Nivolumab and<br>Pembrolizumab concentrations in serum                                                                                | Serena<br>Marchetti   | other | 16/01/17                   |
| N16PZN  | Proof of principle and pharmacological phase 0 study with improved solubility<br>Pazopanib (PazSol001)                                                                                          | Neeltje Steeghs       | other | 15/09/2016<br>(31/10/2018) |
| N16UMB  | MR-sequence optimization and Workflow development for treatment guidance, using<br>the integrated MR scanner of the MR Linac system. Towards MR guided Adaptive<br>Radiation Therapy (UMBRELLA) | Marlies Nowee         | other | 26/04/17                   |
| N17DEX  | Safety of extended use of the weekly oral docetaxel formulation ModraDoc006/r in<br>patients with advanced solid tumours                                                                        | Serena<br>Marchetti   | other | 04/05/2017<br>(03/08/2018) |
| N17MRB  | Monitoring MRI changes before and during Radiotherapy Treatment of Brain Tumors                                                                                                                 | Gerben Borst          | other | 31/08/17                   |
| N17ROW  | Reiniging van gecontamineerde postoperatieve oncologische wonden met<br>kraanwater of antiseptische spoelvloeistof - een gerandomiseerde klinische studie                                       | Rob Kuin              | other | 05/02/18                   |
| N18BREL | The MR-Linac Technical feasibility protocol for development of MR-guided adaptive<br>radiation therapy (UMBRELLA-2)                                                                             | Marlies Nowee         | other | 26/09/18                   |
| N18MRC  | Development of MRCAT: electron density maps for radiotherapy dose calculations<br>from MR images as alternative for planning CT scans                                                           | Abrahim<br>Al-Mamgani | other | 21/03/18                   |
| N18ULN  | Ultrasound-based navigation during liver surgery                                                                                                                                                | Theo Ruers            | other | 10/08/18                   |

### BIOBANK

| B15CTD | Circulating tumor DNA in cancer patients: development of a clinical diagnostic tests<br>and establishment of a biobank                                                   | Michiel<br>van der Heijden | biobank | 07/10/15                   |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------|----------------------------|
| B15HHC | Analyse van weefsel van patienten met een tumor in het hoofd-halsgebied                                                                                                  | Lotje Zuur                 | biobank | 03/09/15                   |
| B15IMM | Longitudinal tumor and blood sampling in patients with advanced stage<br>urothelial cancer of the bladder for the analysis of mechanisms of response to<br>immunotherapy | Michiel<br>van der Heijden | biobank | 07/10/15                   |
| B150ES | Tissue sampling of oesophagogastric cancer to enable tailored therapies<br>(TOGETHER study)                                                                              | Johanna<br>van Sandick     | biobank | 17/06/15                   |
| B15PON | Paired healthy & tumor organoid Biobank (carcinomas)                                                                                                                     | Emile Voest                | biobank | 09/09/2015<br>(28/11/2018) |
| B16BBC | Melanoma transcriptome protocol; Blood collection NETest                                                                                                                 | Margot<br>Tesselaar        | biobank | 14/04/16                   |
| B16BHW | Blood sampling of healthy women and early stage breast cancer patients                                                                                                   | Jelle Wesseling            | biobank | 11/07/16                   |
| B16CIT | Antigenic specificity and functional properties of colorectal cancer infiltrating human T cells, biobank protocol                                                        | Ton<br>Schumacher          | biobank | 23/01/17                   |
| B16CLM | Determining the sensitivity and specificity of circulating tumor cells and cytology in cerebrospinal fluid of patients with suspicion of leptomenigual matastases        | Dieta<br>Brandsma          | biobank | 19/09/17                   |

| cancer study (nick name) in NKI-AVL (closed) | Type of Title<br>cancer study<br>(nick name) | Study<br>coordinator<br>in NKI-AVL | Phase | Activated<br>(closed) |
|----------------------------------------------|----------------------------------------------|------------------------------------|-------|-----------------------|
|----------------------------------------------|----------------------------------------------|------------------------------------|-------|-----------------------|

| B16IMM | Biobank Immunotherapy baseline samples                                                                                                                    | Huub<br>van Rossum         | biobank | 03/10/16 |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------|----------|
| B16MEL | Understanding tumor immune escape in patients with stage III melanoma                                                                                     | Alexander<br>van Akkooi    | biobank | 28/08/17 |
| B16NBC | Tissue and blood sampling to find predictive markers for neoadjuvant chemotherapy<br>benefit in breast cancer - Neoadjuvant Therapy Breast Cancer Biobank | Gabe Sonke                 | biobank | 27/06/16 |
| B16PON | Paired healthy & tumor organoid Biobank (adenomas)                                                                                                        | Emile Voest                | biobank | 14/07/16 |
| B16TGT | Translational Gastrointestinal Oncology - tissue                                                                                                          | Gerrit Meijer              | biobank | 14/07/16 |
| B17CON | CONventional TReatment Or Leave DCIS                                                                                                                      | Jelle Wesseling            | biobank | 27/12/17 |
| B17GEN | Biomarker analyse van weefsel/bloed van patiënten met een HPV-negatieve tumor<br>in het hoofdhalsgebied                                                   | Michiel<br>van den Brekel  | biobank | 27/09/17 |
| B17PRE | Prevent Ductal Carcinoma In Situ Invasive Overtreatment Now (PRECISION)                                                                                   | Jelle Wesseling            | biobank | 28/11/17 |
| B18UBC | Longitudinal tumor, urine and blood sampling in patients with urinary tract cancer<br>treated with chemotherapy                                           | Michiel<br>van der Heijden | biobank | 15/10/18 |

### BRAIN / CNS

| E1709  | A phase III trial of Marizomib in combination with standard Temozolomide-based radiochemotherapy versus standard Temozolomide-based radiochemotherapy alone in patients with newly daignosed glioblastoma                                                    | Dieta<br>Brandsma |       | 30/10/18                   |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------|----------------------------|
| M15NFM | A randomized placebo-controlled study in patients with a Gallium-68 DOTATATE PET/<br>CT positive, clinically non-functioning pituitary macroadenoma (NFMA) of the effect<br>of Lanreotide autosolution on Tumor (adenoma) size (GALANT)                      | Marcel Stokkel    | Ш     | 27/10/2015<br>(31/10/2018) |
| M15NTG | A Randomized Phase 3 Open Label Study of Nivolumab vs Temozolomide Each<br>in Combination with Radiation Therapy in Newly Diagnosed Adult Subjects<br>with Unmethylated MGMT (tumor O-6-methylguanine DNA methyltransferase)<br>Glioblastoma (CheckMate 498) | Dieta<br>Brandsma | Ш     | 06/06/16                   |
| M16NMG | A Randomized Phase 2 Single Blind Study of Temozolomide plus Radiation Therapy<br>combined with Nivolumab or Placebo in Newly Diagnosed Adult Subjects with MGMT-<br>Methylated (tumor O6-methylguanine DNA methyltransferase) Glioblastoma                  | Dieta<br>Brandsma | II    | 17/06/16                   |
| N17ICO | Position stability during radiosurgery of brain tumours                                                                                                                                                                                                      | Gerben Borst      | other | 18/01/18                   |
| N17MRB | Monitoring MRI changes before and during Radiotherapy Treatment of Brain Tumors                                                                                                                                                                              | Gerben Borst      | other | 31/08/17                   |
| N18POB | Dose and Volume Escalation of Preoperative Brain Irradiation in GBM Patients<br>(POBIG trial)                                                                                                                                                                | Gerben Borst      | 1/11  | 19/06/18                   |

### BREAST

| M05BRI | Long term risk of breast cancer following treatment of Hodgkin's disease (BRIGHT)                                            | Nicola Russell | other | 05/01/06                   |
|--------|------------------------------------------------------------------------------------------------------------------------------|----------------|-------|----------------------------|
| M11FAM | Breast density as indicator for the use of mammography or MRI to screen women with familiar risk for breast cancer (FaMRIsc) | Emiel Rutgers  | other | 30/11/2011<br>(31/10/2018) |
| M12DEN | Early detection of breast cancer in women with dense breasts (DENSE study)                                                   | Claudette Loo  | other | 19/09/12                   |
| 138    |                                                                                                                              |                |       |                            |

| Type of<br>cancer study<br>(nick name) | Title | Study<br>coordinator<br>in NKI-AVL | Phase | Activated<br>(closed) |
|----------------------------------------|-------|------------------------------------|-------|-----------------------|
|                                        |       |                                    | '     |                       |

| M12SSU | Detectie van onstekingsgeassocieerde eiwitprofielen in het serum, speeksel en<br>urine van patienten met mammatumoren                                                                                                                                                                                                                                                                                | Emiel Rutgers                | other | 17/04/12                   |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------|----------------------------|
| M13DDR | Breast cancer with low risk of local recurrence: partial and accelerated radiation with three-dimensional conformal radiotherapy (3DCRT) vs standard radiotherapy after conserving surgery (IRMA)                                                                                                                                                                                                    | Nicola Russell               | Ш     | 14/03/2014<br>(30/03/2018) |
| M13MBC | Male Breast Cancer: prospective into perspective                                                                                                                                                                                                                                                                                                                                                     | Nicola Russell               | other | 10/04/2014<br>(07/12/2017) |
| M13TNB | Biomarker discovery randomized phase IIb trial with Carboplatin-Cyclophosphamide versus Paclitaxel with or without Bevacizumab as first-line treatment in advanced triple negative breast cancer (TRIPLE-B)                                                                                                                                                                                          | Sabine Linn                  | Н     | 09/07/13                   |
| M13WEL | Downsides of being well-informed: tracking and preventing chemotherapy-related cognitive problems in breast cancer patients (CONTEXT)                                                                                                                                                                                                                                                                | Sanne Schagen                | other | 14/10/2013<br>(19/11/2018) |
| M14ABC | A feasibility study of niraparib for advanced, BRCA1-like, HER2-negative breast cancer patients (ABC)                                                                                                                                                                                                                                                                                                | Sabine Linn                  | II    | 15/01/18                   |
| M14CAT | The value of completion axillary treatment in sentinel node positive breast cancer patients undergoing a mastectomy. A Dutch randomized controlled multicentre trial (BOOG 2013-07)                                                                                                                                                                                                                  | Frederieke<br>van Duijnhoven | Ш     | 24/07/2014<br>(06/02/2018) |
| M14CNB | Clinically node negative breast cancer patients undergoing breast conserving therapy: Sentinel lymph node procedure versus follow-up. A Dutch randomized controlled multicentre trial (BOOG 2013-08)                                                                                                                                                                                                 | Frederieke<br>van Duijnhoven | Ш     | 14/09/16                   |
| M14HAR | ldentifying subgroups with high cardiovascular risk in breast cancer survivors<br>(HARBOR)                                                                                                                                                                                                                                                                                                           | Floor<br>van Leeuwen         | other | 13/04/15                   |
| M14POS | Phase I/prospective randomized phase II trial Of the Safety and Efficacy of<br>tamoxifen in combination with the Isoform selective Pi3K inhibitor GDC-0032<br>compared with tamoxifen alONe in hormone receptor positive, HER2 negative,<br>metastatic breast cancer patients with prior exposure to endocrine treatment<br>(POSEIDON trial)                                                         | Sabine Linn                  | 1/11  | 31/10/14                   |
| M14REV | A phase I followed by a randomized phase II trial of two cycles carboplatin-olaparib<br>followed by olaparib monotherapy versus capecitabine in BRCA-1 or -2 mutated<br>Her2 negative advanced breast cancer as first line treatment (REVIVAL)                                                                                                                                                       | Sabine Linn                  | IZII  | 21/04/2015<br>(31/10/2018) |
| M15INF | Towards optimal treatment of inflammatory breast cancer patients (INFLAME)                                                                                                                                                                                                                                                                                                                           | Gabe Sonke                   | other | 10/05/16                   |
| M15OLY | A randomised double-blind parallel group placebo controlled multicenter phase<br>III study to assess the efficacy and safety of olaparib versus placebo as adjuvant<br>treatment in patients with germline BRCA1/2 mutations and high risk HER2<br>negative primary breast cancer who have completed definitive local treatment and<br>neoadjuvant or adjuvant chemotherapy (OLYMPIA) (BOOG 2014-03) | Gabe Sonke                   | III   | 03/06/15                   |
| M15PAP | Pre- versus Postoperative Accelerated Partial Breast Irradiation in early stage breast cancer patients, A randomized phase III trial (PAPBI-2)                                                                                                                                                                                                                                                       | Astrid Scholten              | Ш     | 17/08/16                   |
| M16BRC | Substantially improving the cure rate of high-risk BRCA1-like breast cancer patients with personalized therapy (SUBITO), an international randomized phase III trial                                                                                                                                                                                                                                 | Sabine Linn                  | Ш     | 13/10/16                   |
| M16PLE | Phase lb, open-label, multi-center study to characterize the safety, tolerability<br>and pharmacodynamics (PD) of PDR001 in combination with LCL161, Everolimus<br>(RAD001) or Panobinostat (LBH589)                                                                                                                                                                                                 | Neeltje Steeghs              | 1     | 01/11/16                   |
| M17GEL | AssessinG Efficacy of carboplatin and ATezOlizumab in metastatic Lobular breast cancer (GELATO)                                                                                                                                                                                                                                                                                                      | Marleen Kok                  | IZII  | 06/10/17                   |
|        |                                                                                                                                                                                                                                                                                                                                                                                                      |                              |       | 1                          |

| Type of Title<br>cancer study<br>(nick name) | Study Phase<br>coordinator<br>in NKI-AVL | Activated<br>(closed) |
|----------------------------------------------|------------------------------------------|-----------------------|
|----------------------------------------------|------------------------------------------|-----------------------|

| М17РАВ  | Effect of a physical activity promotion program offered online or via blended care<br>on physical activity level in breast and prostate cancer survivors (PABLO)                                                                | Wim Groen                           | other | 19/10/17                   |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------|----------------------------|
| M17PRP  | Discovery of prognostic molecular markers within an early stage breast cancer<br>patient population A study of the Dutch Breast Cancer Research Group BOOG 2016-<br>03 (PRECISE Project)                                        | Gabe Sonke                          | other | 22/08/17                   |
| M17SDM  | Implementing a decision aid for breast cancer and DCIS patients deciding on their radiation treatment: A pre- and post-intervention study                                                                                       | Nicola Russell                      | other | 26/10/17                   |
| M17SJA  | Endocrine therapy plus CDK 4/6 inhibition in first or second line for hormone receptor positive advanced breast cancer (SONIA)                                                                                                  | Gabe Sonke                          | other | 09/11/17                   |
| M17TAN  | Impact of a web-based decision aid for women considering breast reconstruction:a<br>randomized controlled trial (TANGO)                                                                                                         | Eveline Bleiker                     | other | 02/08/17                   |
| м17ТОР  | Tailored treatment in Older Patients (TOP-1): Omission of radiotherapy in elderly<br>patients with low risk breast cancer                                                                                                       | Marie Jeanne<br>Vrancken<br>Peeters | other | 28/02/18                   |
| M18HAR  | Favorable and unfavorable effects of risk-reducing salpingo-oophorectomy (RRSO)<br>in women with a high genetic risk of ovarian cancer (HARMOny)                                                                                | Floor<br>van Leeuwen                | other | 12/09/18                   |
| M18LBC  | Tailoring Neoadjuvant therapy in hormone receptor positive, HER2 negative, luminal breast cancer (NEOLBC)                                                                                                                       | Sabine Linn                         | II    | 15/11/18                   |
| M18LORD | Management of low grade ductal carcinoma in situ (low-grade DCIS): a randomized,<br>multicenter, noninferiority trial, between standard therapy approach versus active<br>surveillance (LORD)                                   | Jelle Wesseling                     | Ш     | 02/02/17                   |
| N07BOS  | Genetic determinants of survival and second breast cancer development in premenopausal breast cancer patients (BOSOM)                                                                                                           | Marjanka<br>Schmidt                 | other | 12/12/2007<br>(29/01/2018) |
| NOBAFT  | A randomized prospective trial of 2-6 weeks pre-operative hormonal treatment for<br>hormone receptor positive breast cancer: Anastrozole +/- fulvestrant or tamoxifen<br>exposure - response in molecular profile (AFTER-study) | Sabine Linn                         | II    | 04/08/08                   |
| N12OLG  | High-dose alkylating chemotherapy in oligo-metastatic breast cancer harboring homologous recombination deficiency (OLIGO)                                                                                                       | Gabe Sonke                          | Ш     | 03/07/12                   |
| NIJORB  | Olaparib dose escalation combined with radiotherapy in patients with inoperable breast cancer                                                                                                                                   | Gabe Sonke                          | I     | 23/08/13                   |
| N14MLS  | Pilot for high-resolution SPECT imaging of breast cancer lumpectomy specimens for 3D identification and quantification of resection margins                                                                                     | Wouter Vogel                        | pilot | 24/07/2014<br>(31/10/2018) |
| N15CGC  | A comparison of a hybrid compact gamma camera with planar lymphoscintigraphy<br>to simplify the SN procedure<br>(Xstrahl)                                                                                                       | Marcel Stokkel                      | other | 14/04/2015<br>(31/10/2018) |
| N15PPP  | Prediction of persisting postmastectomy pain by psycho-somato-sensory profiling                                                                                                                                                 | Anne Lukas                          | other | 25/01/16                   |
| NISTON  | Adaptive phase II randomized non-comparative trial of nivolumab after induction treatment in triple-negative breast cancer (TNBC) patients: TONIC-trial                                                                         | Marleen Kok                         | II    | 10/09/15                   |
| N16MIC  | Minimally Invasive Complete Response Assessment of the breast after neoadjuvant chemotherapy (MICRA)                                                                                                                            | Marie Jeanne<br>Vrancken<br>Peeters | other | 06/04/16                   |
| N16NTL  | Supine MRI-guided navigated radioactive seed localization in breast cancer patients:<br>a feasibility study                                                                                                                     | Claudette Loo                       | other | 02/02/2017<br>(31/10/2018) |
| N16PRB  | Pre-operative Breast Irradiation (PROBI)                                                                                                                                                                                        | Astrid Scholten                     | 1/11  | 18/04/17                   |
| 140     |                                                                                                                                                                                                                                 |                                     |       |                            |

| Type of<br>cancer study<br>(nick name) | Title                                                                                                                                                             | Study<br>coordinator<br>in NKI-AVL | Phase | Activated<br>(closed) |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------|-----------------------|
|                                        |                                                                                                                                                                   |                                    |       |                       |
| N16SEN                                 | Simplifying the sentinel node procedure in breast cancer using a portable gamma camera in order to replace conventional preoperative lymphatic mapping (SENTIMAP) | Marcel Stokkel                     | other | 06/07/17              |
| N18CPB                                 | Ervaren beperkingen ten gevolge chronische pijn na borstkanker: een kwalitatieve<br>studie naar het perspectief van de patiënt                                    | Kisten Nienhuys                    | other | 25/04/18              |

### GASTRO INTESTINAL

| C14GIST | Prospectieve registratie GIST patienten                                                                                                                                                                                                                                                             | Neeltje Steeghs         | other | 13/01/14                   |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------|----------------------------|
| CIGTAS  | Treatment of adult patients with metastatic colorectal cancer (CRC) who have been<br>previously treated with, or are not considered candidates for, available therapies<br>including fluoropyrimidine-, oxaliplatinand irinotecan-based chemotherapies, anti-<br>VEGF agents, and anti-EGFR agents. | Frans Opdam             | other | 07/01/2016<br>(31/10/2018) |
| E1409   | A Prospective Colorectal Liver Metastasis Database with an Integrated Quality<br>Assurance Program                                                                                                                                                                                                  | Theo Ruers              | other | 13/01/2016<br>(31/10/2018) |
| MO9OCB  | A pilot evaluating response to induction chemotherapy with oxaliplatin, capecitabine<br>and bevacizumab in patients with extensive peritoneal carcinomatosis of colorectar<br>origin                                                                                                                | Arend Aalbers           | pilot | 25/03/10                   |
| M12DEC  | A randomized trial of dose escalation in definitive chemoradiotherapy for patients with oesophageal cancer                                                                                                                                                                                          | Berthe Aleman           | Ш     | 12/02/13                   |
| M13ORC  | A randomized multicenter clinical trial for patients with multi-organ, colorectal<br>cancer metastases comparing the combination of chemotherapy and maximal tumor<br>debulking versus chemotherapy alone (ORCHESTRA)                                                                               | Cecile<br>Grootscholten | Ш     | 09/06/15                   |
| M14CR5  | Treatment strategies in colorectal cancer patients with initially unresectable<br>liver-only metastases. CAIRO5 - a randomised phase 3 study of the Dutch Colorectal<br>Cancer Group (DCCG)                                                                                                         | Cecile<br>Grootscholten | III   | 09/06/15                   |
| M14NEC  | Phase II Study of cisplatin and everolimus in patients with metastatic or unresectable neuroendocrine carcinomas (NEC) of extrapulmonary origin                                                                                                                                                     | Margot<br>Tesselaar     | Ш     | 10/02/16                   |
| M14TUM  | Tumor organoids: feasibility to predict sensitivity to treatment in cancer patients<br>(TUMOROID trial)                                                                                                                                                                                             | Emile Voest             | pilot | 22/07/14                   |
| M15COL  | Adjuvant hyperthermic intraperitoneal chemotherapy in patients with colon cancer<br>at high risk of peritoneal carcinomatosis; the COLOPEC randomized multicentre trial                                                                                                                             | Arend Aalbers           | Ш     | 30/04/2015<br>(02/01/2018) |
| M15CRI  | A multicentre randomised phase II trial of neo-adjuvant chemotherapy followed by<br>surgery vs. neoadjuvant chemotherapy and chemoradiotherapy followed by surgery<br>vs. neo-adjuvant chemoradiotherapy followed by surgery in resectable gastric<br>cancer (CRITICS-II)                           | Marcel Verheij          | II    | 23/06/17                   |
| M15HPV  | Non-Comparative, Two-Cohort, Single-Arm, Open-Label, Phase 1/2 Study of<br>Nivolumab (BMS-936558) in Subjects with Virus-Positive and Virus-Negative Solid<br>Tumors (BMS-936558)                                                                                                                   | Jan Paul<br>de Boer     | L/II  | 27/10/2015<br>(06/11/2018) |
| M15MOC  | Molecular stool test for colorectal cancer surveillance (MOCCAS)                                                                                                                                                                                                                                    | Monique<br>van Leerdam  | other | 20/01/16                   |
| M15MOD  | A multi-centre randomised clinical trial of biomarker-driven maintenance treatment<br>for first-line metastatic colorectal cancer (MODUL)                                                                                                                                                           | Cecile<br>Grootscholten | II    | 14/01/16                   |
| Type of<br>cancer study<br>(nick name) | Title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Study<br>coordinator<br>in NKI-AVL | Phase | Activated<br>(closed)      |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------|----------------------------|
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    |       |                            |
| M15PEC                                 | Treatment of peritoneal dissemination in stomach cancer patients with<br>cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. PERISCOPE<br>II - A multicentre randomised phase III trial                                                                                                                                                                                                                                                                                    | Johanna<br>van Sandick             | III   | 23/08/17                   |
| M15SCA                                 | The sensitivity of scar-biopsies for residual colorectal adenocarcinoma after endoscopic resection with uncertain radicality (SCAPURA)                                                                                                                                                                                                                                                                                                                                                      | Monique<br>van Leerdam             | other | 27/08/15                   |
| M15SOX                                 | Feasibility study of adjuvant treatment with S-1 and oxaliplatin in patients with resectable esophageal cancer (SOX)                                                                                                                                                                                                                                                                                                                                                                        | Cecile<br>Grootscholten            |       | 26/06/2015<br>(08/05/2018) |
| M16BAC                                 | A phase II open-label study with the anti-PDL1 Atezolizumab monoclonal antibody in<br>combination with Bevacizumab in patients with advanced chemotherapy resistant<br>colorectal cancer and MSIlike molecular signature                                                                                                                                                                                                                                                                    | Neeltje Steeghs                    | II    | 19/12/17                   |
| M16BCR                                 | A multicenter, randomized, open-label, 3-arm phase 3 study of Encorafenib<br>+Cetuximab plus or minus Binimetinib vs. Irinotecan/Cetuximab or Infusional<br>5-Fluorouracil (5-FU)/Folinic Acid (FA) /Irinotecan (FOLFIRI)/Cetuximab with a<br>safety lead-in of Encorafenib + Binimetinib + Cetuximab in patients with BRAF<br>V600E-mutant metastatic colorectal cancer. The BEACON CRC Study (Binimetinib,<br>Encorafenib, And Cetuximab COmbined to Treat BRAF-mutant ColoRectal Cancer) | Neeltje Steeghs                    | III   | 23/09/16                   |
| M16EEW                                 | Expectations and experiences of clinical complete responders after chemoradiation for rectal cancer, regarding the Wait-and-See policy: a qualitative multicenter study                                                                                                                                                                                                                                                                                                                     | Geerard Beets                      | other | 03/05/16                   |
| M16EGJ                                 | A Randomized, Multicenter, Double Blind, Phase III Study of Nivolumab or Placebo in<br>Subjects with Resected Lower Esophageal, or Gastroesophageal Junction Cancer<br>(CheckMate 577: CHECKpoint pathway and nivoluMab clinical Trial Evaluation 577)                                                                                                                                                                                                                                      | Cecile<br>Grootscholten            | III   | 27/10/16                   |
| M16EPS                                 | The European Polyp Surveillance study (EPoS) Two randomized controlled trials and<br>an observational cohort study (EPoS I/II/III)                                                                                                                                                                                                                                                                                                                                                          | Monique<br>van Leerdam             | other | 29/03/17                   |
| M16INC                                 | Intensive therapy for esophageal anastomotic strictures (INCA)                                                                                                                                                                                                                                                                                                                                                                                                                              | Jolanda<br>van Dieren              | Ш     | 12/04/17                   |
| M16PLE                                 | Phase Ib, open-label, multi-center study to characterize the safety, tolerability<br>and pharmacodynamics (PD) of PDR001 in combination with LCL161, Everolimus<br>(RAD001) or Panobinostat (LBH589)                                                                                                                                                                                                                                                                                        | Neeltje Steeghs                    | I     | 01/11/16                   |
| M16PTO                                 | Preferences , barriers and facilitators for pre-operative exercise participation for<br>elderly treated for colorectal cancer and their social network (PEPTONE)                                                                                                                                                                                                                                                                                                                            | Carla<br>Agasi-Idenburg            | other | 20/04/2017<br>(04/12/2018) |
| M16SCR                                 | Screening protocol to molecularly identify MSI-like, BRAF-like and TGFβ-like classifiers in patients with metastatic colorectal cancer (mCRC), to potentially participate in any of the H2O2O MoTriColor Clinical Trials                                                                                                                                                                                                                                                                    | Neeltje Steeghs                    | other | 25/01/17                   |
| M16STA                                 | Can we Save the rectum by watchful waiting or TransAnal microsurgery following<br>(chemo)Radiotherapy versus Total mesorectal excision for early REctal Cancer?<br>(STAR-TREC)                                                                                                                                                                                                                                                                                                              | Geerard Beets                      | II    | 26/07/17                   |
| M16TGA                                 | Phase I/II study with galunisertib combined with chemotherapy regimens in patients<br>with advanced chemotherapy resistant colorectal cancer and a TGFbeta signature<br>(MoTriColor1) (EORTC1615)                                                                                                                                                                                                                                                                                           | Neeltje Steeghs                    | 1/11  | 16/05/18                   |
| M16TSR                                 | Rectal preserving treatment for early rectal cancer. A multi-centred randomised trial of radical surgery versus adjuvant chemoradiotherapy after local excision for early rectal cancer (TESAR)                                                                                                                                                                                                                                                                                             | Monique<br>van Leerdam             | III   | 17/08/16                   |
| M16VIB                                 | A phase II study of vinorelbine in advanced BRAF-like colon cancer (EORTC1616)<br>(MoTriColor2)                                                                                                                                                                                                                                                                                                                                                                                             | Neeltje Steeghs                    | II    | 02/02/18                   |
| M16WAS                                 | Multicentre evaluation of the "wait-and-see" policy for complete responders after chemoradiotherapy for rectal cancer                                                                                                                                                                                                                                                                                                                                                                       | Geerard Beets                      | other | 24/02/17                   |
| 142                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    |       |                            |

| Type of<br>cancer study<br>(nick name) | Title                                                                                                                                                                                                                                         | Study<br>coordinator<br>in NKI-AVL | Phase | Activated<br>(closed)      |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------|----------------------------|
|                                        |                                                                                                                                                                                                                                               | 1 1                                |       |                            |
| N17BNI                                 | An Open-label Phase 1b/2 Study of Binimetinib Administered in Combination<br>with Nivolumab or Nivolumab Plus Ipilimumab in Patients with Previously Treated<br>Microsatellite-stable (MSS) Metastatic Colorectal Cancer with RAS Mutation    | Neeltje Steeghs                    | IZII  | 17/08/18                   |
| M17CR6                                 | Investigating the benefit of perioperative systemic therapy in patients undergoing<br>cytoreductive surgery with HIPEC for peritoneal metastases of colorectal cancer:<br>the multicentre, phase II-III, prospective, randomised CAIRO6 study | Arend Aalbers                      | other | 07/09/17                   |
| M17CRC                                 | Prospective data collection initiative on colorectal cancer - a prospective<br>obeservational cohort study (PLCRC)                                                                                                                            | Geerard Beets                      | IV    | 22/08/17                   |
| M17HCR                                 | Adjuvant hepatic arterial infusion pump chemotherapy after resection of colorectal liver metastases- a feasibility study (pump)                                                                                                               | Koert Kuhlmann                     | pilot | 13/02/18                   |
| M170FP                                 | A Multicentre Phase II Study of AZD1775 plus Chemotherapy in Patients with<br>Platinum-Resistant Epithelial Ovarian, Fallopian Tube, or Primary Peritoneal Cancer                                                                             | Frans Opdam                        | II    | 02/01/2018<br>(21/06/2018) |
| M17PLA                                 | Evaluation of PET and Laparoscopy in STagIng advanced gastric Cancer: a multicenter prospective study (PLASTIC)                                                                                                                               | Erik Vegt                          | other | 16/10/17                   |
| NO5STP                                 | Serum and tissue protein profiling and tumour genetic analysis in patients with potential premalignant conditions or colorectal cancer                                                                                                        | Annemieke<br>Cats                  | other | 19/01/2006<br>(29/11/2017) |
| M18PIE                                 | Preoperative Image-guided Identification of Response to neoadjuvant chemoradiotherapy in Esophageal cancer (PRIDE trial)                                                                                                                      | Marcel Verheij                     |       | 31/05/18                   |
| M18SAN                                 | Surgery As Needed for Oesophageal cancer: Neoadjuvant chemoradiotherapy plus<br>surgery versus active surveillance for oesophageal cancer (SANO)                                                                                              | Johanna<br>van Sandick             | Ш     | 25/06/18                   |
| M18SPO                                 | The (ir)relevance of WHO criterion 2 for the diagnosis of Serrated Polyposis<br>Syndrome                                                                                                                                                      | Monique<br>van Leerdam             | other | 29/11/18                   |
| N12INT                                 | Pilot study to evaluate the tumor-reactiviity of infiltrating T cells in human malignancies                                                                                                                                                   | Wouter<br>Scheper                  | pilot | 05/09/12                   |
| N13NAV                                 | Ilmage-guided navigation during abdominal surgery (NAVIGATION 1)                                                                                                                                                                              | Theo Ruers                         | pilot | 17/10/13                   |
| NISOME                                 | Organ motion and early tumor response measurement during chemoradiotherapy for esophageal cancer                                                                                                                                              | Francine<br>Voncken                | other | 17/01/2014<br>(07/09/2018) |
| N14ITO                                 | Immunogenicity of Tumor Organoids, a feasibility study                                                                                                                                                                                        | Emile Voest                        | other | 22/07/14                   |
| N14RCS                                 | In vivo identification of rectum and coloncarcinoma during surgery using optical                                                                                                                                                              | Theo Ruers                         | other | 31/07/14                   |

N14RCS In vivo identification of rectum and coloncarcinoma during surgery using optical spectroscopy techniques (ColoSpect) N14SNS Selecting cancer patients for treatment using Tumor Organoids (SENSOR)

N15POS Validity of Pre-operative screening in elderly patients who undergo Surgery for colorectal oncology, to predict postoperative complications and hospital stay (POSE)

N16BTC Blood Transcript Analysis in colorectal cancer patients

N16DWI DWI MR imaging for dedicated staging of patients with peritoneal seeding (DISPERSE) N16GMR A Feasibility Study of MR- based target delineation for Radiotherapy Treatment Planning For Gastric Cancer N16NCI

Nivolumab, Ipilimumab and COX2-inhibition in early stage colon cancer: an unbiased approach for signals of sensitivity (NICHE trial)

16/08/16 23/05/2016

Emile Voest

Agasi-Idenburg

Carla

Margot

Tesselaar

Max Lahaye

Marcel Verheij

Myriam Chalabi

other

other

other

other

pilot

other

(04/12/2018)

23/08/16

26/05/16 02/09/16

20/01/17

| Type of      | Title | Study       | Phase | Activated |
|--------------|-------|-------------|-------|-----------|
| cancer study |       | coordinator |       | (closed)  |
| (nick name)  |       | in NKI-AVL  |       |           |
|              |       |             |       |           |

| N16OCR | A prospective observational cohort for the clinical evaluation of innovative image guided surgical interventions in rectal cancer               | Theo Ruers     | other | 13/10/16 |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------|----------|
| N16TRS | Real-time in vivo sensor tracking of rectal tumours during colorectal cancer surgery                                                            | Theo Ruers     | other | 16/09/16 |
| N17PND | Neoadjuvant capecitabine, oxaliplatin, docetaxel and atezolizumab in non-metastatic,<br>resectable gastric and GE-junction cancer (PANDA trial) | Myriam Chalabi | II    | 27/02/18 |
| N18ULN | Ultrasound-based navigation during liver surgery                                                                                                | Theo Ruers     | other | 10/08/18 |

### GYNAECOLOGICAL

| E55102 | A phase III Trial of postoperative chemotherapy or no further treatment for patients<br>with node-negative stage I-II intermediate or high risk endometrial cancer (ENGOT-<br>EN2-DGCG)                       | Hans Trum               | III   | 24/08/16                   |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------|----------------------------|
| MO5PPO | Proteomic patterns in blood and tissue of ovarian cancer patients                                                                                                                                             | Willemien<br>van Driel  | other | 12/01/2006<br>(02/01/2018) |
| M07RCV | Phase II study of definitive radiochemotherapy for locally advanced squamous cell<br>cancer of the vulva: an efficacy study                                                                                   | Baukelien<br>van Triest | II    | 26/06/2007<br>(14/11/2018) |
| міомко | Phase II and pharmacological study with WEE-1 inhibitor MK-1775 combined with<br>carboplatin in patients with p53 mutated epithelial ovarian cancer                                                           | Frans Opdam             | II    | 08/07/10                   |
| M11CIR | Charting of immune reactivity against HPV in patients with HPV-induced (pre-) malignant lesions (Circle 2)                                                                                                    | Gemma Kenter            | other | 05/04/2012<br>(9/04/2018)  |
| M14BBB | The Blood-Belly Barrier (tripleB)                                                                                                                                                                             | Christianne Lok         | nvt   | 03/05/16                   |
| M14SCM | Subcellular components and multi-drug resistance in epithelial ovarian carcinoma                                                                                                                              | Juliette<br>van Baal    | other | 28/04/2016<br>(06/11/2018) |
| M15ENS | ENdometrial cancer SURvivors' follow-up carE (ENSURE): Less is more? Randomized<br>controlled trial to evaluate patient satisfaction and cost-effectiveness of a reduced<br>follow-up schedule                | Hans Trum               | other | 20/10/2015<br>(18/07/2018) |
| M15HPV | Non-Comparative, Two-Cohort, Single-Arm, Open-Label, Phase 1/2 Study of<br>Nivolumab (BMS-936558) in Subjects with Virus-Positive and Virus-Negative Solid<br>Tumors                                          | Jan Paul<br>de Boer     | 1711  | 27/10/2015<br>(06/11/2018) |
| M15PAG | Topical 5% imiquimod cream for vulvar Paget's Disease: clinical efficacy, safety and<br>immunological response (PAGET)                                                                                        | Marc<br>van Beurden     | other | 20/11/2015<br>(31/10/2018) |
| M15RHY | A randomized phase III trial comparing radical hysterectomy and pelvic node<br>dissection vs simple hysterectomy and pelvic node dissection in patients with low-<br>risk early-stage cervical cancer (SHAPE) | Willemien<br>van Driel  | III   | 29/12/15                   |
| M16HE4 | Prospective evaluation of Human Epididymal protein 4 (HE4) as predictor of malignancy in patients with an ovarian mass (HE4 prediction)                                                                       | Christianne Lok         | other | 18/04/17                   |
| M16PE0 | A phase II, open-label, single-arm, multicenter study to evaluate efficacy and safety<br>of Pembrolizumab monotherapy in subjects with advanced recurrent ovarian cancer<br>(KEYNOTE 100)                     | Gabe Sonke              | II    | 30/06/2016<br>(08/10/2018) |
| M16RTE | Randomised Phase III Trial of molecular profile-based versus standard recommendations for adjuvant radiotherapy for women with early stage endometrial cancer (PORTEC 4a)                                     | Monique<br>Bloemers     | 111   | 08/02/17                   |
| 144    |                                                                                                                                                                                                               |                         |       |                            |

| Type of Title<br>cancer study<br>(nick name) | Study Phase<br>coordinator<br>in NKI-AVL | Activated<br>(closed) |
|----------------------------------------------|------------------------------------------|-----------------------|
|----------------------------------------------|------------------------------------------|-----------------------|

| M16SOL  | Biomarker detection in cytology samples of women with gynaecologic cancer: a multicentric study (SOLUTION)                                                                                                 | Gemma Kenter           | other | 30/01/17 |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------|----------|
| M16SON  | Sentinel node in ovarian cancer (SONAR-2)                                                                                                                                                                  | Willemien<br>van Driel | I     | 15/09/16 |
| M16TUB  | Early salpingectomy (Tubectomy) with delayed oophorectomy to improve quality of<br>life as alternative for risk-reducing salpingo-oophorectomy in BRCA1/2 mutation<br>carriers (TUBA)                      | Marc<br>van Beurden    | other | 01/06/16 |
| M17CPF  | Neo-Adjuvant Chemotherapy and Conservative Surgery in Cervical Cancer to<br>Preserve Fertility (NEOCON-F)                                                                                                  | Nienke<br>van Trommel  | П     | 04/12/18 |
| M17EBR  | Image guided intensity modulated External beam radiochemotherapy and MRI based<br>adaptive Brachytherapy in locally advanced Cervical cancer (EMBRACE-II)                                                  | Monique<br>Bloemers    | other | 04/06/18 |
| M17GINC | The state of the (sentinel) lymph node microenvironment in patients with cancer of the cervix (GINA-Cervix)                                                                                                | Henry Zijlmans         | other | 28/02/18 |
| M17GINV | The state of the (sentinel) lymph node microenvironment in patients with HPV-<br>positive and HPV-negative cancer of the vulva (GINA-Vulva)                                                                | Henry Zijlmans         | other | 28/02/18 |
| M17GSC  | GERiatric Screening in the treatment of elderly patients with Ovarian Carcinoma (GERSOC)                                                                                                                   | Hans Trum              | other | 07/06/18 |
| M17MRO  | Clinical impact of dedicated MR staging of ovarian cancer                                                                                                                                                  | Max Lahaye             | other | 17/04/18 |
| M17PDV  | Physical Activity and Dietary intervention in OVArian cancer (PADOVA): a RCT evaluating effects on body composition, physical function, and fatigue                                                        | Willemien<br>van Driel | other | 01/05/18 |
| M17SNX  | A prospective observational trial on sentinel lymph node biopsy in patients with<br>early stage cervical cancer (Sentix)                                                                                   | Hans Trum              | other | 22/10/18 |
| M18CRA  | Cancer risk assessment in women with vulvar intraepithelial neoplasia. Historic cohort study (part I) + Prospective study (part 2)                                                                         | Marc<br>van Beurden    | other | 06/11/18 |
| M18KZH  | Ontwikkeling option grid/keuzehulp t.b.v. behandeling gevorderd ovariumcarcinoom                                                                                                                           | Willemien<br>van Driel | other | 31/07/18 |
| N12INT  | Pilot study to evaluate the tumor-reactiviity of infiltrating T cells in human malignancies                                                                                                                | Wouter<br>Scheper      | pilot | 05/09/12 |
| NISTCH  | Isolation of T cell receptors from human papilloma virus (HPV)-reactive or other<br>tumor-reactive T cells from patients with oropharyngeal, cervical or vulvar cancer                                     | Lotje Zuur             | other | 13/07/16 |
| N16DWI  | DWI MR imaging for dedicated staging of patients with peritoneal seeding (DISPERSE)                                                                                                                        | Max Lahaye             | other | 26/05/16 |
| N16NEON | Personalized adoptive T-cell therapy protocol                                                                                                                                                              | John Haanen            | other | 09/11/16 |
| N16OPE  | Feasibility study of neo-adjuvant treatment with carboplatin, paclitaxel and pembrolizumab in primary stage IV serous ovarian cancer                                                                       | Gabe Sonke             | I     | 19/07/17 |
| N16SIG  | Safety, immunogenicity and clinical response of sig-HELP-E6SH/E7SH-kdel, injected<br>in the epidermis by DNA tattoo vaccination, in HPV16-positive vulvar intraepithelial<br>neoplasia: a phase I/II study | Gemma Kenter           | 1711  | 09/11/16 |
|         |                                                                                                                                                                                                            |                        |       |          |
|         |                                                                                                                                                                                                            |                        |       |          |
|         |                                                                                                                                                                                                            |                        |       |          |
|         |                                                                                                                                                                                                            |                        |       |          |
|         |                                                                                                                                                                                                            |                        |       |          |

| Type of      | Title | Study       | Phase | Activated |
|--------------|-------|-------------|-------|-----------|
| cancer study |       | coordinator |       | (closed)  |
| (nick name)  |       | in NKI-AVL  |       |           |
|              |       |             |       |           |

#### HEAD AND NECK

| MIIART | Adaptive and innovative radiation treatment for improving cancer treatment<br>outcome (ARTFORCE)                                                                                                                                                               | Olga Hamming-<br>Vrieze   |       | 20/12/11                   |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------|----------------------------|
| M14PAR | TachoSil patch application as replacement of closed suction wound drainage by<br>parotid gland surgery: a prospective study                                                                                                                                    | Fons Balm                 | other | 22/01/15                   |
| M15CRH | Dutch randomized multicenter trial COmparing twO PalliativE RAdiaTION schemes for incurable head and neck cancer (COOPERATION)                                                                                                                                 | Abrahim<br>Al-Mamgani     | III   | 12/11/2015<br>(01/06/2018) |
| M15HPV | Non-Comparative, Two-Cohort, Single-Arm, Open-Label, Phase 1/2 Study of<br>Nivolumab (BMS-936558) in Subjects with Virus-Positive and Virus-Negative Solid<br>Tumors                                                                                           | Jan Paul<br>de Boer       | IZII  | 27/10/2015<br>(06/11/2018) |
| M15PFO | A phase I, open-label, dose escalation study of PF-04518600 in patients with locally<br>advanced or metastatic hepatocellular carcinoma (HCC), melanoma, clear cell renal<br>cell carcinoma (RCC) or squamous cell head en neck cancer (SCCHN)                 | Sofie Wilgenhof           | I     | 09/09/2015<br>(08/11/2018) |
| М16НМЕ | A multicenter randomized crossover study of a new peristomal adhesive and<br>Heat and Moisture Exchanger (HME) for nighttime pulmonary rehabilitation in<br>laryngectomized patients                                                                           | Michiel<br>van den Brekel | other | 29/09/2017<br>(27/02/2018) |
| М16NIH | A Double-Blind, Randomized, Two Arm Phase 2 Study of Nivolumab in Combination<br>with Ipilimumab versus Nivolumab in Combination with Ipilimumab Placebo In<br>Recurrent or Metastatic Squamous Cell Carcinoma of the Head and Neck (SCCHN)<br>(CheckMate 714) | Margot<br>Tesselaar       | II .  | 19/04/2017<br>(12/03/2018) |
| M160PS | Optical properties of the sinonasal cavity after surgical tumor resection                                                                                                                                                                                      | Baris<br>Karakullukcu     | other | 01/03/17                   |
| M16SPS | Combination of salvage surgery and adjuvant photodynamic therapy in management of recurrent or residual sinonasal tumors                                                                                                                                       | Baris<br>Karakullukcu     | other | 26/01/17                   |
| М17СРІ | Validation and psychometric properties of the Dutch version of the Communicative<br>Participation Item Bank (CPIB) short form                                                                                                                                  | Michiel<br>van den Brekel | other | 16/10/17                   |
| M17MOV | Optimising physical fitness in patients receiving chemo radiotherapy for head and neck cancer: a feasibility study (Move-FIT)                                                                                                                                  | Martijn Stuiver           | other | 01/03/18                   |
| M18TUN | Validation of TUNE criteria in patients treated with chemoradiotherapy using cisplatin for head and neck squamous cell carcinoma (TUNE)                                                                                                                        | Lotje Zuur                | other | 15/05/18                   |
| NO5HME | De korte termijn invloed van een Heat and Moisture Exchanger op de endotracheale<br>temperatuur en luchtvochtigheid bij gelaryngectomeerden                                                                                                                    | Michiel<br>van den Brekel | other | 01/09/2005<br>(24/10/2018) |
| N12MAC | Exploring the contribution of Macrophages in the microenvironment of HPV-induced squamous cell carcinoma of the head and neck (M&M)                                                                                                                            | Jan Paul<br>de Boer       | other | 31/08/12                   |
| N13ORH | Olaparib dose escalation trial in patients treated with radiotherapy for stage II-III<br>laryngeal and stage II-III HPV-negative oropharyngeal squamous cell carcinoma                                                                                         | Marcel Verheij            | I     | 20/02/14                   |
| N14IMR | The immunological aspects of conventional therapies for the treatment of head<br>and neck squamous cell carcinoma (HNSCC). An exploratory study to study the<br>mmunological effects of (chemo)radiotherapy in HNSCC patients (IMRAD)                          | Lotje Zuur                | other | 23/03/15                   |
| N14LMN | Lymphatic mapping of the neck in patients with oral cavity malignancies using ICG-<br>nanocolloid                                                                                                                                                              | Martin Klop               | other | 10/06/15                   |
| N15HTC | Longitudinal analysis of head and neck cancer-specific immunity in patients treated with (salvage) surgery                                                                                                                                                     | Lotje Zuur                | other | 16/12/15                   |
| N15PAH | Feasibility of position averaged planning-CT for head-neck tumours                                                                                                                                                                                             | Wouter Vogel              | other | 16/12/15                   |
| 146    |                                                                                                                                                                                                                                                                |                           |       |                            |
|        |                                                                                                                                                                                                                                                                |                           |       |                            |

| Type of<br>cancer study<br>(nick name) | Title                                                                                                                                                                                                                                                                                                                      | Study<br>coordinator<br>in NKI-AVL | Phase | Activated<br>(closed)      |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------|----------------------------|
|                                        |                                                                                                                                                                                                                                                                                                                            |                                    |       |                            |
| N15SHA                                 | Effect of a silicone foam dressing (XtraSorb Foam) and hydrocolloid dressing<br>(XtraSorb HCS) compared to silicone foam dressing (Mepilex) or an alginate<br>(Kaltostat) combined with a semipermeable film (Tegaderm) on the donor site after<br>split-thickness skin graft: a randomized controlled trial (SHAFE study) | Peter Lohuis                       | other | 31/05/16                   |
| N15TCH                                 | Isolation of T cell receptors from human papilloma virus (HPV)-reactive or other<br>tumor-reactive T cells from patients with oropharyngeal, cervical or vulvar cancer                                                                                                                                                     | Lotje Zuur                         | other | 13/07/16                   |
| N16BIR                                 | Bioimmunoradiotherapy (BIR) with concurrent Avelumab, Cetuximab and<br>Radiotherapy as first line treatment in patients with locally advanced squamous cell<br>carcinoma of the head and neck. A feasibility study in patients unfit for cisplatin                                                                         | Jan Paul<br>de Boer                | I     | 02/12/2016<br>(14/08/2018) |
| N16EMS                                 | The effectiveness of device-driven Expiratory Muscle Strength Training (EMST) in total laryngectomy patients; a pilot study                                                                                                                                                                                                | Michiel<br>van den Brekel          | pilot | 19/04/2017<br>(01/03/2018) |
| N16IGM                                 | Intraoperative verification of maxillary malignancy resection with cone-beam<br>computed tomography                                                                                                                                                                                                                        | Baris<br>Karakullukcu              | pilot | 21/02/17                   |
| N16IMC                                 | ImmunoModulation by the Combination of Ipilimumab and nivolumab neoadjuvant to<br>Surgery In advanced Or recurrent head and Neck carcinoma (IMCISION)                                                                                                                                                                      | Lotje Zuur                         | I     | 08/12/16                   |
| N16NEON                                | Personalized adoptive T-cell therapy protocol                                                                                                                                                                                                                                                                              | John Haanen                        | other | 09/11/16                   |
| N16PVX                                 | Exploration of advantages and limitations of a new voice prosthesis (Provox Vega<br>XtraSeal) with Cemark for laryngectomized patients                                                                                                                                                                                     | Michiel<br>van den Brekel          | other | 04/10/2017<br>(29/10/2018) |
| N16QPS                                 | Quality check of PSMA PET for imaging salivary gland toxicity                                                                                                                                                                                                                                                              | Wouter Vogel                       | pilot | 02/09/2016<br>(31/10/2018) |
| N17ADM                                 | Adaptive Dose–Escalated Multi–modality Image–guided RadiothErapy (ADMIRE) for<br>head and neck cancer by twice reimaging, re–delineation and re–planning during the<br>course of radiotherapy                                                                                                                              | Abrahim<br>Al-Mamgani              | other | 31/08/17                   |
| N17BTM                                 | Personalization of a biomechanical tongue model for the prediction of treatment outcome: a feasibility study                                                                                                                                                                                                               | Ludi Smeele                        | other | 22/06/17                   |
| N17DSI                                 | Determining the dose-effect relation of salivary gland irradiation and cell loss with<br>PSMA PET                                                                                                                                                                                                                          | Wouter Vogel                       | other | 23/05/17                   |
| N17LFO                                 | Effectiveness of lipofilling in patients with oropharyngeal dysfunction (speech and/<br>or swallowing) after treatment for head and neck cancer                                                                                                                                                                            | Ludi Smeele                        | other | 19/12/17                   |
| N17SDC                                 | Salivary duct carcinoma: treatment outcomes of 14 patients in the Netherlands<br>Cancer Institute                                                                                                                                                                                                                          | Martin Klop                        | other | 10/11/2017<br>(01/11/2018) |
| N17SPE                                 | The timed Swallowing Performance EATing and drinking (SPEAT) test to objectify dysphagia in head and neck cancer patients                                                                                                                                                                                                  | Ludi Smeele                        | other | 24/04/18                   |
| N17SSF                                 | Prospective assessment of swallowing and speech function 10 years after<br>preventive swallowing rehabilitation and chemoradiotherapy for head and neck<br>cancer                                                                                                                                                          | Ludi Smeele                        | other | 09/03/18                   |
| N17SWU                                 | Shear wave ultrasound elastography of the tongue – a feasibility study.                                                                                                                                                                                                                                                    | Ludi Smeele                        | other | 14/06/17                   |
| ΝΊ7ΤΟΤ                                 | Tracking of oral cavity carcinomas in head and neck surgery                                                                                                                                                                                                                                                                | Baris<br>Karakullukcu              | other | 18/04/17                   |
| N18EMT                                 | Active and passive elasticity measurements of the tongue using in vivo measurement techniques                                                                                                                                                                                                                              | Ludi Smeele                        | other | 10/08/18                   |
| N18HSP                                 | Are circulating hematopoietic stem and progenitor cells a potential biomarker<br>for therapy response and disease progression in patients with squamous cell<br>carcinoma of the head and neck?                                                                                                                            | Lotje Zuur                         | other | 06/07/18                   |
|                                        |                                                                                                                                                                                                                                                                                                                            |                                    |       |                            |

| Type of<br>cancer study<br>(nick name) | Title                                                                                                                                                                                                                                                                 | Study<br>coordinator<br>in NKI-AVL | Phase | Activated<br>(closed)      |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------|----------------------------|
|                                        |                                                                                                                                                                                                                                                                       |                                    |       |                            |
| N18PCN                                 | Prospective study Evaluating CtDNA as a biomarker for treatment failure in head and Neck squamous cell carcinoma (PECAN)                                                                                                                                              | Abrahim<br>Al-Mamgani              | other | 15/05/18                   |
| N18VOQ                                 | Voice quality and voice related quality of life in patients treated with totallaryngectomy; A prospective data collection.                                                                                                                                            | Klaske<br>van Sluis                | other | 20/02/18                   |
| LUNG                                   |                                                                                                                                                                                                                                                                       |                                    |       |                            |
| C15MET                                 | Compassionate use programma crizotinib voor patienten met een MET mutatie                                                                                                                                                                                             | Michel<br>van den Heuvel           | other | 28/01/2015<br>(15/11/2018) |
| C15RET                                 | Compassionate use programma sunitinib voor patienten met een RET mutatie<br>(RET003)                                                                                                                                                                                  | Michel<br>van den Heuvel           | other | 27/01/2015<br>(28/11/2018) |
| C15ROC                                 | Compassionate use Rociletinib                                                                                                                                                                                                                                         | Egbert Smit                        | other | 09/12/2015<br>(31/10/2018) |
| C17LOR                                 | Compassionate use programma Iorlatinib                                                                                                                                                                                                                                | Michel<br>van den Heuvel           | other | 08/03/17                   |
| E1205                                  | EORTC randomized phase II study of pleurectomy/ decortication (P/D) preceded<br>or followed by chemotherapy in patients with early stage malignant pleural<br>mesothelioma                                                                                            | Paul Baas                          | II    | 15/03/18                   |
| MIILUN                                 | A project of European Thoracic Oncology Platform (lungscape)                                                                                                                                                                                                          | Paul Baas                          | other | 29/12/2011<br>(06/11/2018) |
| М12РНА                                 | Prophylactic Cranial Irradiation with or without hippocampal avoidance in SCLC: a randomized phase III study                                                                                                                                                          | José Belderbos                     | Ш     | 27/03/2013<br>(19/03/2018) |
| M13DAP                                 | Combination of dacomitinib and PD-0325901 in advanced KRAS mutation positive<br>colorectal, non-small cell lung and pancreatic cancer                                                                                                                                 | Frans Opdam                        | I     | 15/01/2014<br>(21/08/2018) |
| M13N19                                 | Switch maintenance treatment with gemcitabine for patients with malignant mesothelioma who do not progress after 1st line therapy with a pemetrexed-platinum combination. A randomised open label phase II study (NVALT19)                                            | Sjaak Burgers                      | II    | 04/03/14                   |
| M14AFS                                 | Phase I/II study with the combination of afatinib and selumetinib in advanced KRAS mutant positive and PIK3CA wildtype colorectal, non-small cell lung and pancreatic cancer                                                                                          | Frans Opdam                        | I/II  | 19/05/15                   |
| M14ENI                                 | A phase II, multicenter, open-label study of EGF816 in combination with Nivolumab<br>in adult patients with EGFR mutated non-small cell lung cancer and of INC280 in<br>combination with Nivolumab in adult patients with cMet positive non-small cell lung<br>cancer | Willemijn<br>Theelen               | II    | 09/06/15                   |
| M14LTK                                 | Phase I/II study with lapatinib plus trametinib in patients with metastatic KRAS mutant colorectal, non-small cell lung and pancreatic cancer                                                                                                                         | Frans Opdam                        | 1/11  | 04/08/14                   |
| M14N15                                 | Phase II study with oral fibroblast growth factor-1 inhibitor BIBF1120 as second<br>line treatment in lung carcinoma patients harboring fibroblast growth factor<br>receptor-1 gene amplification (NVALT-15)                                                          | Sjaak Burgers                      | П     | 12/09/2014<br>(01/11/2018) |
| M14PRT                                 | Randomized Phase II, 2-arm study of Pembrolizumab after high dose radiation<br>(SBRT) versus Pembrolizumab alone in patients with advanced non-small cell lung<br>cancer (PEMBRO-RT)                                                                                  | Paul Baas                          | II    | 03/07/2015<br>(03/04/2018) |
| M14TUM                                 | Tumor organoids: feasibility to predict sensitivity to treatment in cancer patients (TUMOROID trial).                                                                                                                                                                 | Emile Voest                        | pilot | 22/07/14                   |
| 148                                    |                                                                                                                                                                                                                                                                       |                                    |       |                            |

| Type of<br>cancer study<br>(nick name) | Title                                                                                                                                                                                                                                                                                                                  | Study<br>coordinator<br>in NKI-AVL | Phase | Activated<br>(closed)      |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------|----------------------------|
|                                        |                                                                                                                                                                                                                                                                                                                        |                                    |       |                            |
| M15CIN                                 | A phase II, multicenter, three-cohort study of oral cMET inhibitor INC280 in adult<br>patients with EGFR wild-type (wt), advanced non-small cell lung cancer (NSCLC) who<br>have received one or two prior lines of systemic therapy for advanced/matastatic<br>disease (CINC280A2201)                                 | Egbert Smit                        | II    | 15/09/15                   |
| M15LEM                                 | Lung cancer Early Molecular Assessment trial (LEMA)                                                                                                                                                                                                                                                                    | Sjaak Burgers                      | other | 29/06/16                   |
| M15N22                                 | First line chemotherapy in KRAS mutated non-small cell lung cancer patients: a<br>phase III comparing cisplatin-pemetrexed with carboplatin-paclitaxelbevacizumab:<br>(NVALT22)                                                                                                                                        | Egbert Smit                        | Ш     | 05/07/16                   |
| M15NPI                                 | An Open-Label, Randomized Phase 3 Trial of Nivolumab, or Nivolumab plus<br>Ipilimumab, or Nivolumab plus platinum doublet chemotherapy versus platinum<br>doublet chemotherapy in Subjects with Chemotherapy-Naïve Stage IV or Recurrent<br>Non-Small Cell Lung Cancer (NSCLC) (CHECKMATE 227)                         | Jaak Burgers                       | III   | 12/11/2015<br>(31/10/2018) |
| M16ATS                                 | Phase III randomized clinical trial of Lurbinectedin (PM01183)/Doxorubicin (DOX)<br>versus Cyclophosphamide(CTX), Doxorubicine(DOX) and Vincristine(VCR) (CAV) or<br>Topotecan as treatment in patients with small cell lung cancer (SCLC) who failed<br>one prior Platinum-containing line (ATLANTIS Trial)           | Egbert Smit                        | III   | 22/05/2017<br>(31/07/2018) |
| M16N24                                 | A phase III prospective double blind placebo controlled randomized study of adjuvant<br>MEDI4736 in completely resected non-small cell lung cancer (NVALT 24)                                                                                                                                                          | Sjaak Burgers                      | III   | 28/03/17                   |
| МІБИРМ                                 | A phase III, randomized, open label trial of Nivolumab in combination with<br>Ipilimumab versus Pemetrexed with Cisplatin or Carboplatin as first line therapy in<br>unresectable pleural mesothelioma                                                                                                                 | Paul Baas                          | III   | 07/07/2017<br>(15/02/2018) |
| M16PLE                                 | Phase lb, open-label, multi-center study to characterize the safety, tolerability<br>and pharmacodynamics (PD) of PDR001 in combination with LCL161, Everolimus<br>(RAD001) or Panobinostat (LBH589)                                                                                                                   | Neeltje Steeghs                    | I     | 01/11/16                   |
| M16STT                                 | An open-label, multicenter, global phase 2 basket study of Entrectinib for the<br>treatment of patients with locally advanced or metastatic solid tumors that harbour<br>NTRK1/2/3, ROSI or ALK gene rearrangements. (STARTRK-2)                                                                                       | Egbert Smit                        | II    | 24/08/16                   |
| M17ARC                                 | Phase Ib multi-indication study of Anetumab ravtensine ( BAY 94-9343) in patients with mesothelin expressing advanced or recurrent malignancies (ARCS-Multi)                                                                                                                                                           | Egbert Smit                        | I     | 07/09/17                   |
| M17DNM                                 | A randomized, open-label phase II/III study with dendritic cells loaded with allogenic<br>tumor cell lysate (PheraLys) in subjects with mesothelioma as maintenance<br>treatment (MesoPher) after chemotherapy. (DENIM)                                                                                                | Paul Baas                          | II    | 15/11/18                   |
| M17DUT                                 | A Phase III, Randomized, Multicenter, Open-Label, Comparative Study to Determine<br>the Efficacy of Durvalumab or Durvalumab and Tremelimumab in Combination<br>With Platinum-Based Chemotherapy for the First-Line Treatment in Patients with<br>Extensive Disease (Stage IV) Small-Cell Lung Cancer (SCLC) (caspian) | Egbert Smit                        | III   | 10/05/2017<br>(04/06/2018) |
| M17FNN                                 | [18]F-PD-L1 PET/CT to predict response to Nivolumab in patients with NSCLC                                                                                                                                                                                                                                             | Joop de Langen                     | other | 26/10/18                   |
| M17IMG                                 | [89]Zr-pembrolizumab-PET imaging in patients with locally advanced or metastatic<br>melanoma or nonsmall cell lung cancer                                                                                                                                                                                              | John Haanen                        | pilot | 23/07/18                   |
| M17IPL                                 | Repeatability of 18F FDG/CT and immunological profiling of lymph nodes in NSCLC                                                                                                                                                                                                                                        | Joop de Langen                     | pilot | 23/01/18                   |
| М17РРО                                 | PDR001 in combination with platinum-doublet chemotherapy in PD-L1 unselected metastatic NSCLC patients                                                                                                                                                                                                                 | Sjaak Burgers                      | I     | 02/11/17                   |
| M17RLC                                 | Reirradiation for recurrent lung cancer in the thorax: overall survival, local control, and toxicity: a phase 2 trial                                                                                                                                                                                                  | Joost Knegjens                     | II    | 07/11/18                   |
| M17ZML                                 | Companion biomarker development for MEDI4736 treated non-small-cell lung cancer patients using (891Zirconium-labeled MEDI4736 -a feasibility study                                                                                                                                                                     | Joop de Langen                     | pilot | 13/06/18                   |
|                                        |                                                                                                                                                                                                                                                                                                                        |                                    |       | 149                        |

| Type of<br>cancer study<br>(nick name) | Title                                                                                                                                                                                                                                              | Study<br>coordinator<br>in NKI-AVL | Phase | Activated<br>(closed)      |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------|----------------------------|
|                                        |                                                                                                                                                                                                                                                    |                                    |       |                            |
| M17ZRP                                 | [89]Zirconium-labeled pembrolizumab as predictive imaging biomarker of response<br>and toxicity in pembrolizumab treated patients with non-small-cell lung cancer – a<br>feasibility study                                                         | Joop de Langen                     | pilot | 14/08/2017<br>(26/06/2018) |
| M18ACX                                 | Phase II study of afatinib in combination with cetuximab in EGFR exon 20 insertion<br>positive non-small-cell lung cancer                                                                                                                          | Joop de Langen                     | П     | 11/12/18                   |
| M18BNI                                 | An Exploratory Study of the Biologic Effects and biomarkers of Nivolumab Combined<br>With Ipilimumab in Subjects With Treatment-Naive Stage IV or Recurrent Non-Small<br>Cell Lung Cancer (NSCLC) (CheckMate 592)                                  | Joop de Langen                     | II    | 23/10/18                   |
| M18DSN                                 | A phase 2, multicenter, open-label, 2-cohort study of trastuzumab deruxtecan<br>(DS-8201a), an anti-HER2 antibody drug conjugate (ADC), for HER2-overexpressing<br>or-mutated, unresectable and/or metastatic non-small cell lung cancer           | Egbert Smit                        | II    | 14/11/18                   |
| M18SRP                                 | Combining SBRT and immunotherapy in early stage NSCLC patients planned for<br>surgery: exploring safety and immunological proof of principle                                                                                                       | Joop de Langen                     | other | 25/05/18                   |
| NIIORL                                 | Olaparib dose escalating trial in patients treated with radiotherapy with or without daily dose cisplatin for locally advanced non-small lung cancer                                                                                               | Baukelien<br>van Triest            | I     | 21/02/2012<br>(01/02/2018) |
| N12LON                                 | Longitudinal analysis of lung cancer-specific immunity in stage III and IV lung cancer patients                                                                                                                                                    | Michel<br>van den Heuvel           | other | 18/01/2013<br>(15/11/2018) |
| N12PRO                                 | Pharmacogenomic profiling of short-term cultures of malignant pleural mesothelioma                                                                                                                                                                 | Josine Quispel                     | other | 21/09/2012<br>(19/12/2017) |
| N13FPB                                 | Fluid phase biopsy (circulating tumour DNA and serum tumour markers) in patients with non-small cell lung cancer                                                                                                                                   | Sjaak Burgers                      | other | 17/12/13                   |
| N14ITO                                 | Immunogenicity of Tumor Organoids, a feasibility study                                                                                                                                                                                             | Emile Voest                        | other | 22/07/14                   |
| N14PLU                                 | Personalized treatment with combination therapy for patients with pleural effusion<br>due to malignant pleural mesothelioma or lung cancer in second or third line. An<br>open label phase II study (PROOF)                                        | Paul Baas                          | II    | 03/10/14                   |
| N16NEON                                | Personalized adoptive T-cell therapy protocol                                                                                                                                                                                                      | John Haanen                        | other | 09/11/16                   |
| N17DTL                                 | A Phase Ib, Open-label, Single-center study to assess the safety of cancer-<br>immunotherapy induction with Tremelimumab and Durvalumab prior to<br>Chemoradiotherapy and/or Resection in the treatment of locally advanced NSCLC<br>(Induction-1) | Willemijn<br>Theelen               | I     | 05/10/18                   |
| N18NUA                                 | NUtritional Assessment in Non-small Cell lung cancer patients (NUANCE)                                                                                                                                                                             | Martijn Stuiver                    | other | 29/06/18                   |

## LYMPHOMA - HODGKIN'S DISEASE

| M13SOP | Study of Menopause in ex-patients with Hodgkin Lymphoma: influence on long-term<br>adverse events (SOPHIA)                                                                                                        | Floor<br>van Leeuwen   | other | 17/01/14                   |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------|----------------------------|
| M14CHL | Diagnostic yield of screening colonoscopy in Hodgkin lymphoma survivors (DICHOS)                                                                                                                                  | Monique<br>van Leerdam | other | 21/10/2014<br>(31/10/2018) |
| M17MIW | A Phase Ib, open label, multicenter study of the safety and efficacy of MIW815<br>(ADU-S100) administered by intratumoral injection with PDR001 to patients with<br>advanced/metastatic solid tumors or lymphomas | Neeltje Steeghs        | I     | 02/02/18                   |
| M17SPA | The effect of light therapy on fatigue and psychosocial functioning in long-term survivors of (non-)Hodgkin lymphoma: a randomized controlled trial (SPARKLE)                                                     | Eveline Bleiker        | other | 13/07/17                   |
| 150    |                                                                                                                                                                                                                   |                        |       |                            |

| Type of      | Title | Study       | Phase | Activated |
|--------------|-------|-------------|-------|-----------|
| cancer study |       | coordinator |       | (closed)  |
| (nick name)  |       | in NKI-AVL  |       |           |
|              |       |             |       |           |

#### LYMPHOMA - NON-HODGKIN'S

| M15PRM | A phase I, open-label, dose escalation study to investigate the safety,<br>pharmacokinetics, pharmacodynamics and clinical activity of GSK3326595 in<br>subjects with solid tumors and non-Hodgkin's lymphoma (PRMT5i) | Frans Opdam     |       | 27/10/16 |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------|----------|
| M17MIW | A Phase Ib, open label, multicenter study of the safety and efficacy of MIW815<br>(ADU-S100) administered by intratumoral injection with PDR001 to patients with<br>advanced/metastatic solid tumors or lymphomas      | Neeltje Steeghs | I     | 02/02/18 |
| M17SPA | The effect of light therapy on fatigue and psychosocial functioning in long-term<br>survivors of (non-)Hodgkin lymphoma: a randomized controlled trial (SPARKLE)                                                       | Eveline Bleiker | other | 13/07/17 |

### MELANOMA / SKIN

| C14PDI  | Expanded access program MK3475                                                                                                                                                                                                                                         | Christian Blank         | other | 12/05/2014<br>(31/10/2018) |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------|----------------------------|
| C18CEM  | NPP programma cemiplimab                                                                                                                                                                                                                                               | John Haanen             | other | 09/11/18                   |
| E1208MG | Prospective registry of Sentinel Node (SN) positive melanoma patients with minimal<br>SN tumor burden who undergo Completion Lymph Node Dissection (CLND) or Nodal<br>Observation (Minitub)                                                                            | Alexander<br>van Akkooi | other | 23/04/15                   |
| MIITCR  | Feasibility study using T-cel receptor gene therapy in metastatic melanoma                                                                                                                                                                                             | John Haanen             | Ш     | 17/04/2012<br>(30/10/2018) |
| M14REP  | A Phase II, Open-Label, Multicenter Study of Vemurafenib plus Cobimetinib (GDC-<br>0973) in Unresectable Stage IIIc or Metastatic Melanoma -Response Monitoring<br>and Resistance Prediction with Positron Emission Tomography and Tumor<br>Characteristics- (REPOSIT) | Bernies<br>van der Hiel | II    | 24/11/14                   |
| M14TIL  | Randomized phase III study comparing a non-myeloablative lymphocyte depleting<br>regimen of chemotherapy followed by infusion of tumor infiltrating lymphocytes and<br>interleukin-2 to standard ipilimumab treatment in metastatic melanoma                           | John Haanen             | Ш     | 06/08/14                   |
| M15HPV  | Non-Comparative, Two-Cohort, Single-Arm, Open-Label, Phase 1/2 Study of<br>Nivolumab (BMS-936558) in Subjects with Virus-Positive and Virus-Negative Solid<br>Tumors                                                                                                   | Jan Paul<br>de Boer     | 1/11  | 27/10/2015<br>(06/11/2018) |
| M15PFO  | A phase I, open-label, dose escalation study of PF-04518600 in patients with locally<br>advanced or metastatic hepatocellular carcinoma (HCC), melanoma, clear cell renal<br>cell carcinoma (RCC) or squamous cell head en neck cancer (SCCHN)                         | Sofie Wilgenhof         | I     | 09/09/2015<br>(08/11/2018) |
| M16COW  | Phase 2 Study testing the COmbination of Vemurafenib With Cobimetinib in BRAF<br>V600 mutated Melanoma Patients to Normalize LDH and Optimize immunotherapY<br>with Nivolumab and Ipilimumab (COWBOY)                                                                  | Christian Blank         | II    | 06/07/17                   |
| M160PN  | Multicenter Phase 2 Study to Identify of the Optimal neo-Adjuvant Combination<br>Scheme of Ipilimumab and Nivolumab (OpACIN-neo)                                                                                                                                       | Christian Blank         | Ш     | 01/11/16                   |
| M17IMG  | [89]Zr-pembrolizumab-PET imaging in patients with locally advanced or metastatic melanoma or nonsmall cell lung cancer                                                                                                                                                 | John Haanen             | pilot | 23/07/18                   |
| M17IVR  | In vivo reflectance confocal microscopy, a novel non-invasive tool for diagnosing skin cancer - a randomized controlled trial                                                                                                                                          | Marianne Crijns         | other | 12/06/17                   |
| M17PTS  | Towards patient-tailored cancer immunotherapy supported by a multifaceted predictive signature composed of integrative omics and molecular imaging (POINTING)                                                                                                          | John Haanen             | other | 12/11/18                   |
|         |                                                                                                                                                                                                                                                                        |                         |       | 101                        |
|         |                                                                                                                                                                                                                                                                        | 1                       | 1     | 151                        |

| Type of<br>cancer study<br>(nick name) | Title                                                                                                                                                                                                                                                       | Study<br>coordinator<br>in NKI-AVL | Phase | Activated<br>(closed)      |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------|----------------------------|
|                                        |                                                                                                                                                                                                                                                             |                                    |       |                            |
| M17TVC                                 | A Phase 1b/3, Multicenter, Trial of Talimogene Laherparepvec in Combination With<br>Pembrolizumab (MK-3475) for Treatment of Unresectable Stage IIIB to IVM1c<br>Melanoma (MASTERKEY-265)                                                                   | Hans<br>van Thienen                | 111   | 21/08/2017<br>(03/04/2018) |
| М18САР                                 | A Phase III, Open-Label, Multicenter, Two Arm, Randomized Study to Investigate<br>the Efficacy and Safety of Cobimetinib Plus Atezolizumab Versus Pembrolizumab<br>in Patients With Previously Untreated Advanced BRAF V600 Wild-Type Melanoma<br>(imspire) | Christian Blank                    | Ш     | 12/03/2018<br>(08/11/2018) |
| M18IDO                                 | A Phase 3, Randomized, Double-blind Study of BMS-986205 Combined with<br>Nivolumab versus Nivolumab in Participants with Metastatic or Unresectable<br>Melanoma that is Previously Untreated                                                                | Christian Blank                    | Ш     | 15/03/2018<br>(20/4/2018)  |
| NO3LAM                                 | Longitudinal analysis of melanoma-specific immunity in stage III and IV melanoma<br>patients                                                                                                                                                                | John Haanen                        | other | 22/08/03                   |
| NOGTIS                                 | Integrated analyses of melanoma-T cell interactions; relevance for immunotherapy                                                                                                                                                                            | John Haanen                        | other | 29/08/2006<br>(19/12/2017) |
| N13GEN                                 | Regulation of skin tumorgenesis by integrin alpha3beta1                                                                                                                                                                                                     | Arnoud<br>Sonnenberg               | other | 27/11/13                   |
| NI3NDT                                 | Cytoreductive treatment of dabrafenib combined with trametinib to allow complete<br>surgical resection in patients with BRAF mutated, prior unresectable stage III or IV<br>melanoma (REDuCTOR)                                                             | John Haanen                        | Ш     | 06/12/13                   |
| N15IMP                                 | Phase 2 Study Comparing Pembrolizumab with Intermittent/Short-term Dual<br>MAPK Pathway Inhibition Plus Pembrolizumab in patients harboring the BRAFV600<br>mutation (IMPemBra)                                                                             | Christian Blank                    | I     | 31/03/2016<br>(23/08/2018) |
| N16IGM                                 | Intraoperative verification of maxillary malignancy resection with cone-beam computed tomography                                                                                                                                                            | Baris<br>Karakullukcu              | pilot | 21/02/17                   |
| N16MME                                 | MeMaLoc: Magnetic Marker Localization for Melanoma Surgery. A feasibility study                                                                                                                                                                             | Theo Ruers                         | other | 25/01/17                   |
| N16VOM                                 | HDAC inhibitor vorinostat in resistant BRAF V600 mutated advanced melanoma                                                                                                                                                                                  | Sofie Wilgenhof                    | other | 24/06/16                   |
| N17BCC                                 | Noninvasive diagnostics and subtyping of basal cell carcinoma in the head and neck<br>by dermoscopy and handheld reflectance confocal microscopy (BCC-COMI)                                                                                                 | Fons Balm                          | other | 19/04/17                   |
| N17LMC                                 | Lentigo maligna: Diagnostic accuracy of in vivo handheld reflectance confocal<br>microscopy for pigmented macules in the head and neck (LM-COMI)                                                                                                            | Marianne Crijns                    | other | 19/04/17                   |

## MISCELLANEOUS

| M15CLA | Efficacy and safety of Lanreotide Autogel 120 mg administered every 14 days in<br>well differentiated, metastatic or locally advanced, unresectable pancreatic or<br>midgut neuroendocrine tumours having progressed radiologically while previously<br>treated with Lanreotide Autogel 120 mg administered every 28 days (CLARINET | Margot<br>Tesselaar    |       | 27/06/2016<br>(31/10/2018) |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------|----------------------------|
|        | FORTE)                                                                                                                                                                                                                                                                                                                              |                        |       |                            |
| M15GRA | Prospective registration study on growth behavior of aggressive fibromatosis without therapeutic intervention (GRAFITI)                                                                                                                                                                                                             | Frits<br>van Coevorden | other | 15/09/2015<br>(12/12/2018) |
| M15PFO | A phase I, open-label, dose escalation study of PF-04518600 in patients with locally<br>advanced or metastatic hepatocellular carcinoma (HCC), melanoma, clear cell renal<br>cell carcinoma (RCC) or squamous cell head en neck cancer (SCCHN)                                                                                      | Sofie Wilgenhof        | I     | 09/09/2015<br>(08/11/2018) |
| M15TLP | A multicenter, long-term extension study to further evaluate the safety and tolerability of Telotristat Etiprate (LX1606). TELEPATH                                                                                                                                                                                                 | Margot<br>Tesselaar    | III   | 16/10/2015<br>(01/07/2018) |
|        |                                                                                                                                                                                                                                                                                                                                     |                        |       |                            |

| Type of<br>cancer study<br>(nick name) | Title                                                                                                                                                                                                                                                                                                      | Study<br>coordinator<br>in NKI-AVL | Phase | Activated<br>(closed)      |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------|----------------------------|
|                                        |                                                                                                                                                                                                                                                                                                            |                                    |       |                            |
| M16NET                                 | An open label phase II study to evaluate the efficacy and safety of PDR001 in<br>patients with advanced or metastatic non-functional neuroendocrine tumors of<br>pancreatic, gastrointestinal (GI), or thoracic origin who have progressed on prior<br>treatment                                           | Wieneke<br>Buikhuisen              | Π     | 21/04/2017<br>(31/10/2018) |
| M16STT                                 | An open-label, multicenter, global phase 2 basket study of Entrectinib for the treatment of patients with locally advanced or metastatic solid tumors that harbour NTRK1/2/3, ROSI or ALK gene rearrangements. (STARTRK-2)                                                                                 | Egbert Smit                        | II    | 24/08/16                   |
| M17ARC                                 | Phase Ib multi-indication study of Anetumab ravtensine (BAY 94-9343) in patients with mesothelin expressing advanced or recurrent malignancies (ARCS-Multi)                                                                                                                                                | Egbert Smit                        | I     | 07/09/17                   |
| M17CLE                                 | CLE in diagnosing Pleural Malignancies, a comparison with pathology                                                                                                                                                                                                                                        | Paul Baas                          | other | 16/08/17                   |
| М17СМТ                                 | A Randomized, Double-blind Study to Evaluate the Efficacy and Safety of<br>Cabozantinib (XL184) at 60 mg/Day Compared to 140 mg/Day in Progressive,<br>Metastatic Medullary Thyroid Cancer Patients (EXAMINER)                                                                                             | Jan Paul<br>de Boer                | IV    | 15/05/18                   |
| M17LAN                                 | A phase 3, prospective, randomized, double-blind, multi-center study of the efficacy<br>of lanreotide Autogel/Depot 120 mg plus BSC vs placebo plus BSC for tumour<br>control in subjects with the well differentiated, metastatic and/or unresectable,<br>typical or atypical, lung neuroendocrine tumors | Wieneke<br>Buikhuisen              | 11    | 05/07/17                   |
| N14SRO                                 | Somatostatin receptor expression and occupancy during lanreotide therapy                                                                                                                                                                                                                                   | Marcel Stokkel                     | other | 12/09/2014<br>(2/02/2018)  |
| NISHNT                                 | Hepatic NET metastasis embolization biomarker evaluation (HEP-NET)                                                                                                                                                                                                                                         | Margot<br>Tesselaar                | other | 13/01/16                   |
| N17ICO                                 | Position stability during radiosurgery of brain tumours                                                                                                                                                                                                                                                    | Gerben Borst                       | other | 18/01/18                   |
| N17MRD                                 | Healthy volunteer imaging techniques development for motion management in MR-<br>guided adaptive radiotherapy                                                                                                                                                                                              | Gabe Sonke                         | other | 09/11/17                   |
| M18ORG                                 | Modeling neuroendocrine tumors using adult stem cellderived organoids (NET organoids)                                                                                                                                                                                                                      | Margot<br>Tesselaar                | other | 23/11/18                   |

## SOFT TISSUE / OSTEOSARCOMA

| E1202  | Phase II trial of cabazitaxel in metastatic or inoperable locally advanced dedifferentiated liposarcoma                                                                                                                                                                                                                                            | Neeltje Steeghs | Ш     | 07/11/18                   |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------|----------------------------|
| E1321  | A randomised phase II trial of imatinib alternating with regorafenib compared to<br>imatinib alone for the first line treatment of advanced gastrointestinal stromal<br>tumour (ALT-GIST)                                                                                                                                                          | Neeltje Steeghs | II    | 20/07/2016<br>(19/12/2017) |
| E1402  | International randomised controlled trial for the treatment of newly diagnosed Ewing's sarcoma family of tumours (Euro Ewing 2012)                                                                                                                                                                                                                 | Martijn Kerst   | other | 18/01/18                   |
| E1506  | A Phase II multicenter study comparing the efficacy of the oral angionenesis<br>inhibitor Nintedanib with the intravenous cytotoxic compound Ifosfamide for<br>treatment of patients with advanced metastatic soft tissue sarcoma after failure<br>of systemic nonoxazaphosporine- based first line chemotherapy for inoperable<br>disease (ANITA) | Neeltje Steeghs | Π     | 03/11/17                   |
| M15GCD | Gastrointestinal stromal tumors (GIST): assessment of mutation in tumors and<br>in circulating tumor DNA and measurement of TKI plasma exposure to optimize<br>treatment (GALLOP)                                                                                                                                                                  | Neeltje Steeghs | other | 12/03/15                   |
|        |                                                                                                                                                                                                                                                                                                                                                    |                 |       | 1                          |

| Type of<br>cancer study<br>(nick name) | Title                                                                                                                                                                                                                | Study<br>coordinator<br>in NKI-AVL | Phase | Activated<br>(closed) |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------|-----------------------|
|                                        |                                                                                                                                                                                                                      |                                    |       |                       |
| M15PAS                                 | Phase II clinical study of concurrent PAzopanib for non-metastatic SArcoma<br>patients to be treated with RadioTherapy, localized in the extremities, trunk and<br>chest wall or the head and neck region (PASART-2) | Rick Haas                          | 11    | 30/12/15              |
| M16GTDM                                | Persoonlijk aangepast doseren van anti-tumor medicatie in GIST patiënten op basis<br>van geneesmiddel-spiegels: (GIST-TDM)                                                                                           | Neeltje Steeghs                    | other | 08/08/16              |
| M16ITF                                 | Three versus five years of adjuvant imatinib as treatment of patients with operable<br>GIST with a high risk for recurrence: A randomised phase III study (SSG XXII)                                                 | Neeltje Steeghs                    | III   | 04/07/17              |
| M18QUE                                 | The impact of the diagnostic trajectory in sarcoma patients on stage at diagnosis,<br>primary treatment, clinical outcome and quality of life (Quest)                                                                | Rick Haas                          | other | 05/06/18              |

|        | prindry dreathent, ennedroateonie and quarty of me (Quest)                                                                                                       |                 |       |          |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------|----------|
| NIODMY | Dose reduction of preoperative radiotherapy in Myxoid liposarcomas (DOREMY)                                                                                      | Rick Haas       | Ш     | 15/12/10 |
| N16STS | Development of a platform of Patient Derived Xenografts (PDX) of Soft Tissue<br>Sarcomas (STS): Protocol to obtain biopsies from patients with nonmetastatic STS | Rick Haas       | other | 30/01/17 |
| N17PSI | Increasing pazopanib exposure by splitting intake moments                                                                                                        | Neeltje Steeghs | IV    | 22/05/17 |

## **URO-GENITAL**

| E1407  | A randomised phase III trial comparing conventional- Dose chemotherapy using<br>paclitaxel, ifosfamide, and cisplatin (TIP) with high dose chemotherapy using<br>mobilizing paclitaxel followed by High-dose carboplatin and etoposide (TI-CE) as first<br>salvage treatment in relapsed or refractory germ cell tumours (TIGER) | Martijn Kerst              |       | 20/10/16                   |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------|----------------------------|
| M10PCM | Prostate cancer molecular medicine (PCMM)                                                                                                                                                                                                                                                                                        | Henk<br>van der Poel       | other | 17/02/11                   |
| M11PRC | Impact of new approaches to pharmacological management of patients with renal<br>cell carcinoma: a population-based study of process outcomes in The Netherlands<br>(PERCEPTION)                                                                                                                                                 | Simon<br>Horenblas         | other | 18/08/2011<br>(29/10/2018) |
| M13PSN | Prospective randomized multicenter comparison of indocyanine green (ICG)-99mTc-<br>nanocolloid vs. 99mTcnanocolloid plus an intraoperative injection of ICG for the<br>detection and surgical resection of the sentinel nodes in patients with prostate<br>cancer                                                                | Henk<br>van der Poel       | II    | 17/04/14                   |
| M14HSN | Sentinel node biopsy for bladder cancer using the hybrid tracer                                                                                                                                                                                                                                                                  | Bas van Rhijn              | other | 26/02/15                   |
| M15MPB | A phase II study investigating preoperative MPDL3280A prior to surgery in operable<br>transitional cell carcinoma of the bladder (ABACUS)                                                                                                                                                                                        | Michiel<br>van der Heijden | II    | 18/11/2016<br>(07/05/2018) |
| M15MP0 | A phase III, open-label, multicenter, randomized study of MPDL3280A (anti-PDL-1<br>antibody) versus observation as adjuvant therapy in patients with PD-L1-selected,<br>high-risk muscle-invasive bladder cancer after cystectomy                                                                                                | Michiel<br>van der Heijden | Ш     | 16/11/15                   |
| M15PFO | A phase I, open-label, dose escalation study of PF-04518600 in patients with locally<br>advanced or metastatic hepatocellular carcinoma (HCC), melanoma, clear cell renal<br>cell carcinoma (RCC) or squamous cell head en neck cancer (SCCHN)                                                                                   | Sofie Wilgenhof            | I     | 09/09/2015<br>(8/11/2018)  |
| M15RTO | Registry of Treatment Outcomes in a non-study population of Symptomatic<br>Metastasized Castration Resistant Prostate Cancer (mCRPC) Patients Treated with<br>Radium-223 (ROTOR-registry). WMO-protocol                                                                                                                          | André Bergman              | other | 30/10/15                   |
| M15VPM | A phase I/II open label clinical trial assessing safety and efficacy of intravesical<br>instillation of VPM1002BC in patients with recurrent non-muscle inasive bladder<br>cancer after standard BCG therapy                                                                                                                     | Kees<br>Hendricksen        | II    | 18/01/18                   |
| 154    |                                                                                                                                                                                                                                                                                                                                  |                            |       |                            |

| Type of<br>cancer study<br>(nick name) | Title                                                                                                                                                                                                                                                                                                                                                 | Study<br>coordinator<br>in NKI-AVL | Phase | Activated<br>(closed)      |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------|----------------------------|
|                                        |                                                                                                                                                                                                                                                                                                                                                       |                                    |       |                            |
| M16ARA                                 | A randomized, double-blind, placebo-controlled Phase III study of ODM-201 versus<br>placebo in addition to standard androgen deprivation therapy and docetaxel in<br>patients with metastatic hormonesensitive prostate cancer (ARASENS)                                                                                                              | André Bergman                      | III   | 10/05/17                   |
| M16EAD                                 | A multinational, phase 3, randomized, double-blind, placebo-controlled efficacy<br>and safety study of Enzalutamide plus androgen deprivation therapy (ADT) versus<br>placebo plus ADT in patients with metastatic hormone sensitive prostate cancer<br>(mHSPC) (arches)                                                                              | Henk<br>van der Poel               | Ш     | 23/12/2016<br>(13/12/2017) |
| M16FPV                                 | Vascular fingerprint to identify patients at risk for arterial cardiovascular events<br>within the first year after start of cisplatin-based chemotherapy for testicular<br>cancer: a validation study (Fingerprint)                                                                                                                                  | Martijn Kerst                      | other | 07/10/16                   |
| M16HFL                                 | Hypofractionated Focal Lesion Ablative Microboost in prostatE cancer (Hypo-<br>FLAME)                                                                                                                                                                                                                                                                 | Floris Pos                         | other | 13/07/2016<br>(16/08/2018) |
| M160EA                                 | A Phase III, Open Label, Randomized Study to Assess the Efficacy and Safety of<br>Olaparib (Lynparza TM) Versus Enzalutamide or Abiraterone Acetate in Men with<br>Metastatic Castration-Resistant Prostate Cancer Who Have Failed Prior Treatment<br>with a New Hormonal Agent and Have Homologous Recombination repair Gene<br>Mutations (PROfound) | André Bergman                      | III   | 14/03/2017<br>(12/10/2018) |
| M16OST                                 | A randomized, open label, Phase IIB trial of Optimal Sequencing of Treatment<br>Options for Poor Risk Metastasized Castration Resistant Prostate Cancer<br>previously Treated with Docetaxel (OSTRICh trial)                                                                                                                                          | André Bergman                      | II    | 01/06/17                   |
| M16PMP                                 | Phase II Trial of Pembrolizumab (MK-3475) in Subjects with Metastatic Castration-<br>Resistant Prostate Cancer (mCRPC) Previously Treated with Chemotherapy<br>(KEYNOTE-199)                                                                                                                                                                          | André Bergman                      | II    | 13/10/16                   |
| M16SAU                                 | An open label, single arm, multicenter, safety study of Atezolizumab in locally advanced or metastatic urothelial or non-urothelial carcinoma of the urinary tract                                                                                                                                                                                    | Michiel<br>van der Heijden         | 111   | 19/04/2017<br>(22/03/2018) |
| M17AAT                                 | A phase III, multicenter, randomized, placebo-controlled double-blind study of<br>Atezolizuamb (anti-PD-L1 antibody) as adjuvant therapy in patients with renal cell<br>carcinoma at high risk of developing metastasis following nephrectomy                                                                                                         | Axel Bex                           | III   | 09/06/17                   |
| M17AIR                                 | A Phase 3 Randomized Study Comparing Nivolumab and Ipilimumab Combination vs<br>Placebo in Participants with Localized Renal Cell Carcinoma Who Underwent Radical<br>or Partial Nephrectomy and Who Are at High Risk of Relapse                                                                                                                       | Hans<br>van Thienen                | III   | 21/08/17                   |
| M17CAP                                 | Towards early identification of response to CABAZItaxel in patients with metastatic<br>castrationresistant prostate cancer: potential of 18F-Choline PET-CT (CABAZIPET)                                                                                                                                                                               | Marcel Stokkel                     | Ш     | 30/08/17                   |
| мі7DOC                                 | Multicenter safety, feasibility and pharmacokinetic phase I-II trial of ModraDoc006/r<br>in patients with metastatic castration-resistant prostate cancer                                                                                                                                                                                             | André Bergman                      | I     | 26/04/17                   |
| M17EPC                                 | A Phase 3 Randomized, Double-Blind Clinical Study of Pembrolizumab + Epacadostat<br>vs Pembrolizumab + Placebo as a Treatment for Recurrent or Progressive<br>Metastatic Urothelial Carcinoma in Patients who have Failed a First-Line<br>Platinumcontaining Chemotherapy Regimen for Advanced/Metastatic Disease<br>(KEYNOTE-698/ECHO-303)           | Michiel<br>van der Heijden         | III   | 12/04/18                   |
| M17EPP                                 | A Phase 3 Randomized, Double-Blind Trial of Pembrolizumab (MK-3475) in<br>Combination with Epacadostat (INCB024360) or Placebo in Participants with<br>Cisplatin-ineligible Urothelial Carcinoma (KEYNOTE-672/ECHO-307)                                                                                                                               | Michiel<br>van der Heijden         | 111   | 02/02/18                   |
| M17LUC                                 | A randomized international clinical trial on lymphadenectomy in urothelial carcinoma<br>in the renal pelvis and ureter (DaBlaCa)                                                                                                                                                                                                                      | Kees<br>Hendricksen                | other | 15/01/18                   |
| M17MDN                                 | A Phase 1/2, Open-label Study to Evaluate the Safety and Antitumor Activity<br>of MEDI0680 (AMP-514) in Combination with Durvalumab versus Nivolumab<br>Monotherapy in Subjects with Select Advanced Malignancies                                                                                                                                     | Hans<br>van Thienen                | 1/11  | 13/02/18                   |

| Type of<br>cancer study<br>(nick name) | Title                                                                                                                                                                                                                                                                                                       | Study<br>coordinator<br>in NKI-AVL | Phase | Activated<br>(closed)      |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------|----------------------------|
|                                        |                                                                                                                                                                                                                                                                                                             |                                    |       |                            |
| M17MRP                                 | Risk assessment and MR imaging in prostate cancer diagnosis: an impact analysis (MR PROPER)                                                                                                                                                                                                                 | Henk<br>van der Poel               | other | 23/01/18                   |
| M17NIU                                 | A Phase 3, Open-label, Randomized Study of Nivolumab Combined with Ipilimumab<br>versus Standard of Care Chemotherapy in Participants with Previously Untreated<br>Unresectable or Metastatic Urothelial Cancer (CheckMate 90)                                                                              | Michiel<br>van der Heijden         | III   | 29/05/17                   |
| М17РАВ                                 | Effect of a physical activity promotion program offered online of via blended care on<br>physical activity level in breast and prostate cancer survivors (PABLO)                                                                                                                                            | Wim Groen                          | other | 19/10/17                   |
| M17PRO                                 | Prostate cancer follow-up care in secondary and primary health care (PROSPEC study)                                                                                                                                                                                                                         | Lonneke<br>van de Poll -<br>Franse | other | 12/04/18                   |
| M17RCU                                 | A randomized, open label, multicenter Phase 3 study to evaluate the efficacy<br>and safety of Rogaratinib (BAY 1163877) compared to chemotherapy in patients<br>with FGFR-positive locally advanced or metastatic urothelial carcinoma who have<br>received prior platinum-containing chemotherapy (Fort-1) | Michiel<br>van der Heijden         | Ш     | 25/04/18                   |
| M17REB                                 | REduce BIAdder CAncer REcurrence in patients treated for upper urinary tract urothelial carcinoma (REBACARE Trial)                                                                                                                                                                                          | Kees<br>Hendricksen                | other | 24/11/17                   |
| M18CLR                                 | A Multicenter, Open-label, Randomized, Phase 3 Trial to Compare the Efficacy and<br>Safety of Lenvatinib in Combination with Everolimus or Pembrolizumab Versus<br>Sunitinib Alone in First-Line Treatment of Subjects with Advanced Renal Cell<br>Carcinoma (CLEAR)                                        | Hans<br>van Thienen                | Ш     | 23/10/18                   |
| M18ERC                                 | European Active Surveillance of Renal Cell Carcinoma study (EASE RCC study)                                                                                                                                                                                                                                 | Axel Bex                           | other | 07/08/18                   |
| М18ІМВ                                 | An open label, multicenter extension study in patients previously enrolled in a<br>Genentech- and/or F. Hoffmann-La Roche LTD-sponsored Atezolizumab study<br>(IMBrella)                                                                                                                                    | Michiel<br>van der Heijden         | other | 03/10/18                   |
| ГИГВІМ                                 | An Open-label, Multicenter, Phase 1b Study of JNJ-63723283, a PD-1 inhibitor,<br>administered in combination with apalutamide in subjects with metastatic<br>castration-resistant prostate cancer                                                                                                           | André Bergman                      | 1711  | 29/11/18                   |
| M18NBB                                 | A Phase 2, Randomized, Open-label Study of Nivolumab or Nivolumab/BMS-986205<br>Alone or Combined with Intravesical BCG in Participants with BCG-Unresponsive,<br>High-Risk, Non-Muscle Invasive Bladder Cancer                                                                                             | Michiel<br>van der Heijden         | II    | 16/11/18                   |
| M18RAP                                 | Cost-Effectiveness of Robot-Assisted Prostatectomy versus laparoscopic<br>prostatectomy a 5 year multi-institutional study of PROMs from a Dutch perspective<br>(CERA-PRO)                                                                                                                                  | Henk<br>van der Poel               | other | 12/04/18                   |
| M18TGC                                 | Sentinel Lymph Node Procedure in Testicular Germ Cell Tumour (SENATOR)                                                                                                                                                                                                                                      | Simon<br>Horenblas                 | other | 31/08/18                   |
| NO8SNR                                 | Site and distribution of sentinel lymph nodes in renal cell carcinoma, a phase II study                                                                                                                                                                                                                     | Axel Bex                           | Ш     | 19/03/2009<br>(1/02/2018)  |
| N12IGP                                 | The use of indocyanine green for accurate sentinel node detection and removal in a group of high-risk nodal metastasis prostate cancer patients                                                                                                                                                             | Henk<br>van der Poel               | II    | 08/05/2013<br>(31/10/2018) |
| N12LAR                                 | Longitudinal analysis of RCC-specific immunity in renal cell carcinoma patients                                                                                                                                                                                                                             | Christian Blank                    | other | 14/12/12                   |
| NIBCCI                                 | Confirming the pharmalogical interaction between colchicine and 18F-choline PET                                                                                                                                                                                                                             | Wouter Vogel                       | other | 18/12/2013<br>(31/10/2018) |
| NIЗКСМ                                 | Longitudinal kinetics of cancer mutations in the plasma, urine and tumor of patients with urothelial cancer treated with chemotherapy                                                                                                                                                                       | Michiel<br>van der Heijden         | other | 24/01/14                   |
| 156                                    |                                                                                                                                                                                                                                                                                                             |                                    |       |                            |

| Type of<br>cancer study<br>(nick name) | Title | Study<br>coordinator<br>in NKI-AVL | Phase | Activated<br>(closed) |
|----------------------------------------|-------|------------------------------------|-------|-----------------------|
|                                        |       |                                    |       |                       |

| N14DAR  | Dynamics of Androgen Receptor genomics and transcriptomics after neoadjuvant androgen ablation (DARANA)                                                                   | Henk<br>van der Poel       | other | 27/08/14                   |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------|----------------------------|
| N14ITO  | Immunogenicity of Tumor Organoids, a feasibility study                                                                                                                    | Emile Voest                | other | 22/07/14                   |
| N15CMR  | Investigation of the signature of recurrence and radiation effects after External-<br>Beam radiotherapy on multi-parametric MRI                                           | Floris Pos                 | other | 20/04/2015<br>(06/09/2018) |
| N15DOP  | Weekly ModraDoc/r in combination with hormonal treatment and high-dose<br>intensity-modulated radiation therapy in patients with high-risk early stage<br>prostate cancer | Baukelien<br>van Triest    | I     | 12/05/16                   |
| N15PEN  | Chemoradiation in the treatment of loco-regionally advanced Penile Cancer                                                                                                 | Floris Pos                 | other | 31/08/15                   |
| N16DIP  | Clinical evaluation of a prototype drop-in gamma probe for (robot-assisted)<br>laparoscopic sentinel node biopsy                                                          | Henk<br>van der Poel       | other | 18/12/17                   |
| N16NEON | Personalized adoptive T-cell therapy protocol                                                                                                                             | John Haanen                | other | 09/11/16                   |
| N17DIP  | Clinical pharmacokinetics of intravenous docetaxel in patients with castration-<br>resistant prostate cancer and non-castration-resistant prostate cancer                 | André Bergman              | other | 27/12/17                   |
| N17JAV  | Neoadjuvant AXITINIB plus AVELUMAB for patients with localized RCC and a moderate to high risk of recurrence. A phase II study (NEOJAVALIN)                               | Axel Bex                   | Ш     | 16/05/18                   |
| N17NAB  | Phase 1B Study to assess safety and efficacy of Neo-Adjuvant Bladder Urothelial<br>Carcinoma COmbination-immunotherapy (NABUCCO/CA209-9Y4)                                | Michiel<br>van der Heijden | I     | 04/12/17                   |
| N17PSI  | Increasing pazopanib exposure by splitting intake moments                                                                                                                 | Neeltje Steeghs            | IV    | 22/05/17                   |
| N18ISG  | Inhibition of salivary gland function to reduce uptake and toxicity of PSMA-ligands                                                                                       | Wouter Vogel               | pilot | 28/05/18                   |
| N18PER  | PEnile cancer Radio- and Immunotherapy Clinical Exploration Study – a Phase 1B study of atezolizumab with or without radiotherapy in penile cancer.(PERICLES)             | Michiel<br>van der Heijden | I     | 21/09/18                   |
|         |                                                                                                                                                                           |                            |       |                            |





# Invited speakers

Samuel Aparicio, Vancouver, Canada Decoding cancer evolution at single cell resolution

Ulrich auf dem Keller, Lyngby, Denmark Protease network degradomics - deciphering protease signaling pathways in normal and diseased skin

Maria Barna, Stanford, United States Ribosome diversity: Implications for translation of the genetic code & organismal life

René Bernards, Amsterdam, The Netherlands Bringing scientific discoveries to the clinic quickly

Amy Berrington, Bethesda, United States Second breast cancers in the US Childhood Cancer Survivors Study: radiotherapy, chemotherapy and breast cancer sub-type

Eveline Bleiker, Amsterdam, The Netherlands DNA testing for hereditary cancer: psychosocial issues to consider

Jef Boeke, New York, United States Engineering genomes, karyotypes, and the dark matter of the human genome

Jannie Borst, Amsterdam, The Netherlands Enticing T cells to attack cancer: the importance of CD4+ T cell help

Boudewijn Burgering, Utrecht, The Netherlands Metabolic interplay of normal and cancer stem cells with their niche

Jeffrey Chao, Basel, Switzerland Imaging the lives of mRNAs in space and time Caroline Dean, Norwich, United Kingdom Epigenetic switching and antisense transcription

Anne Dejean, Paris, France Chromatin roles for SUMO

Nynke Dekker, Delft, The Netherlands Chromatin dynamics and eukaryotic replication studied at the singlemolecule level

Daniel Durocher, Toronto, Canada Charting the genetic architecture of the DNA damage response

Daniel Gerlich, Vienna, Austria Mitotic chromosome mechanics

Michiel van der Heijden, Amsterdam, The Netherlands Rapidly evolving treatment landscape in urothelial cancer: let's make it more personal

Mathias Heikenwälder, Heidelberg, Germany On the role of immune cells in liver cancer

Steven Henikoff, Seattle, United States Structural epigenomics: Precision mapping of the chromatin landscape

Ping-Chih Ho, Lausanne, Switzerland Cold tumors, you are fired up!

Ben Lehner, Barcelona, Spain Mutations and their interactions in individuals

Christian Ottensmeier, Southampton, United Kingdom Genomic assessment of cancer infiltrating immune cells to guide treatment decisions Caetanos Reis e Sousa, London, United Kingdom Dendritic cells in immunity to infection and cancer

Alfred Schinkel, Amsterdam, The Netherlands Of mice and drugs

David Solit, New York, United States Defining the actionable genome

Laura van 't Veer, San Francisco, United States Molecular heterogeneity guides adaptive treatment for breast cancer

Stephen West, London, United Kingdom A Life on Holliday

Jing Yang, San Diego, United States Epithelial-mesenchymal plasticity in carcinoma metastasis

Jonathan Yewdell, Bethesda, United States T cell immunodominance

Omer Yilmaz, Cambridge, United States Dietary control of intestinal stem cells in physiology and disease

Research projects supported by the Dutch Cancer Society

| Principal<br>investigator | Number<br>of projects | Title | Started | Ended /<br>Ends |
|---------------------------|-----------------------|-------|---------|-----------------|
| '                         | '                     |       | · ·     |                 |

| Aaronson, N.K.            | NKI 2014-6788   | A randomized controlled trial of internet-based cognitive behavioral therapy for breast cancer patients with climacteric symptoms                                                      | 01/02/15 | 31/01/19 |
|---------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|
| Agami, R.                 | 11574           | Exploring the role of serine metabolism adaptations in platinum resistant high grade serous ovarian cancer                                                                             | 01/09/18 | 31/08/22 |
| Agami, R.                 | 10315           | Diricore, a platform for the discovery of novel amino acid vulnerabilities in agg ressive cancer                                                                                       | 01/01/17 | 31/12/20 |
| Agami, R.                 | 11037           | Exploiting proline vulnerability for cancer therapy                                                                                                                                    | 01/11/17 | 31/10/21 |
| Akkari, L.                | 10658           | Improving the effects of standard of care therapy in glioma by modulating tumor-associated macrophages and microglia functions                                                         | 01/06/17 | 31/05/22 |
| Al-Mamgani, A.            | NKI 2015-8054 C | Dutch randomized multicenter trial COmparing twO PalliativE RAdiaTION schemes for incurable head and neck cancer                                                                       | 18/12/15 | 18/12/19 |
| Amant, F.C.H.             | 10094           | Cancer tReAtment During pregnancy: from fetaL safety to maternal Efficacy                                                                                                              | 01/05/17 | 30/04/21 |
| Amant, F.C.H.             | 11132           | Postpartum breast cancer diagnosed during involution: a distinct entity with unique clinicopathological, molecular and immunological features?                                         | 01/01/18 | 31/12/21 |
| Baas, P.                  | NKI 2015-7823   | Defining new and personalized treatment options for patients with malignant mesothelioma                                                                                               | 01/01/16 | 31/12/19 |
| Beets-Tan, R.G.H.         | 10138           | Development and validation of a multiparametric imaging model for pre-<br>treatment response prediction in rectal cancer: the road towards organ-<br>preservation                      | 01/10/17 | 30/09/21 |
| Beets-Tan, R.G.H.         | 10611           | Radiomics for the prediction of response to neoadjuvant treatment on rectal<br>carcinoma                                                                                               | 01/10/17 | 30/09/19 |
| Beets, G.L.               | UM 2015-7738    | Multicentre evaluation of the wait-and-see" policy for complete responders after chemoradiotherapy for rectal cancer                                                                   | 01/10/15 | 30/09/21 |
| Beets, G.L.               | 10513           | Datamanagement for project Multicenterevaluation of the wait-and-see policy<br>for complete responders after chemoradiotherapy for rectal cancer                                       | 01/09/17 | 31/08/21 |
| Belderbos-Candiff, J.S.A. | 2013-6096       | Prophylactic Cranial Irradiation with or without hippocampal avoidance in SCLC: a randomized phase III study                                                                           | 01/03/14 | 30/06/18 |
| Bernards, R.              | NKI 2012-5401   | Finding genetic dependencies in cancer: the missing link in personalized medicine                                                                                                      | 01/01/13 | 31/12/18 |
| Bernards, R.              | 2015-7803       | Evolution of resistant clones to novel target-directed drugs in colorectal<br>tumors A genetic and epigenetic study of intratumoral heterogeneity<br>dynamics                          | 01/11/16 | 31/10/19 |
| Bernards, R.              | 2013-5859       | Engineering a liver cancer model on a chip                                                                                                                                             | 01/09/17 | 31/08/19 |
| Bleiker, E.M.A.           | 2014-6944       | Het informeren van familieleden met een hoog risico op kanker:<br>ondersteuning van erfelijkheidsadviesvragers bij familiecommunicatie door<br>middel van een digitaal stamboomportaal | 01/01/15 | 31/01/18 |
| Bleiker, E.M.A.           | NKI 2014-7031   | Choices in breast surgery and reconstruction: implementation and testing of<br>a web-based psycho-educational intervention to facilitate decision making                               | 01/11/15 | 31/10/20 |
| Bleiker, E.M.A.           | NKI 2015-7909   | The effect of light-therapy on fatigue and psychosocial functioning in long-<br>term survivors of (non-) Hodgkin lymphoma: a randomized controlled trial                               | 01/08/16 | 31/07/20 |
| Borst, G.R.               | 10902           | New era of radiosensitization by modulating radiosensitizing agents during<br>RT                                                                                                       | 01/02/18 | 31/01/23 |
|                           |                 |                                                                                                                                                                                        |          |          |

| Principal<br>investigator | Number<br>of projects | Title | Started | Ended /<br>Ends |
|---------------------------|-----------------------|-------|---------|-----------------|
|                           |                       |       |         |                 |

| Borst, J.G.         | NKI 2013-5951 | Enhancing the anti-tumour effecacy of immunotherapy by localized radiotherapy                                                                                                        | 01/05/14 | 30/04/20 |
|---------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|
| Borst, J.G.         | 11079         | CytotoxicTcell programming atthe dendritic cell interface                                                                                                                            | 01/09/17 | 31/08/21 |
| Borst, J.G.         | 10894         | Achieving synergy between radiotherapy and immunotherapy to increase control of metastatic cancer                                                                                    | 01/02/18 | 31/01/23 |
| Borst, J.G.         | 10764         | Inducing and sustaining anti-tumor immunity by chemo-radiotherapy                                                                                                                    | 01/01/18 | 31/12/19 |
| Boven, van H.H.     | 2013-5869     | Fellowship Hugo Horlings                                                                                                                                                             | 01/08/14 | 31/07/18 |
| Boven, van H.H.     | 10510         | Genetic properties of breast carcinomas associated with cancer-immune interactions                                                                                                   | 01/11/17 | 31/10/21 |
| Brummelkamp, T.R.   | 11352         | Identification and validation of genetic factors that determine sensitivity to<br>Weel inhibition in high-grade ovarian cancer and related cancers                                   | 01/10/18 | 30/09/23 |
| Brummelkamp, T.R.   | NKI 2015-7609 | A mutation-based approach to examine the principles of synthetic lethality in human cells                                                                                            | 01/04/16 | 31/03/20 |
| Driel, van W.J.     | 11540         | Primary cytoreductive surgery with or without hyperthermic intraperitoneal<br>chemotherapy for stage III ovarian cancer: a randomized phase III trial                                | 01/10/18 | 30/09/25 |
| Driel, van W.J.     | 2011-5149     | Dutch Gynaecological Oncology Group                                                                                                                                                  | 01/02/12 | 31/12/18 |
| Driel, van W.J.     | 2006-4176 CT  | Phase III randomised clinical trial for stage III ovarian carcinoma randomising<br>between secondary debulking surgery with or without hyperthermic<br>intraperiotoneal chemotherapy | 14/03/07 | 01/11/18 |
| Faller, W.J.        | 10535         | The role of translation elongation in models of intestinal cancer                                                                                                                    | 01/07/17 | 30/06/22 |
| Haanen, J.B.A.G.    | 2013-5924     | Feasibility study using T-cel receptor gene therapy in metastatic melanoma                                                                                                           | 05/02/13 | 05/02/19 |
| Haanen, J.B.A.G.    | 10034         | Towards patient-tailored cancer immunotherapy supported by a multifaceted<br>predictive signature composed of integrative omics and molecular imaging                                | 01/09/17 | 31/08/21 |
| Haas, R.L.M.        | NKI 2015-8069 | Dose Reduction of preoperative radiotherapy in Myxoid liposarcomas                                                                                                                   | 01/01/16 | 31/12/19 |
| Harten, van W.H.    | NKI 2014-6078 | Advanced Logistics Optimization of the Radiotherapy Treatment                                                                                                                        | 01/02/15 | 31/01/20 |
| Harten, van W.H.    | NKI 2015-7904 | A randomized controlled trial of an internet-based tailored physical activity support program in breast and prostate cancer survivors                                                | 01/09/16 | 31/08/20 |
| Harten, van W.H.    | 10325         | Does physical exercise during adjuvant cardiotoxic chemotherapy protect against cardiac injury among women with breast cancer?                                                       | 01/09/17 | 31/08/20 |
| Hauptmann, M.       | 10004         | Statistical assessment of cancer risks from therapeutic radiation exposure incorporating the spatial distribution of radiation dose in the target organ                              | 01/12/17 | 30/11/21 |
| Hauptmann, M.       |               | Novel statistical methods for efficient identification of biomarkers for<br>personalized cancer treatment                                                                            | 01/09/17 | 31/08/21 |
| Heide, van der U.A. | NKI 2013-5937 | Quantitative multi-parametric MR imaging for tumor delineation in focal<br>radiotherapy of prostate cancer                                                                           | 01/05/14 | 30/04/18 |
| Heide, van der U.A. | 2013-6311     | Brachytherapy for rectal cancer: a better balance between tumor control and side effects                                                                                             | 01/11/14 | 31/10/20 |
| Heide, van der U.A. | 10088         | Focal escalation of the radiation dose to the tumor in prostate cancer                                                                                                               | 01/04/17 | 31/03/21 |
|                     |               |                                                                                                                                                                                      |          |          |

| Principal<br>investigator | Number<br>of projects | Title | Started | Ended /<br>Ends |
|---------------------------|-----------------------|-------|---------|-----------------|
|                           |                       |       |         |                 |

| Heijden, van der M.S. | NKI 2014-7080   | Genetic causes of resistance to new androgen receptor signaling inhibitors<br>in circulating tumor DNA of metastasized castration resistant prostate<br>cancer patients | 01/06/15 | 31/05/20 |
|-----------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|
| Huijbers, I.J.G.      | 2017-8231       | A facility for production and distribution of engineered mouse models for<br>cancer research                                                                            | 01/01/18 | 31/12/20 |
| Jacobs, H.B.          | NKI 2012-5713   | Exploring DNA-Damage Tolerance as a Drug-Target for Chemosensitization<br>and a Mechanism of Chemoresistance                                                            | 01/06/13 | 31/05/19 |
| Jacobs, H.B.          | 10032           | Precision CancerTherapy: Profiting from Tumor Specific Defects and<br>Synthetic Lethality in the DNA Damage Tolerance System                                            | 01/03/17 | 28/02/21 |
| Jacobs, H.B.          | 10796           | Role of DNA Damage Tolerance Pathways in Genome Maintenance, Tissue<br>Homeostasis, and Cancer Suppression                                                              | 01/10/17 | 30/09/21 |
| Jacobs, J.J.L.        | 10999           | Mechanisms of DNA repair pathway control at DNA double-strand breaks and telomeres                                                                                      | 01/10/17 | 30/09/21 |
| Jonkers, J.M.M.       | NKI 2014-6532   | Tumor escape from radiotherapy: identification and targeting of the underlying mechanisms                                                                               | 01/08/14 | 31/07/18 |
| Jonkers, J.M.M.       | 2014-7048       | Ex vivo assays for selection of breast and ovarian cancer patients for PARP inhibitor tratment                                                                          | 01/09/15 | 31/08/20 |
| Jonkers, J.M.M.       | NKI 2015-7589   | Cancer-associated fibroblasts as therapeutic targets in invasive lobular breast carcinoma                                                                               | 01/01/16 | 30/06/20 |
| Jonkers, J.M.M.       | NKI 2015-7877   | Functional analysis of BRCA1 variants and domains to improve genetic<br>counselling and treatment strategies                                                            | 01/01/16 | 31/12/19 |
| Jonkers, J.M.M.       | 2015-7835       | Combatting therapy resistance by integrating genomic, transcriptomic and proteomic data from mouse models of invasive lobular breast carcinoma                          | 01/01/17 | 31/12/20 |
| Kok, M.               | NKI 2015-7542   | KWF fellowship                                                                                                                                                          | 01/06/15 | 31/05/19 |
| Kok, M.               | 10653           | Mapping immunosuppressive cascades in breast cancer patients treated with<br>immunotherapy                                                                              | 01/09/17 | 31/08/19 |
| Kvistborg, P.         | NKI 2015-7978   | How checkpoint blockade alters the quality of tumor specific T cells                                                                                                    | 01/09/16 | 31/08/21 |
| Leerdam, van M.E.     | 10274           | Evaluation of optimal intervals for colonoscopy surveillance: a randomized trial                                                                                        | 01/02/17 | 31/01/29 |
| Leeuwen, van F.       | 11490           | DOT1L as a druggable epigenetic writer in T cell programming and<br>immunotherapy                                                                                       | 01/12/18 | 31/05/19 |
| Leeuwen, van F.       | NKI 2014-7232   | Epigenetic Pathways in Cancer Development and Treatment: Crosstalk<br>between Conserved Histone Modifiers in T-cell Lymphoma                                            | 01/11/15 | 31/10/19 |
| Leeuwen, van F.E.     | NKI 2011-5270 A | A nationwide survivorship care program for adult (non-)Hodgkin lymphoma<br>survivors                                                                                    | 01/06/12 | 31/07/18 |
| Leeuwen, van F.E.     | 10164           | Favorable and unfavorable effects of risk-reducing salpingo-oophorectomy<br>(RRSO) in women at high genetic risk of ovarian cancer                                      | 01/07/17 | 30/06/21 |
| Leeuwen, van F.E.     | 10424           | Cardiotoxicity and second cancer risk after treatment of aggressive B-cell<br>Non-Hodgkin lymphoma                                                                      | 01/01/18 | 31/12/21 |
| Leeuwen, van F.E.     | NKI 2017-8237   | The BETER-REFLECT biobank: A REsource For studies on Late Effects of<br>CancerTreatment                                                                                 | 01/02/18 | 31/01/22 |
| Leeuwen, van F.E.     | 10933           | A risk prediction tool for cardiovascular disease in breast cancer patients                                                                                             | 01/12/17 | 31/08/21 |
|                       |                 |                                                                                                                                                                         | 1        | 1        |

| Principal<br>investigator | Number<br>of projects | Title | Started | Ended /<br>Ends |
|---------------------------|-----------------------|-------|---------|-----------------|
|                           |                       |       | i I     |                 |

| Leeuwen, van F.E.    | VU 2017-8288   | Psychosocial factors and cancer incidence: a pre-planned meta-analysis of the pSychosocial                                                                                           | 01/12/17 | 30/11/21 |
|----------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|
| Lenstra, T.L.        | BUIT 2012-5349 | Single cellanalysis of the sense-antisense transcriptional balance                                                                                                                   | 01/12/16 | 30/11/18 |
| Linn, S.C.           | NKI 2014-7052  | The substantially improving the cure rate of high-risk BRCAi-like breast<br>cancer patients with personalized therapy (SUBITO) trial; an international<br>randomized phase III trial | 01/02/16 | 31/01/20 |
| Linn, S.C.           | 2015-7808      | Clinical Impact of Intratumor heterogeneity in metastatic breast cancer                                                                                                              | 01/04/16 | 31/03/19 |
| Lohuizen, van M.M.S. | 11700          | Identifying and testing new intervention therapies for mesotheliomas                                                                                                                 | 01/09/18 | 31/08/22 |
| Lohuizen, van M.M.S. | NKI 2014-7208  | Testing therapeutic responses to Polycomb inhibition in preclinical mouse models of Kras mutant lung cancer                                                                          | 01/07/15 | 30/06/19 |
| Marchetti, S.        | NKI 2013-6249  | Safety, feasibility and cost-effectiveness of genotype- and phenotype-<br>directed individualized dosing of fluoropyrimidines                                                        | 01/09/14 | 31/08/20 |
| Medema, R.H.         | NKI 2014-6787  | Determinants of cell fate after DNA damage                                                                                                                                           | 01/04/15 | 31/03/19 |
| Medema, R.H.         | NKI 2015-7742  | Enhancing chromosome segregation errors in cancer therapy                                                                                                                            | 01/07/15 | 30/06/19 |
| Medema, R.H.         | NKI 2015-7832  | Exploring the vulnerabilities of chromosome unstable tumor cells                                                                                                                     | 01/05/16 | 30/04/20 |
| Meijer, G.A.         | KWF 2013-6338  | Molecular Stool test for postpolypectomie surveillance                                                                                                                               | 01/07/15 | 30/06/19 |
| Meijer, G.A.         | KWF 2013-6025  | Tumor-specific protein biomarkers for early detection of colorectal cancer                                                                                                           | 01/04/15 | 31/08/18 |
| Meijer, G.A.         | KWF 2014-6813  | Identifying signaling pathways                                                                                                                                                       | 01/09/15 | 31/08/19 |
| Meijer, G.A.         | 2013-5885      | DCR1 and its role in response of colorectal cancer patients to irinotecan treatment                                                                                                  | 01/04/15 | 31/10/19 |
| Meijer, G.A.         | NKI 2014-6635  | Deciphering diagnostic and companion therapies for mesenchymal colorectal<br>cancer                                                                                                  | 01/04/15 | 31/03/19 |
| Meijer, G.A.         | 8166           | Translational research IT (TraIT) in transition Health RI - Sustaining FAIR data<br>stewardship support for translational cancer research                                            | 01/02/17 | 31/01/20 |
| Meijer, G.A.         | 10438          | Liquid biopsy analyses of cell-free circulating tumor DNA as predictive and prognostic biomarker for colorectal cancer patients with metastatic disease                              | 01/10/17 | 30/09/21 |
| Opdam, F.L.          | 11352          | Identification and validation of genetic factors that determine sensitivity to<br>Weel inhibition in high-grade ovarian cancer and related cancers                                   | 01/10/18 | 30/09/23 |
| Peeper, D.S.         | 2014-7241      | In vivo cancer drug target discovery screens exploiting T cell immunity                                                                                                              | 01/09/15 | 31/08/19 |
| Peeper, D.S.         | NKI 2015-7595  | Function-based unbiased discovery of clinically exploitable metabolic vulnerabilities of cancer cells                                                                                | 01/10/16 | 30/09/20 |
| Peeper, D.S.         | 10425          | Targeting phenotype switching as a therapy for melanoma                                                                                                                              | 01/09/17 | 31/08/21 |
| Peeper, D.S.         | 10304          | Increasing drug holiday impact on therapy-refractory cancers for more durable responses                                                                                              | 01/01/17 | 31/12/20 |
| Perrakis, A.         | 10215          | Membrane glycerophosphodiesterases: novel players in cell differentiation<br>and cancer biology                                                                                      | 01/01/17 | 31/12/20 |
| Poll, van de L.V.    | 2015-7527      | Psychosocial and physical problems and needs of adolescents and young adults (AYAs) with cancer: Towards comprehensive patient-centered care                                         | 01/10/18 | 01/08/20 |
|                      |                |                                                                                                                                                                                      |          |          |

| Principal<br>investigator | Number<br>of projects | Title | Started | Ended /<br>Ends |
|---------------------------|-----------------------|-------|---------|-----------------|
| ,                         | '                     |       | '       |                 |

| Poll, van de L.V.   | NKI 2015-7932       | A randomized study, PROstate cancer follow-up care in secondary and<br>Primary health care                                                                 | 01/09/17 | 31/08/22 |
|---------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|
| Ramshorst, van G.H. | 2015-7506           | Surgical, functional and reconstructive treatment of pelvic tumours - a multidisciplinary approach                                                         | 01/06/16 | 30/11/18 |
| Rheenen, van J.E.   | 11491               | Mechanistic insight in the role of cell competition in growth of colorectal<br>cancer liver metastases                                                     | 01/01/19 | 31/12/22 |
| Rheenen, van J.E.   | 2015-7838           | Understanding the role of SOX4 in educating the mammary tumor niche: the potential for personalized therapeutic targeting                                  | 01/10/17 | 31/12/19 |
| Rheenen, van J.E.   | 2013-5847           | How to win or loose:The role of cell competion in tumor growth                                                                                             | 01/10/17 | 31/12/18 |
| Rheenen, van J.E.   | 10123               | The intermediate filament network in glioma invasion                                                                                                       | 01/05/17 | 30/04/21 |
| Riele, te H.P.J.    | NKI 2014-6702       | Replication stress in cancer: mechanisms and consequences for therapy                                                                                      | 01/10/14 | 30/09/18 |
| Riele, te H.P.J.    | NKI 2014-7176       | Development of prevention strategies for intestinal cancer in lynch syndrome using novel mouse models                                                      | 01/08/15 | 31/07/19 |
| Riele, te H.P.J.    | 10645               | Investigation of variants of uncertain clinical significance for use in clinical<br>practice                                                               | 01/02/18 | 31/01/22 |
| Riele, te H.P.J.    | 11074               | Targeting replication rescue pathways                                                                                                                      | 01/03/18 | 28/02/23 |
| Rookus, M.A.        | CANCER12-<br>054-Tr | Development of a Comprehensive Risk Prediction Model for BRCA1 and BRCA2<br>mutation carriers                                                              | 01/04/14 | 31/03/18 |
| Rookus, M.A.        | NKI 2014-6987       | A nationwide prospective cohort study among 59,947 female nurses to<br>elucidate the potential association between shift work and risk of breast<br>cancer | 01/02/16 | 31/01/20 |
| Rowland, B.D.       | 11665               | SWI/SNF-mediated cohesin loading: A dual role in tumorigenesis?                                                                                            | 01/07/19 | 30/06/23 |
| Rowland, B.D.       | NKI 2015-7657       | Locking Together the Sister Chromatids                                                                                                                     | 01/11/15 | 31/10/19 |
| Ruers, T.J.M.       | NKI 2014-6596       | Clinical implementation of image-guided surgery in rectal cancer                                                                                           | 01/05/15 | 30/04/19 |
| Ruers, T.J.M.       | NKI 2016-8162       | TomTom voor de OK (via Vriendenloterij)                                                                                                                    | 01/01/17 | 31/12/19 |
| Ruers, T.J.M.       | 10747               | Improving the outcome of breast cancer surgery by real time assessment of<br>resection margins using Hyperspectral Imaging                                 | 01/01/18 | 31/12/21 |
| Schagen, S.B.       | NKI 2015-7737       | Trajectories of cognitive decline in survivors of non-CNS cancers: from<br>precancer diagnosis to late life after cancer                                   | 01/09/16 | 31/08/20 |
| Schagen, S.B.       | NKI 2015-7937       | Monitoring, understanding and managing cognitive problems in cancer<br>patients without central nervous system disease: putting knowlegde into<br>practice | 01/01/17 | 31/12/22 |
| Schagen, S.B.       | UU 2015-7954        | Effect of physical exercise on cognitive function after chemotherapy in patients with breast cancer                                                        | 01/09/16 | 31/08/20 |
| Schmidt, M.K.       | 10758               | Risk prediction, screening and Therapy of breast cancer in women from<br>CHEK2 c.1100delC families in the Netherlands                                      | 01/10/17 | 31/10/21 |
| Schmidt, M.K.       | 11655               | Balancing risks of under- and overtreatment in young breast cancer patients:<br>a focus on the triple negative subtype                                     | 01/02/19 | 30/09/22 |
| Schmidt, M.K.       | 2013-6253           | Risk management of contralateral breast cancer: development and validation<br>of an online decision aid for physicians and patients                        | 01/10/14 | 30/09/19 |
|                     |                     |                                                                                                                                                            |          |          |

| Principal<br>investigator | Number<br>of projects | Title | Started | Ended /<br>Ends |
|---------------------------|-----------------------|-------|---------|-----------------|
|                           |                       |       |         |                 |

| Schmidt, M.K.      | 2015-7632       | Breast cancer prognosis: identification of hereditary genetic variants                                                                                                             | 01/03/16 | 29/02/20 |
|--------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|
| Schumacher, A.N.M. | NKI 2013-6122   | Linking cancer exomes to cancer immunotherapy                                                                                                                                      | 01/08/14 | 31/07/20 |
| Schumacher, A.N.M. | NKI 2017-8244   | Netherlands Facility for Cancer Immune Analysis                                                                                                                                    | 01/05/18 | 30/04/23 |
| Sixma, T.K.        | NKI 2014-6858   | Structure and function of the activated USP1 complex and its paralogs.<br>Providing a structural and biochemical basis for targeting USP1 in cancer                                | 01/11/14 | 31/10/18 |
| Sixma, T.K.        | NKI 2015-8082   | Elucidating regulation of tumor suppressor BAP1 in genome stability maintenance                                                                                                    | 01/12/16 | 30/11/20 |
| Sonke, G.S.        | NKI 2012-5685   | High-dose alkylating chemotherapy in oligo-metastatic breast cancer<br>harboring homologous recombination deficiency                                                               | 01/07/12 | 30/09/19 |
| Sonke, G.S.        |                 | Improving the outcome of ovarian cancer patients: whwn and why to use neoadjuvant chemotherapy or primary surgery in advanced ovarian cancer                                       | 01/10/15 | 30/09/19 |
| Sonke, J.J.        | 11964 ALPE      | Cardiac changes after radiotherapy with high fraction doses for early stage lung cancer                                                                                            | 01/01/19 | 30/06/21 |
| Sonnenberg, A.     | NKI 2013-5971   | Regulation of tumorgenesis by integrin alpha3                                                                                                                                      | 01/11/13 | 31/10/18 |
| Tellingen, van O.  | 11165           | Radiosensitization of glioma through induction of mitotic enrichment                                                                                                               | 01/01/18 | 30/06/20 |
| Vens, C.           | VU 2014-7072    | A multiparameter radiogenomics-based decision support system for<br>personalized treatment of advanced stage head and neck cancer patients                                         | 01/11/15 | 31/10/19 |
| Verheij, M.        | 10327 2017-8287 | Multicentre randomised phase II trial of neo-adjuvant chemotherapy vs.<br>chemotherapy/chemoradiotherapy vs. chemoradiotherapy followed by<br>surgery in resectable gastric cancer | 01/12/17 | 30/11/21 |
| Visser, de K.E.    | 10083           | Enhancing the success of immunotherapy for metastatic breast cancer by<br>overcoming tumorassociated immunosuppressive mechanisms                                                  | 01/05/17 | 30/04/21 |
| Visser, de K.E.    | 10623           | Dissecting how tumor-associated myeloid cells counteract chemotherapy<br>response of breast cancer                                                                                 | 01/04/18 | 31/03/22 |
| Voest, E.E.        | 2015-7732       | Tumor organoids : feasibility to predict sensitivity to treatment in cancer patients                                                                                               | 01/07/15 | 30/06/18 |
| Voest, E.E.        | HUBR 2014-7006  | Exploring The Use Of Lung Cancer Organoids In Personalized Medicine                                                                                                                | 01/02/16 | 31/01/20 |
| Voest, E.E.        | 10014           | The Drug Rediscovery Protocol                                                                                                                                                      | 01/06/17 | 31/05/20 |
| Vogel, W.V.        | 10606           | Comprehensive functional salivary gland management to avoid an iatrogenic dry mouth                                                                                                | 01/11/17 | 31/10/21 |
| Wesseling, J.      | NKI 2014-6250   | Management of low risk ductal carcinoma in situ: watchful waiting or not? A randomized, non-inferiority trial                                                                      | 01/02/15 | 31/01/21 |
| Wesseling, J.      | NKI 2014-7167   | Secondary prevention of breast cancer: risk stratification for personalized<br>management of screen-detected ductal carcinoma in situ                                              | 01/10/15 | 30/09/19 |
| Wesseling, J.      | NKI 2015-7711   | Management of low grade ductal carcinoma in situ: active surveillance or not?<br>A randomized, non-inferiority phase III trial                                                     | 01/07/15 | 30/06/19 |
| Wesseling, J.      | 11105           | Improving breast cancer screening among young high risk women by blood-<br>based methods                                                                                           | 01/02/18 | 31/01/22 |
| Wessels, L.F.A.    | 11741 ALPE      | From fixed to functional pathology: defining intermediate phenotypes that determine prognosis and therapy response                                                                 | 01/12/18 | 30/11/20 |
|                    |                 |                                                                                                                                                                                    |          |          |
| 168                |                 |                                                                                                                                                                                    |          |          |
|                    |                 |                                                                                                                                                                                    |          |          |
|                    |                 |                                                                                                                                                                                    |          |          |

| investigator of projects                                                                                                                                                                                                                                      | Ends     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|                                                                                                                                                                                                                                                               |          |
|                                                                                                                                                                                                                                                               |          |
| Wessels, L.F.A.     NKI 2013-6007     Prediction of response to neoadjuvant chemotherapy in luminal (ER-positive/<br>HER2-negative)breast cancer     01/10/14                                                                                                 | 31/12/18 |
| Wessels, L.F.A.     NKI 2015-7835     Combatting therapy resistance by integrating genomic, transcriptomic and proteomic data from mouse models of invasive lobular breast carcinoma     01/01/17                                                             | 31/12/20 |
| Wessels, L.F.A.     NKI 2014-7080 A     Genetic causes of resistance to new androgen receptor signaling inhibitors     01/06/15       in circulating tumor DNA of metastasized castration resistant prostate cancer patients     cancer patients     01/06/15 | 31/05/20 |
| Zwart, W.T. NKI 2014-6711 Drugging steroid hormone receptors in novel tumor types; new apllications 01/09/14   of existing drugs 01/09/14 01/09/14                                                                                                            | 31/08/18 |
| Zwart, W.T.     NKI 2015-7733     Companion diagnostics for endocrine treatment selection in breast cancer     01/07/15                                                                                                                                       | 30/06/19 |
| Zwart, W.T. 10084 Biomarker discovery for prognostication and treatment selection in prostate cancer through Androgen Receptor profiling 01/06/17                                                                                                             | 31/05/21 |
|                                                                                                                                                                                                                                                               |          |
|                                                                                                                                                                                                                                                               |          |
|                                                                                                                                                                                                                                                               |          |
|                                                                                                                                                                                                                                                               |          |
|                                                                                                                                                                                                                                                               |          |
|                                                                                                                                                                                                                                                               |          |
|                                                                                                                                                                                                                                                               |          |
|                                                                                                                                                                                                                                                               |          |
|                                                                                                                                                                                                                                                               |          |
|                                                                                                                                                                                                                                                               |          |
|                                                                                                                                                                                                                                                               |          |
|                                                                                                                                                                                                                                                               |          |
|                                                                                                                                                                                                                                                               |          |
|                                                                                                                                                                                                                                                               |          |
|                                                                                                                                                                                                                                                               |          |
|                                                                                                                                                                                                                                                               |          |
|                                                                                                                                                                                                                                                               |          |
|                                                                                                                                                                                                                                                               |          |
|                                                                                                                                                                                                                                                               |          |
|                                                                                                                                                                                                                                                               |          |
|                                                                                                                                                                                                                                                               |          |
|                                                                                                                                                                                                                                                               |          |
|                                                                                                                                                                                                                                                               |          |

Research projects supported by other organisations

| Principal<br>investigator | Granting<br>agency | Title | Started | Ended /<br>Ends |
|---------------------------|--------------------|-------|---------|-----------------|
|                           |                    |       |         |                 |

| Aaronson, N.K.                 | Pink Ribbon                     | Zorg op maat om fysieke fitheid en welzijn van vrouwen met gemetastaseerde<br>borstkanker te bevorderen                                                                                                            | 01/09/15 | 01/02/19 |
|--------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|
| Agami, R.                      | European<br>Commission          | enhReg, Exploring enhancers Achilles Heel                                                                                                                                                                          | 01/10/13 | 30/09/18 |
| Agami, R.                      | Stichting Oncode<br>Institute   | Oncode Agami                                                                                                                                                                                                       | 01/09/17 | 31/08/22 |
| Agami, R.                      | ZonMw                           | Uncovering cancerous enhancers of prostate and breast cancers                                                                                                                                                      | 01/03/17 | 28/02/21 |
| Akkari, L.                     | AVL Foundation                  | Immunologie & Kanker                                                                                                                                                                                               | 01/01/18 | 31/12/19 |
| Akkari, L.                     | NWO                             | Zwaartekracht programma 2012 Akkari                                                                                                                                                                                | 01/01/17 | 31/12/21 |
| Akkari, L.                     | SFN                             | Startgeld Akkari                                                                                                                                                                                                   | 01/01/17 | 31/12/21 |
| Akkooi, van A.C.J.             | Amgen B.V.                      | The infra structure registry: prospective melanoma stadium III registry                                                                                                                                            | 01/07/17 | 31/12/19 |
| Akkooi, van A.C.J.             | EORTC                           | Transitional study moving towards logical and personal combination<br>therapies in the treatment of melanoma in-transit metastases and improving<br>understanding of underlying biology                            | 01/05/18 | 30/04/19 |
| Altelaar, M.                   | NWO                             | Proteins@Work; A large-scale proteomics research facility for the life sciences                                                                                                                                    | 01/05/13 | 30/06/19 |
| Amant, F.C.H.                  | European<br>Commission          | CRADLE: Cancer tReAtment During pregnancy: from fetaL safety to maternal<br>Efficacy                                                                                                                               | 01/10/15 | 30/09/20 |
| Baas-Vrancken Peeters,<br>M.J. | Innovatiefonds                  | Towards omitting breast surgery in patients with pathologic complete response after neoadjuvant systemic therapy                                                                                                   | 01/03/18 | 31/12/20 |
| Baas-Vrancken Peeters,<br>M.J. | Pink Ribbon                     | Towards patient tailored locoregional treatment of breast cancer in patients<br>treated with neoadjuvant systemic therapy                                                                                          | 01/09/16 | 31/08/19 |
| Baas, P.                       | BMS en<br>AstraZeneca           | Mesoscape                                                                                                                                                                                                          | 01/09/17 | 31/12/19 |
| Baas, P.                       | European<br>Commission          | DC-based immunotherapy to treat Malignant Mesothelioma                                                                                                                                                             | 01/01/16 | 31/12/19 |
| Baas, P.                       | Synthon Bio-<br>pharmaceuticals | Evaluate whether 5T4 expression is an independent prognostic marker for<br>patients with malignant pleural mesothelioma and a suitable antigen for<br>targeted therapy                                             | 01/03/16 | 30/09/18 |
| Beets-Tan, R.G.H.              | ZonMw                           | Clinical impact of dedicated MR staging of ovarian cancer patients                                                                                                                                                 | 28/12/17 | 28/12/21 |
| Beijersbergen, R.L.            | AVL Foundation                  | Pixels tegen darmkanker                                                                                                                                                                                            | 01/08/11 | 31/03/18 |
| Beijersbergen, R.L.            | Merck Sharp &<br>Dohme Corp.    | ldentification of chromatin modifiers genes that upon inactivation show a<br>synthetic lethal phenotype with Switch/Sucrose NonFermentable (SWI/SNF)<br>chromatin-remodeling complex mutations in tumor cell lines | 08/09/15 | 08/09/19 |
| Beijnen, J.H.                  | European<br>Commission          | Afri-KA-DIA: Towards an adapted, safe, effective combination treatment for<br>African visceral leishmaniasis (Kala Azar) and improved diagnostic tools                                                             | 18/12/17 | 18/12/20 |
| Beijnen, J.H.                  | ZonMw                           | Optimizing drug development for the neglected tropical disease visceral<br>leishmaniasis through a systems pharmacology model                                                                                      | 01/12/16 | 30/11/19 |
| Berg, van den J.H.             | Ameco<br>Adviesgroep            | Risico-beoordeling gg-T-cellen                                                                                                                                                                                     | 01/12/17 | 31/07/18 |
|                                |                                 |                                                                                                                                                                                                                    |          |          |

| Principal<br>investigator | Granting<br>agency | Title | Started | Ended /<br>Ends |
|---------------------------|--------------------|-------|---------|-----------------|
|                           |                    |       |         |                 |

| Berg, van den J.H.  | Bristol Myers<br>Squibb Company    | Urelumab to improve tumor reactivity of Tumor Infiltrating Lymphocytes (TIL) derived from ovarian cancer and NSCLC using urelumab                            | 31/07/17 | 31/01/19 |
|---------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|
| Berg, van den J.H.  | MedImmune                          | Immunomagnetic selection of PD1 + Peripheral Blood Mononuclear Cells<br>(PBMC's)                                                                             | 10/07/17 | 10/10/18 |
| Berg, van den J.H.  | UNSW Sydney                        | UNSW collaboration                                                                                                                                           | 01/09/18 | 31/12/19 |
| Bergman, A.M.       | Movember                           | Benchfee                                                                                                                                                     | 01/07/13 | 31/03/18 |
| Bernards, R.        | Astex UK                           | ERN1 inhibition in KRAS mutant solid tumors and in BRAF mutant melanoma                                                                                      | 01/09/14 | 30/06/19 |
| Bernards, R.        | Astex UK                           | SHP2 inhibition in KRAS mutant solid tumors                                                                                                                  | 01/03/16 | 22/12/19 |
| Bernards, R.        | CGC                                | POC clinical trial voor melanoma patiënten                                                                                                                   | 01/12/15 | 31/12/21 |
| Bernards, R.        | European<br>Commission             | SENCAN - Senescence therapy for cancer                                                                                                                       | 01/10/18 | 30/09/23 |
| Bernards, R.        | European<br>Commission             | RATHER Rational Therapy for Breast Cancer: Individualized Treatment for<br>Difficult-to-Treat Breast Cancer Subtypes                                         | 01/01/11 | 30/06/18 |
| Bernards, R.        | European<br>Commission             | Molecularly guided trials with specific treatment strategies in patients with<br>advanced newly molecular defined subtypes of colorectal cancer (MoTriColor) | 01/10/15 | 30/09/19 |
| Bernards, R.        | Eli Lilly and<br>Company Limited   | Abemaciclib (LSN2813542) CDK4/6 mesylate salt synthetic lethal interactions<br>in KRAS mutant colorectal cancer                                              | 12/01/16 | 12/01/19 |
| Bernards, R.        | KNAW                               | Award                                                                                                                                                        | 01/10/13 | 30/09/18 |
| Bernards, R.        | NWO                                | Zwaartekracht programma 2012                                                                                                                                 | 01/01/13 | 31/12/21 |
| Bernards, R.        | NWO                                | 3D colony quantification organoids                                                                                                                           | 01/04/13 | 31/12/21 |
| Bernards, R.        | NWO                                | CRISPR library                                                                                                                                               | 01/04/15 | 31/12/21 |
| Bernards, R.        | NWO                                | Diamond Graduate Program J. Kahn                                                                                                                             | 01/09/15 | 31/08/19 |
| Bernards, R.        | Overig                             | Therapie op maat door mutatieanalyse bij kanker                                                                                                              | 01/07/11 | 31/07/18 |
| Bernards, R.        | Stand up to<br>cancer (SU2C)       | Targeting SHP2 in pancreatic cancer                                                                                                                          | 01/11/18 | 31/12/19 |
| Bernards, R.        | Stichting Oncode<br>Institute      | Oncode Bernards                                                                                                                                              | 01/09/17 | 31/08/22 |
| Bernards, R.        | University of<br>California (UCLA) | Interrogation of Resistance Mechanisms to Checkpoint Inhibitors Using<br>Functional Genomics                                                                 | 01/11/17 | 31/10/19 |
| Berns, A.J.M.       | European<br>Commission             | Combination therapies for personalized cancer medicine                                                                                                       | 01/05/13 | 30/04/19 |
| Berns, A.J.M.       | NWO                                | Mouse Clinic for Cancer and Aging research (MCCA)                                                                                                            | 01/10/12 | 31/12/18 |
| Berns, A.J.M.       | Stichting Oncode<br>Institute      | Oncode Berns                                                                                                                                                 | 01/09/17 | 31/08/22 |
| Beurden, van M.     | AVL Foundation                     | Onderzoek naar vrouwen met LS, die kanker ontwikkelen                                                                                                        | 01/05/18 | 30/04/19 |
| Blank-de Hoop, C.U. | AVL Foundation                     | Impulsplan Immuuntherapie                                                                                                                                    | 01/04/18 | 31/03/20 |
| Blank-de Hoop, C.U. | Bristol Myers<br>Squibb France     | A prospective multicenter cohort study of late physical, psychological and social effects in patients treated with IO for advance melanoma                   | 01/07/16 | 31/05/19 |
|                     |                                    |                                                                                                                                                              | 1        | 1        |

| Principal<br>investigator | Granting<br>agency | Title | S | tarted | Ended /<br>Ends |
|---------------------------|--------------------|-------|---|--------|-----------------|
|                           |                    |       |   |        |                 |

| Blank-de Hoop, C.U.    | Bristol Myers<br>Squibb USA              | Systematic analysis of Cutaneous and Uveal Melanoma                                                                                                                                 | 01/06/17 | 31/05/19 |
|------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|
| Blank-de Hoop, C.U.    | Bristol Myers<br>Squibb USA              | Improve the understanding of systemic melanoma-mediated immune suppression by deep serum profiling                                                                                  | 01/06/17 | 31/05/19 |
| Blank-de Hoop, C.U.    | Bristol Myers<br>Squibb USA              | Impact of NSAIDs on the response to checkpoint therapy                                                                                                                              | 02/08/17 | 02/08/19 |
| Bleiker, E.M.A.        | Cancer Research<br>UK                    | Precision                                                                                                                                                                           | 01/05/17 | 30/04/22 |
| Bleiker, E.M.A.        | EORTC                                    | Kwaliteit van leven data                                                                                                                                                            | 01/12/15 | 31/12/19 |
| Bleiker, E.M.A.        | Zorginstituut<br>Nederland               | Mannen met Borstkanker                                                                                                                                                              | 15/02/18 | 14/11/19 |
| Borst, J.G.            | →l Sub.gev                               | Molecular characterization of human dendritic cell subset(s) that can relay help for the cytotoxic T cell response                                                                  | 01/07/18 | 30/06/21 |
| Borst, J.G.            | Aduro Biotech,<br>Europe B.V.            | Identification and validation of novel T-cell modulators in Immune Oncology                                                                                                         | 01/07/17 | 30/06/19 |
| Borst, J.G.            | AVL Foundation                           | Dendritic Cell project                                                                                                                                                              | 01/01/18 | 31/12/22 |
| Borst, J.G.            | Elekta Ltd                               | Radio-immunotherapy in cancer treatment                                                                                                                                             | 01/06/16 | 31/05/21 |
| Borst, J.G.            | Fonds Weten-<br>schappelijk<br>Onderzoek | Refining cancer cell death and danger signals for the improvement of immunotherapy                                                                                                  | 01/01/18 | 31/12/21 |
| Borst, J.G.            | LUMC                                     | Mutation-bearing (G)MOPD Cells: Drivers of LCH Pathology?                                                                                                                           | 01/03/18 | 28/02/19 |
| Borst, J.G.            | NWO                                      | Mechanisms of action of the Ubiquitin-like modifier ISG15 in immune regulation                                                                                                      | 01/01/15 | 31/08/19 |
| Borst, J.G.            | NWO                                      | Exploiting T cell metabolism as a target for therapeutic intervention                                                                                                               | 01/01/15 | 31/12/18 |
| Borst, J.G.            | ZonMw                                    | Discriminating signaling nodes in conventional and regulatory T cells to guide<br>clinical targeting of costimulatory receptors in cancer, autoimmunity and<br>transplant rejection | 01/04/14 | 31/07/19 |
| Brekel, van den M.W.M. | >1 Sub.gev                               | Head and neck cancer research                                                                                                                                                       | 01/10/10 | 31/12/19 |
| Brekel, van den M.W.M. | >1 Sub.gev                               | Virtual Therapy - VTG project HHC. Prediction of functional loss                                                                                                                    | 01/10/16 | 30/09/19 |
| Brekel, van den M.W.M. | ATOS                                     | Research and new product development                                                                                                                                                | 01/01/14 | 30/06/20 |
| Brekel, van den M.W.M. | AVL Foundation                           | Hoofd-Hals Targeted therapy                                                                                                                                                         | 01/01/15 | 31/12/20 |
| Brekel, van den M.W.M. | Brunel                                   | Sponsorgelden Brunel                                                                                                                                                                | 01/01/14 | 31/07/19 |
| Brekel, van den M.W.M. | European<br>Commission                   | Training Network on Automatic Processing of PAthological Speech                                                                                                                     | 01/11/17 | 31/10/21 |
| Brekel, van den M.W.M. | Patienten-<br>vereniging<br>Hoofd-Hals   | De ontwikkeling van een keuzehulp voor patiënten met een<br>orofarynxcarcinoom waarvoor een chirurgisch curatieve behandeling<br>mogelijk is                                        | 01/07/18 | 30/06/19 |
| Broek, van den D.      | Roche                                    | AVENIO first evaluation and validation                                                                                                                                              | 01/09/18 | 01/09/19 |
| Broek, van den D.      | ZonMw                                    | ctDNA on the way to implementation in the Netherlands                                                                                                                               | 27/03/19 | 26/03/23 |
|                        |                                          |                                                                                                                                                                                     |          |          |

| Principal<br>investigator | Granting<br>agency | Title | Started | Ended /<br>Ends |
|---------------------------|--------------------|-------|---------|-----------------|
|                           | l                  |       | l       |                 |

| Broeks, A.        | BBMRI-NL                        | Art 2.0, a national application and request tool for studies using biobank material                                                                                                  | 01/11/16 | 31/03/18 |
|-------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|
| Brummelkamp, T.R. | European<br>Commission          | A global alliance for Zika virus control and prevention ZIKAlliance                                                                                                                  | 01/10/16 | 30/09/19 |
| Brummelkamp, T.R. | EMBO                            | Long-Term Fellowship Dr. Abdelghani Mazouzi                                                                                                                                          | 01/07/18 | 30/06/20 |
| Brummelkamp, T.R. | NWO                             | Zwaartekracht programma 2012                                                                                                                                                         | 01/01/13 | 31/12/21 |
| Brummelkamp, T.R. | NWO                             | Human Genes and Intracellular Phenotypes                                                                                                                                             | 01/03/17 | 28/02/22 |
| Brummelkamp, T.R. | Stichting<br>Ammodo             | Ammodo Award 2015 voor Biomedical Sciences                                                                                                                                           | 04/03/16 | 04/03/19 |
| Brummelkamp, T.R. | Stichting Oncode<br>Institute   | Oncode Brummelkamp                                                                                                                                                                   | 01/09/17 | 31/08/22 |
| Burgers, J.A.     | →1 Sub.gev                      | Switch maintenance treatment with gemcitabine for patients with malignant mesothelioma who do not progress after 1st line therapy with a pemetrexed-platinum combination             | 01/03/13 | 30/06/19 |
| Chalabi, M.       | Bristol-Myers<br>Squibb Belgium | Towards deciphering immune escape mechanisms of early colon cancers and<br>developing rationales for future treatment strategies: translational research<br>plan for the NICHE trial | 01/10/17 | 30/09/20 |
| Driel, van W.J.   | AVL Foundation                  | Onderzoek voor ovarium carcinoom                                                                                                                                                     | 01/10/17 | 30/09/19 |
| Faller, W.J.      | EMBO                            | Long-Term Fellowship Dr. Joana Da Silva                                                                                                                                              | 01/07/18 | 30/06/19 |
| Faller, W.J.      | NWO                             | Mouse Clinic for Cancer and Aging research (MCCA)                                                                                                                                    | 01/11/16 | 31/12/18 |
| Faller, W.J.      | NWO                             | Zwaartekracht programma 2012                                                                                                                                                         | 01/01/17 | 31/12/21 |
| Faller, W.J.      | SFN                             | Start-up package PI Faller                                                                                                                                                           | 01/11/16 | 31/10/21 |
| Haanen, J.B.A.G.  | ⇒l Sub.gev                      | Leven met niet meer te genezen kanker                                                                                                                                                | 01/08/17 | 31/12/18 |
| Haanen, J.B.A.G.  | Bristol Myers<br>Squibb Company | Analysis of PD-1T TILs as biomarker for response to anti-PD-1 therapy in non-small cell lung cancer                                                                                  | 01/09/18 | 28/02/19 |
| Haanen, J.B.A.G.  | Bristol Myers<br>Squibb Company | Analysis of PD-1 Blockade in Virus-Associated Cancers                                                                                                                                | 01/12/14 | 31/05/18 |
| Haanen, J.B.A.G.  | Bristol Myers<br>Squibb Company | REsPonses to noveL Immunotherapies in ex vivo Cultured tumor frAgments                                                                                                               | 14/02/18 | 14/02/19 |
| Haanen, J.B.A.G.  | Bristol Myers<br>Squibb USA     | Fresh TIL in Heme Malignancies                                                                                                                                                       | 01/02/16 | 31/05/18 |
| Haanen, J.B.A.G.  | Merck (MSD)                     | Dissection of the role of pembrolizumab (MK-3475) on the circulating tumor-<br>specific T cell pool specific for shared tumor-associated antigens                                    | 01/11/14 | 31/08/19 |
| Haanen, J.B.A.G.  | Neon<br>Therapeutics            | T Cell Program, Stimulation of neo-antigen specific T cell responses from patient PBMC                                                                                               | 01/02/16 | 31/12/19 |
| Haanen, J.B.A.G.  | ZonMw                           | Randomized controlled trial comparing TIL treatment to ipilimumab for the treatment of advanced stage melanoma                                                                       | 01/07/15 | 30/06/19 |
| Haas, R.L.M.      | ⇒l Sub.gev                      | Radiobiology of Sarcomas. Radiotherapy fractionation sensitivity of (myxoid<br>lipo-) sarcomas in vitro and in vivo                                                                  | 01/06/16 | 30/11/19 |
| Harten, van W.H.  | Agendia B.V.                    | Kosten-effectiviteits-analyses op MINDACT data                                                                                                                                       | 01/07/17 | 31/12/18 |
| 174               |                                 |                                                                                                                                                                                      |          |          |

| Principal<br>investigator | Granting<br>agency | Title | Started | Ended /<br>Ends |
|---------------------------|--------------------|-------|---------|-----------------|
|                           |                    |       |         |                 |

| Harten, van W.H.     | AVL Foundation              | Monopolie met maatschappelijk rendement - Verantwoord omgaan met<br>patenten in de oncologie                                                                               | 01/01/17 | 28/02/21 |
|----------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|
| Harten, van W.H.     | Cancer Research<br>UK       | Precision                                                                                                                                                                  | 01/05/17 | 30/04/22 |
| Harten, van W.H.     | ZonMw                       | Technology Assessment of Next Generation Sequencing in Personalized<br>Oncology                                                                                            | 31/12/16 | 31/12/19 |
| Hauptmann, M.        | AVL Foundation              | Startgeld Hauptmann                                                                                                                                                        | 17/07/17 | 01/08/20 |
| Hauptmann, M.        | European<br>Commission      | Implications of Medical Low Dose Radiation Exposure                                                                                                                        | 01/06/17 | 31/05/21 |
| Heide, van der U.A.  | →1 Sub.gev                  | System Technologies for Adaptive Real-time Image-guided Therapies                                                                                                          | 01/10/17 | 30/09/20 |
| Heide, van der U.A.  | Philips                     | Feasibility of MR-only in Radiation Oncology                                                                                                                               | 13/12/17 | 30/04/22 |
| Heide, van der U.A.  | ZonMw                       | Quantivision project - perfect cut                                                                                                                                         | 15/05/15 | 15/05/19 |
| Heuvel, van den M.M. | Bristol Myers<br>Squibb USA | Introducing an easily accessible biomarker based on an active immune expression array can optimize personalized immunotherapy                                              | 01/11/16 | 31/01/19 |
| Hofland, L.          | AVL Foundation              | Hoofdhuidkoeling                                                                                                                                                           | 01/11/18 | 30/06/19 |
| Horenblas, S.        | AVL Foundation              | Immunological aspects of the microenvironment of primary tumors, tumor-<br>positive and tumor-negative lymph nodes in HPV+ and HPV- penile cancer<br>patients              | 01/01/17 | 31/12/20 |
| Horenblas, S.        | Stichting J.C. van<br>Veen  | Bijdrage onderzoek urologie                                                                                                                                                | 01/01/11 | 31/12/21 |
| Huijbers, I.J.G.     | European<br>Commission      | Towards enduring mouse resources and services advancing research into human health and disease                                                                             | 01/01/17 | 31/12/20 |
| Huijbers, I.J.G.     | NWO                         | Mouse Clinic for Cancer and Aging research                                                                                                                                 | 01/10/12 | 31/12/18 |
| Huitema, A.D.R.      | Merus B.V.                  | Support of (pre)-clinical development program of the Merus HER2/HER3<br>bispecific monoclonal antibody (MCLA-128) with PK/PD modeling and<br>simulation                    | 18/04/14 | 31/08/19 |
| Huitema, A.D.R.      | Merus B.V.                  | Support of clinical development program of the Merus bispecific monoclonal antibody MCLA-117 with PK/PD modeling and simulation                                            | 01/09/16 | 01/01/19 |
| Huitema, A.D.R.      | ZonMw                       | Individualized PeMetRexed dOsing in lung cancER and mesothelioma patients<br>to improVE treatment response and allow treatment of patients with<br>impaired renal function | 01/12/17 | 30/11/21 |
| Jacobs, H.B.         | SFN                         | DOT1L project                                                                                                                                                              | 01/07/18 | 30/06/20 |
| Jacobs, H.B.         | ZonMw                       | The role of stable immunoglobulin transcripts in establishing allelic exclusion                                                                                            | 01/04/14 | 31/03/19 |
| Jacobs, J.J.L.       | European<br>Commission      | Joint Training and Research Program on Chromatin Dynamics and the DNA<br>Damage Response                                                                                   | 01/03/19 | 28/02/23 |
| Jacobs, J.J.L.       | ЕМВО                        | Small Grant for funding of research materials                                                                                                                              | 01/01/17 | 31/12/19 |
| Jacobs, J.J.L.       | NWO-ALW                     | EMBO Young Investigators                                                                                                                                                   | 01/01/13 | 31/12/19 |
| Jalink, C.           | STW                         | New Film Camera for molecular microscopy                                                                                                                                   | 01/09/16 | 15/06/20 |
| Jonkers, J.M.M.      | Cancer Research<br>UK       | Precision                                                                                                                                                                  | 01/05/17 | 30/04/22 |
|                      |                             |                                                                                                                                                                            |          | 1        |

| Principal<br>investigator | Granting<br>agency | Title | Started | Ended /<br>Ends |
|---------------------------|--------------------|-------|---------|-----------------|
|                           |                    |       |         |                 |

| Jonkers, J.M.M.    | European<br>Commission                          | Combination Therapies for personalized medicine                                                                                                    | 01/05/13 | 30/04/19 |
|--------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|
| Jonkers, J.M.M.    | European<br>Commission                          | Generation of the CanPath prototype - a platform for predictive cancer pathway modeling                                                            | 01/03/16 | 28/02/21 |
| Jonkers, J.M.M.    | European<br>Commission                          | Targeting SYNthetic lethal interactions for new cancer treatments TRAINing network                                                                 | 01/09/16 | 31/08/20 |
| Jonkers, J.M.M.    | HeritX, Inc                                     | Immunoprevention of BRCA1-associated mammary cancer                                                                                                | 01/03/18 | 28/02/21 |
| Jonkers, J.M.M.    | NWO                                             | Zwaartekracht programma 2012                                                                                                                       | 01/01/13 | 31/12/21 |
| Jonkers, J.M.M.    | NWO                                             | Finding novel Achilles 'heels to prevent and target BRCA1-associated breast<br>cancer                                                              | 01/02/14 | 31/01/20 |
| Jonkers, J.M.M.    | Stand up to<br>cancer (SU2C)                    | Laura Ziskin Price Award, A high -risk, high-rewarded breast cancer<br>research project                                                            | 01/02/18 | 31/01/19 |
| Jonkers, J.M.M.    | Stichting Oncode<br>Institute                   | Oncode Jonkers                                                                                                                                     | 01/09/17 | 31/08/22 |
| Jonkers, J.M.M.    | University of<br>Copenhagen/<br>Graduate School | Material budget                                                                                                                                    | 01/08/15 | 31/08/18 |
| Jonkers, J.M.M.    | University of<br>Copenhagen/<br>Graduate School | Unraveling the genetic background of familial breast cancer                                                                                        | 01/01/18 | 31/12/22 |
| Jonkers, J.M.M.    | ZonMw                                           | Deciphering the contribution of cancer-associated fibroblasts to invasive<br>lobular carcinoma development, progression and tumor microenvironment | 01/01/19 | 31/12/21 |
| Karakullukcu, M.B. | AVL Foundation                                  | 3D Lab                                                                                                                                             | 01/04/17 | 31/12/19 |
| Karakullukcu, M.B. | Biolitec                                        | Treatment of head and neck cancer                                                                                                                  | 01/09/15 | 31/08/18 |
| Kerkhoven, R.M.    | AVL Foundation                                  | single cell RNA sequencing using droplet based microfluidics (DropSeq)                                                                             | 01/07/16 | 30/06/18 |
| Kok, M.            | AVL Foundation                                  | TONIC-Trial                                                                                                                                        | 01/09/15 | 31/12/19 |
| Кок, М.            | Breast Cancer<br>Research<br>Foundation         | Exploiting the Foreign Antigenic Space in Breast Cancer                                                                                            | 01/10/17 | 15/06/19 |
| Kak, M.            | Pink Ribbon                                     | Discovery of biomarkers to select metastatic breast cancer patients for<br>immunotherapy using anti-PD1                                            | 01/09/16 | 31/08/19 |
| Kok, M.            | st. Hendrika Roet<br>Fonds                      | Immunology and cancer                                                                                                                              | 01/12/18 | 30/11/28 |
| Kvistborg, P.      | Bristol Myers<br>Squibb USA                     | Quantitative and qualitative changes in tumor-specific T cells upon anti-PD-1 therapy                                                              | 01/02/16 | 18/11/18 |
| Kvistborg, P.      | Merck Sharp &<br>Dohme Corp.                    | Feasibility study of neo-adjuvant treatment with carboplatin, paclitaxel and<br>pembrolizumab in stage IV epithelial ovarian cancer                | 01/10/16 | 30/09/20 |
| Kvistborg, P.      | SFN                                             | Startgeld PI Kvistborg                                                                                                                             | 01/09/16 | 31/08/21 |
| Leerdam, van M.E.  | MAAG LEVER<br>DARM Stichting                    | Diagnostic yield of screening colonoscopy in Hodgkin lymphoma survivors at<br>increased risk of treatment-induced colorectal cancer                | 01/05/15 | 30/04/18 |
| Leeuwen, van F.    | NWO                                             | Principles of epigenetic inheritance                                                                                                               | 23/07/13 | 23/07/19 |
| 176                |                                                 |                                                                                                                                                    |          |          |

| Principal<br>investigator | Granting<br>agency | Title | Started | Ended /<br>Ends |
|---------------------------|--------------------|-------|---------|-----------------|
|                           |                    |       |         |                 |

| Leeuwen, van F.   | NWO Chemische<br>Wetenschappen                                                       | Development of antibodies targeted at site-specific protein ubiquitylation                                                                                                                                                                                                      | 01/09/16 | 31/08/19 |
|-------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|
| Leeuwen, van F.   | NWO Chemische<br>Wetenschappen                                                       | Development of antibodies targeted at site-specific protein ubiquitylation                                                                                                                                                                                                      | 12/08/15 | 12/08/18 |
| Leeuwen, van F.   | SFN                                                                                  | DOT1L project                                                                                                                                                                                                                                                                   | 01/07/18 | 30/06/20 |
| Leeuwen, van F.E. | AVL Foundation                                                                       | Beter Project                                                                                                                                                                                                                                                                   | 01/06/18 | 31/05/19 |
| Leeuwen, van F.E. | BBMRI-NL                                                                             | Use of encrypted BSN in record linkage of epidemiological cohorts and<br>biobanks with disease registries to ensure valid linkages with optimal privacy<br>protection                                                                                                           | 01/09/16 | 31/08/18 |
| Leeuwen, van F.E. | DES                                                                                  | Onderzoek CCAC van DES-dochters ouder dan 50 jaar                                                                                                                                                                                                                               | 01/10/17 | 31/03/19 |
| Leeuwen, van F.E. | European<br>Commission                                                               | Implications of Medical Low Dose Radiation Exposure                                                                                                                                                                                                                             | 01/06/17 | 31/05/21 |
| Leeuwen, van F.E. | Erasmus Medisch<br>Centrum                                                           | Long-term risk of endometrial cancer after ovarian stimulation for in-vitro fertilization                                                                                                                                                                                       | 01/01/11 | 30/11/18 |
| Leeuwen, van F.E. | Pink Ribbon                                                                          | Cardiovascular morbidity and mortality in breast cancer survivors: identifying high risk subgroups                                                                                                                                                                              | 01/10/13 | 31/12/18 |
| Leeuwen, van F.E. | Pink Ribbon                                                                          | Assessment of myocardial strain: a novel method for early detection of<br>subclinical cardiotoxicity after anthracycline-based chemotherapy in young<br>breast cancer patients                                                                                                  | 01/12/16 | 30/11/19 |
| Leeuwen, van F.E. | Social & Scientific<br>Systems inc.                                                  | Preparing and providing tissue samples and clinical data from histologically<br>confirmed second gastric tumor cases among survivors of Hodgkin<br>lymphoma and testicular cancer for a study characterizing the molecular<br>characteristics of second primary gastric cancers | 02/09/16 | 02/09/18 |
| Leeuwen, van F.E. | The General<br>Hospital<br>Corporation<br>D b/a<br>Massachusetts<br>General Hospital | LIFT-OMEGA                                                                                                                                                                                                                                                                      | 01/09/17 | 31/05/22 |
| Leeuwen, van F.E. | Vlissingen<br>Lymfoomfonds                                                           | Evaluatie BETER poliklinieken                                                                                                                                                                                                                                                   | 01/03/18 | 31/12/19 |
| Lenstra, T.L.     | European<br>Commission                                                               | Single-molecule visualization of transcription dynamics to understand<br>regulatory mechanisms of transcriptional bursting and its effects on cellular<br>fitness                                                                                                               | 01/01/18 | 31/12/22 |
| Lenstra, T.L.     | NWO                                                                                  | Zwaartekracht programma 2012                                                                                                                                                                                                                                                    | 01/01/17 | 31/12/21 |
| Lenstra, T.L.     | NWO Exacte en<br>Natuurweten-<br>schappen                                            | Unravelling how DNA organization is linked to transcriptional dynamics                                                                                                                                                                                                          | 01/09/18 | 31/08/21 |
| Lenstra, T.L.     | SFN                                                                                  | Start-up package PI Lenstra                                                                                                                                                                                                                                                     | 01/12/16 | 30/11/21 |
| Linn, S.C.        | A Sister's Hope                                                                      | Estrogen Receptor interactome from biopsies to guide endocrine treatment                                                                                                                                                                                                        | 01/01/12 | 31/10/18 |
| Linn, S.C.        | A Sister's Hope                                                                      | Toward personalized medicine by using the nationwide population-based breast cancer registry (1989-2009) couple with biobanking: NBCP                                                                                                                                           | 01/06/12 | 28/02/19 |
| Linn, S.C.        | A Sister's Hope                                                                      | PI3K pathway activation in primary and metastatic estrogen receptor alpha<br>(ERa) positive breast cancer and the association with drug response                                                                                                                                | 01/12/12 | 31/08/20 |
|                   |                                                                                      |                                                                                                                                                                                                                                                                                 | 1        | 1        |
| Principal<br>investigator | Granting<br>agency | Title | Started | Ended /<br>Ends |
|---------------------------|--------------------|-------|---------|-----------------|
|                           |                    |       |         |                 |

| Linn, S.C.                                                                                                                   | A Sister's Hope                                                                                                                                                                          | Mutational analysis and BRCA1-like classification in WSG-ADAPT TN-Trial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 01/01/17                                                                                                             | 30/06/19                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Linn, S.C.                                                                                                                   | AVL Foundation                                                                                                                                                                           | Breast cancer research aimed at saving lives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 01/11/17                                                                                                             | 01/11/21                                                                                                             |
| Linn, S.C.                                                                                                                   | AVL Foundation                                                                                                                                                                           | STARZ Foundation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 01/01/14                                                                                                             | 30/06/19                                                                                                             |
| Linn, S.C.                                                                                                                   | AVL Foundation                                                                                                                                                                           | Learning from unexpected cures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 01/04/14                                                                                                             | 31/08/20                                                                                                             |
| Linn, S.C.                                                                                                                   | AVL Foundation                                                                                                                                                                           | TONIC-Trial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 01/09/15                                                                                                             | 31/12/19                                                                                                             |
| Linn, S.C.                                                                                                                   | European<br>Commission                                                                                                                                                                   | Rational Therapy for Breast Cancer: Individualized Treatment for Difficult-to-<br>Treat Breast Cancer Subtypes                                                                                                                                                                                                                                                                                                                                                                                                                                           | 01/11/14                                                                                                             | 30/06/18                                                                                                             |
| Linn, S.C.                                                                                                                   | ZonMw                                                                                                                                                                                    | Substantiele verbetering van de overleving van stadium III, BRCA1-like<br>borstkankerpatiënten met doelgerichte behandeling                                                                                                                                                                                                                                                                                                                                                                                                                              | 01/01/17                                                                                                             | 31/12/22                                                                                                             |
| Lohuizen, van M.M.S.                                                                                                         | NWO                                                                                                                                                                                      | Zwaartekracht programma 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 01/01/13                                                                                                             | 31/12/21                                                                                                             |
| Lohuizen, van M.M.S.                                                                                                         | Stichting Oncode<br>Institute                                                                                                                                                            | Oncode van Lohuizen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 01/09/17                                                                                                             | 31/08/22                                                                                                             |
| Lok, C.A.R.                                                                                                                  | →l Sub.gev                                                                                                                                                                               | Onderzoek Eierstokkanker -E-learning over genetische screening bij<br>ovariumcarcinoom                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 01/08/15                                                                                                             | 31/12/18                                                                                                             |
| Lok, C.A.R.                                                                                                                  | AstraZeneca BV                                                                                                                                                                           | GenOva 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 01/04/17                                                                                                             | 31/12/18                                                                                                             |
| Loo, C.E.                                                                                                                    | СТММ                                                                                                                                                                                     | COmputer-aided predIction of breast Cancer therapy response by means of multimodality imaging                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 01/06/15                                                                                                             | 30/11/18                                                                                                             |
| Luenen, van H.G.A.M.                                                                                                         | European<br>Commission                                                                                                                                                                   | Libra, gender equality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 01/10/15                                                                                                             | 31/03/19                                                                                                             |
| Medema, R.H.                                                                                                                 | NWO                                                                                                                                                                                      | Zwaartekracht programma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 01/01/13                                                                                                             | 31/12/21                                                                                                             |
| Medema, R.H.                                                                                                                 | NWO-ALW                                                                                                                                                                                  | Spatial and temporal control of the microtubule by kinase activity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16/01/15                                                                                                             | 16/01/18                                                                                                             |
|                                                                                                                              |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                      |                                                                                                                      |
| Medema, R.H.                                                                                                                 | Stichting Oncode<br>Institute                                                                                                                                                            | Oncode Medema                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 01/09/17                                                                                                             | 31/08/22                                                                                                             |
| Medema, R.H.<br>Medema, R.H.                                                                                                 | Stichting Oncode<br>Institute<br>ZonMw                                                                                                                                                   | Oncode Medema<br>Impact of chromatin context on DNA double-strand break repair kinetics,<br>fidelity and signaling                                                                                                                                                                                                                                                                                                                                                                                                                                       | 01/09/17<br>01/07/16                                                                                                 | 31/08/22<br>30/06/20                                                                                                 |
| Medema, R.H.<br>Medema, R.H.<br>Meijer, G.A.                                                                                 | Stichting Oncode<br>Institute<br>ZonMw<br>→1 Sub.gev                                                                                                                                     | Oncode Medema<br>Impact of chromatin context on DNA double-strand break repair kinetics,<br>fidelity and signaling<br>A multivariable prediction model for prognosis of early stage colorectal<br>cancer: comparing clinicopathological characteristics and molecular markers                                                                                                                                                                                                                                                                            | 01/09/17<br>01/07/16<br>01/04/15                                                                                     | 31/08/22<br>30/06/20<br>31/03/20                                                                                     |
| Medema, R.H.<br>Medema, R.H.<br>Meijer, G.A.<br>Meijer, G.A.                                                                 | Stichting Oncode<br>Institute<br>ZonMw<br>→1 Sub.gev<br>AACR                                                                                                                             | Oncode Medema<br>Impact of chromatin context on DNA double-strand break repair kinetics,<br>fidelity and signaling<br>A multivariable prediction model for prognosis of early stage colorectal<br>cancer: comparing clinicopathological characteristics and molecular markers<br>AACR GENIE Project                                                                                                                                                                                                                                                      | 01/09/17<br>01/07/16<br>01/04/15<br>01/07/16                                                                         | 31/08/22<br>30/06/20<br>31/03/20<br>30/06/19                                                                         |
| Medema, R.H.<br>Medema, R.H.<br>Meijer, G.A.<br>Meijer, G.A.                                                                 | Stichting Oncode<br>Institute<br>ZonMw<br>→1 Sub.gev<br>AACR<br>AVL Foundation                                                                                                           | Oncode Medema<br>Impact of chromatin context on DNA double-strand break repair kinetics,<br>fidelity and signaling<br>A multivariable prediction model for prognosis of early stage colorectal<br>cancer: comparing clinicopathological characteristics and molecular markers<br>AACR GENIE Project<br>Darmkanker en biomarkers                                                                                                                                                                                                                          | 01/09/17<br>01/07/16<br>01/04/15<br>01/07/16<br>01/03/17                                                             | 31/08/22<br>30/06/20<br>31/03/20<br>30/06/19<br>28/02/19                                                             |
| Medema, R.H.<br>Medema, R.H.<br>Meijer, G.A.<br>Meijer, G.A.<br>Meijer, G.A.                                                 | Stichting Oncode<br>Institute<br>ZonMw<br>→1 Sub.gev<br>AACR<br>AVL Foundation<br>BBMRI-NL                                                                                               | Oncode Medema<br>Impact of chromatin context on DNA double-strand break repair kinetics,<br>fidelity and signaling<br>A multivariable prediction model for prognosis of early stage colorectal<br>cancer: comparing clinicopathological characteristics and molecular markers<br>AACR GENIE Project<br>Darmkanker en biomarkers<br>BBMRI 2.0                                                                                                                                                                                                             | 01/09/17<br>01/07/16<br>01/04/15<br>01/07/16<br>01/03/17<br>01/01/15                                                 | 31/08/22<br>30/06/20<br>31/03/20<br>30/06/19<br>28/02/19<br>31/12/18                                                 |
| Medema, R.H.<br>Medema, R.H.<br>Meijer, G.A.<br>Meijer, G.A.<br>Meijer, G.A.<br>Meijer, G.A.                                 | Stichting Oncode<br>Institute<br>ZonMw<br>→1 Sub.gev<br>AACR<br>AVL Foundation<br>BBMRI-NL<br>European<br>Commission                                                                     | Oncode Medema<br>Impact of chromatin context on DNA double-strand break repair kinetics,<br>fidelity and signaling<br>A multivariable prediction model for prognosis of early stage colorectal<br>cancer: comparing clinicopathological characteristics and molecular markers<br>AACR GENIE Project<br>Darmkanker en biomarkers<br>BBMRI 2.0<br>Building Enduring Life-science services                                                                                                                                                                  | 01/09/17<br>01/07/16<br>01/04/15<br>01/07/16<br>01/03/17<br>01/01/15<br>01/11/16                                     | 31/08/22<br>30/06/20<br>31/03/20<br>30/06/19<br>28/02/19<br>31/12/18<br>31/08/19                                     |
| Medema, R.H.<br>Medema, R.H.<br>Meijer, G.A.<br>Meijer, G.A.<br>Meijer, G.A.<br>Meijer, G.A.                                 | Stichting Oncode<br>Institute<br>ZonMw<br>→1 Sub.gev<br>AACR<br>AVL Foundation<br>BBMRI-NL<br>European<br>Commission<br>Health-Holland                                                   | Oncode Medema<br>Impact of chromatin context on DNA double-strand break repair kinetics,<br>fidelity and signaling<br>A multivariable prediction model for prognosis of early stage colorectal<br>cancer: comparing clinicopathological characteristics and molecular markers<br>AACR GENIE Project<br>Darmkanker en biomarkers<br>BBMRI 2.0<br>Building Enduring Life-science services<br>CRC Bioscreen 2.0                                                                                                                                             | 01/09/17<br>01/07/16<br>01/04/15<br>01/07/16<br>01/03/17<br>01/01/15<br>01/11/16<br>01/09/16                         | 31/08/22<br>30/06/20<br>31/03/20<br>30/06/19<br>28/02/19<br>31/12/18<br>31/08/19<br>31/08/18                         |
| Medema, R.H.<br>Medema, R.H.<br>Meijer, G.A.<br>Meijer, G.A.<br>Meijer, G.A.<br>Meijer, G.A.<br>Meijer, G.A.                 | Stichting Oncode<br>Institute<br>ZonMw<br>→1 Sub.gev<br>AACR<br>AVL Foundation<br>BBMRI-NL<br>European<br>Commission<br>Health-Holland<br>Health-Holland                                 | Oncode Medema   Impact of chromatin context on DNA double-strand break repair kinetics, fidelity and signaling   A multivariable prediction model for prognosis of early stage colorectal cancer: comparing clinicopathological characteristics and molecular markers   AACR GENIE Project   Darmkanker en biomarkers   BBMRI 2.0   Building Enduring Life-science services   CRC Bioscreen 2.0   Liquid biopsy-based molecular diagnostics to monitor therapy response in metastatic colorectal cancer: PLCRC-ORCA EXTended beyond RAS                  | 01/09/17<br>01/07/16<br>01/04/15<br>01/07/16<br>01/03/17<br>01/01/15<br>01/11/16<br>01/09/16<br>01/01/17             | 31/08/22<br>30/06/20<br>31/03/20<br>30/06/19<br>28/02/19<br>31/12/18<br>31/08/19<br>31/08/18<br>31/08/18             |
| Medema, R.H.<br>Medema, R.H.<br>Meijer, G.A.<br>Meijer, G.A.<br>Meijer, G.A.<br>Meijer, G.A.<br>Meijer, G.A.<br>Meijer, G.A. | Stichting Oncode<br>Institute<br>ZonMw<br>→1 Sub.gev<br>AACR<br>AVL Foundation<br>BBMRI-NL<br>European<br>Commission<br>Health-Holland<br>Health-Holland<br>MAAG LEVER<br>DARM Stichting | Oncode Medema<br>Impact of chromatin context on DNA double-strand break repair kinetics,<br>fidelity and signaling<br>A multivariable prediction model for prognosis of early stage colorectal<br>cancer: comparing clinicopathological characteristics and molecular markers<br>AACR GENIE Project<br>Darmkanker en biomarkers<br>BBMRI 2.0<br>Building Enduring Life-science services<br>CRC Bioscreen 2.0<br>Liquid biopsy-based molecular diagnostics to monitor therapy response in<br>metastatic colorectal cancer: PLCRC-ORCA EXTended beyond RAS | 01/09/17<br>01/07/16<br>01/04/15<br>01/07/16<br>01/03/17<br>01/01/15<br>01/11/16<br>01/09/16<br>01/01/17<br>15/10/15 | 31/08/22<br>30/06/20<br>31/03/20<br>30/06/19<br>28/02/19<br>31/12/18<br>31/08/19<br>31/08/18<br>31/12/20<br>30/09/18 |

| Principal<br>investigator | Granting<br>agency | Title | Started | Ended /<br>Ends |
|---------------------------|--------------------|-------|---------|-----------------|
|                           |                    |       |         |                 |

| Meijer, G.A.   | MAAG LEVER<br>DARM Stichting             | Detectie van hoog-risico adenomen                                                                                                                                                                                  | 01/02/17 | 31/07/18 |
|----------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|
| Meijer, G.A.   | Stichting Sacha<br>Swarttouw-<br>Hijmans | Vrij circulerend tumor DNA (ctDNA) als biomarker voor monitoring van<br>patiënten met rectumkanker                                                                                                                 | 01/05/18 | 30/04/20 |
| Meijer, G.A.   | Stichting Sacha<br>Swarttouw-<br>Hijmans | Securing Blood from Colon Adenoma Patients in the CLIPPER Trial to Enable<br>Development of Biomarkers for Early Detection of High-Risk Colon Adenomas<br>and CRC                                                  | 01/05/18 | 30/04/20 |
| Nederlof, P.M. | Roche                                    | CGH Array                                                                                                                                                                                                          | 01/10/12 | 30/11/19 |
| Nuijen, B.     | Modra<br>Pharmaceuticals<br>B.V.         | For Chemistry, Manufacturing and Control of ModraDoc006 tablets                                                                                                                                                    | 28/05/18 | 31/12/18 |
| Nuijen, B.     | Modra<br>Pharmaceuticals<br>B.V.         | To provide clinical services for Study: Multicenter safety, feasibility and pharmacokinetic phase I-II trial of ModraDoc006/r in patients with metastatic castration-resistant prostate cancer                     | 25/05/17 | 31/10/18 |
| Nuijen, B.     | Modra<br>Pharmaceuticals<br>B.V.         | For Chemistry, Manufacturing and Control of ModraDoc006 tablets                                                                                                                                                    | 07/04/17 | 31/10/18 |
| Peeper, D.S.   | AVL Foundation                           | Screening novel therapeutic targets for immuno oncology                                                                                                                                                            | 01/12/17 | 30/11/19 |
| Peeper, D.S.   | Bristol Myers<br>Squibb USA              | Defining and tackling immunotherapy resistance in melonoma and lung cancer                                                                                                                                         | 01/08/17 | 31/07/21 |
| Peeper, D.S.   | European<br>Commission                   | Combination Therapies for personalized medicine                                                                                                                                                                    | 01/05/13 | 30/04/19 |
| Peeper, D.S.   | Genmab                                   | Research into cell signal pathways and oncogenic divers                                                                                                                                                            | 01/05/15 | 30/09/20 |
| Peeper, D.S.   | Josephine<br>Nefkens Stichting           | Identificatie van nieuwe immuuntherapie met Itellicyt Screener PLUS                                                                                                                                                | 01/03/18 | 28/02/22 |
| Peeper, D.S.   | Merck Sharp &<br>Dohme Corp.             | Identify tumor-intrinsic factors that induce resistance to anti PD-1 antibody treatment in vivo (Keytruda resistome) in the D10 system                                                                             | 13/11/18 | 13/11/19 |
| Peeper, D.S.   | Merck Sharp &<br>Dohme Corp.             | Identification of chromatin modifiers genes that upon inactivation show a<br>synthetic lethal phenotype with Switch/Sucrose NonFermentable (SWI/SNF)<br>chromatin-remodeling complex mutations in tumor cell lines | 08/09/15 | 08/09/19 |
| Peeper, D.S.   | Stichting Oncode<br>Institute            | Oncode Peeper                                                                                                                                                                                                      | 01/09/17 | 31/08/22 |
| Perrakis, A.   | European<br>Commission                   | World-wide E-infrastructure for structural biology                                                                                                                                                                 | 01/11/15 | 31/10/18 |
| Perrakis, A.   | European<br>Commission                   | INEXT - Access - Infrastructure for NMR, EM and X-ray crystallography for<br>translational research                                                                                                                | 01/09/15 | 31/08/19 |
| Perrakis, A.   | Janssen<br>Research &<br>Development     | Enhancement of PDB_REDO algorithms and software                                                                                                                                                                    | 01/01/16 | 30/04/19 |
| Perrakis, A.   | NWO                                      | The molecular interactions allowing Mps1 to safeguard cell division                                                                                                                                                | 01/10/15 | 30/09/18 |
| Perrakis, A.   | NWO Chemische<br>Wetenschappen           | Structural and chemical basis for the biosynthesis and propagation of base J                                                                                                                                       | 01/09/14 | 31/08/19 |
|                |                                          |                                                                                                                                                                                                                    | 1        | 1        |

| Principal<br>investigator | Granting<br>agency | Title | Started | Ended /<br>Ends |
|---------------------------|--------------------|-------|---------|-----------------|
|                           |                    |       |         |                 |

| Perrakis, A.       | NWO Chemische<br>Wetenschappen                             | Optimized protein knowledge through transfer of evolutionary conserved features and chemical knowledge                                                                      | 15/11/14 | 14/11/19 |
|--------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|
| Perrakis, A.       | Universiteit<br>Utrecht                                    | Releasing the full potential of Instruct to expand and consolidate<br>infrastructure services for integrated structural life science research                               | 01/01/17 | 31/12/20 |
| Poel, van der H.G. | СТММ                                                       | Prostate Cancer Molecular Medicine                                                                                                                                          | 01/12/09 | 30/06/18 |
| Poel, van der H.G. | Intuitive Surgical<br>Operations Inc.                      | Robot-assisted radioguided surgery using a drop-in gamma probe                                                                                                              | 01/03/18 | 29/02/20 |
| Poll, van de L.V.  | EORTC                                                      | Incorporating the patient voice in sarcoma research: How can we assess health-related quality of life in this heterogeneous group of patients?                              | 01/01/19 | 31/12/20 |
| Poll, van de L.V.  | EORTC                                                      | Phase II and III development of an EORTC QOL cancer survivorship<br>questionnaire                                                                                           | 01/02/17 | 31/07/19 |
| Poll, van de L.V.  | SFN                                                        | Start-up package Pl                                                                                                                                                         | 01/01/16 | 31/12/18 |
| Poll, van de L.V.  | Stichting<br>Roparun<br>Palliatieve zorg                   | Project CALM                                                                                                                                                                | 01/10/18 | 30/09/20 |
| Poll, van de L.V.  | Stichting<br>Vrienden<br>Integrale<br>Oncologische<br>Zorg | Onderzoek naar het effect van de Match app, een online interventie om het<br>menselijk contact en begrip tussen jongvolwassenen met kanker en hun<br>omgeving te verbeteren | 01/10/18 | 30/09/20 |
| Rheenen, van J.E.  | CGC                                                        | CGC IV                                                                                                                                                                      | 01/10/17 | 31/12/21 |
| Rheenen, van J.E.  | Dr. Josef Steiner<br>Krebsstiftung                         | Dr. Josef Steiner Cancer Research Award 2017                                                                                                                                | 01/10/17 | 30/09/21 |
| Rheenen, van J.E.  | European<br>Commission                                     | Tumor cell death supports recurrence of cancer                                                                                                                              | 01/10/17 | 31/08/20 |
| Rheenen, van J.E.  | European<br>Commission                                     | Research Training Network on Integrated Component Cycling in Epithelial Cell<br>Motility (InCeM)                                                                            | 01/10/17 | 31/12/18 |
| Rheenen, van J.E.  | EMBO                                                       | Long-Term Fellowship Dr. Miguel Vizoso Patino                                                                                                                               | 01/09/18 | 31/12/19 |
| Rheenen, van J.E.  | EMBO                                                       | EMBO Fellowship Jessica Morgner                                                                                                                                             | 01/10/17 | 31/12/18 |
| Rheenen, van J.E.  | H.F.S.P.O.                                                 | HFSPO Fellowship Claire Vennin                                                                                                                                              | 01/06/18 | 31/05/21 |
| Rheenen, van J.E.  | NWO                                                        | Intravital stem cell imaging to reveal the cellular processes that drive colorectal tissue homeostasis and tumor initiation                                                 | 01/10/17 | 31/12/18 |
| Rheenen, van J.E.  | NWO-ALW                                                    | Identifying the physiological relevance of RNA transfer by microvesicles                                                                                                    | 01/10/17 | 15/07/18 |
| Rheenen, van J.E.  | Stichting Oncode<br>Institute                              | Oncode van Rheenen                                                                                                                                                          | 01/09/17 | 31/08/22 |
| Rhijn, van B.      | Universitat Basel                                          | material costs                                                                                                                                                              | 01/01/15 | 30/11/18 |
| Riele, te H.P.J.   | STW                                                        | Phenotypic assessment of intra- and extra-exonic variants of disease-<br>related genes present in the human population                                                      | 01/01/17 | 31/12/20 |
| Rookus, M.A.       | ⇒l Sub.gev                                                 | HEBON Centers                                                                                                                                                               | 15/11/13 | 31/12/20 |
| Rookus, M.A.       | ⇒l Sub.gev                                                 | HEBON verlenging Denise Jenner                                                                                                                                              | 01/04/18 | 30/06/19 |
|                    |                                                            |                                                                                                                                                                             |          |          |

| Principal<br>investigator | Granting<br>agency                  | Title                                                                                                                                                                                                             | Started  | Ended /<br>Ends |
|---------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|
|                           |                                     |                                                                                                                                                                                                                   | 1        | I               |
| Rookus, M.A.              | Pink Ribbon                         | Improved risk prediction to allow for a more personalized advice regarding the performance and timing of prophylactic surgeries for BRCA 1/2 mutation carriers                                                    | 01/04/14 | 31/03/18        |
| Rosing, H.                | Neon<br>Therapeutics                | Qualification of an UPLC-MS method for the identity analysis of neo-antigen<br>peptides drug products and the quality control of these products                                                                   | 01/03/18 | 31/12/18        |
| Rowland, B.D.             | European<br>Commission              | Cohesin-mediated chromosomal looping: from linear paths to 3D effects                                                                                                                                             | 01/04/18 | 31/03/23        |
| Rowland, B.D.             | NWO Chemische<br>Wetenschappen      | Echo subsidie. How does cohesin release DNA?                                                                                                                                                                      | 01/01/16 | 31/12/18        |
| Rowland, B.D.             | SFN                                 | Startgeld Rowland                                                                                                                                                                                                 | 01/04/17 | 31/03/22        |
| Ruers, T.J.M.             | AVL Foundation                      | Optical guided surgery                                                                                                                                                                                            | 01/11/14 | 31/05/20        |
| Ruers, T.J.M.             | AVL Foundation                      | Pixelanalyse voor (vroeg)detectie van dikkedarmkanker                                                                                                                                                             | 01/01/17 | 31/12/19        |
| Ruers, T.J.M.             | European<br>Commission              | Advancing Smart Optical Imaging and Sensing for Health                                                                                                                                                            | 01/06/16 | 31/05/19        |
| Ruers, T.J.M.             | Health-Holland                      | TomTom project                                                                                                                                                                                                    | 01/12/16 | 30/11/19        |
| Ruers, T.J.M.             | Holland High Tech                   | ECSEL project ASTONISH                                                                                                                                                                                            | 01/06/16 | 31/05/19        |
| Ruers, T.J.M.             | Innovation<br>Exchange<br>Amsterdam | Magnetische Marker voor Chirurgische Lokalisatie                                                                                                                                                                  | 01/06/16 | 31/05/20        |
| Ruers, T.J.M.             | Nijbakker-Morra<br>Stichting        | Fiberprobe; steriliseerbare instrument voor in vivo spectroscopisch<br>onderzoek van resectiemarges                                                                                                               | 01/02/18 | 31/03/19        |
| Ruers, T.J.M.             | Philips                             | Research collaboration Philips                                                                                                                                                                                    | 01/04/10 | 30/06/19        |
| Ruers, T.J.M.             | STW                                 | Combining Optics and Acoustics For Realtime Guidance during Cancer<br>Surgery                                                                                                                                     | 01/09/17 | 31/08/20        |
| Sandick, van J.W.         | Vrolijk                             | Slokdarmkankeronderzoek                                                                                                                                                                                           | 01/01/08 | 30/06/20        |
| Sandick, van J.W.         | ZonMw                               | Combinatiebehandeling van cytoreductieve chirurgie en hypertherme<br>intraperitoneale chemotherapie (HIPEC) bij patiënten met een maagcarcinoom<br>en synchrone buikvliesmefasfasen en/of tumorpositief buikvocht | 01/10/17 | 30/09/22        |
| Schmidt, M.K.             | BBMRI-NL                            | Personalized medicine: servicedesk ethiek en recht                                                                                                                                                                | 01/09/18 | 28/02/19        |
| Schmidt, M.K.             | Cancer Research<br>UK               | Precision via Cancer Research UK                                                                                                                                                                                  | 01/05/17 | 30/04/22        |
| Schmidt, M.K.             | European<br>Commission              | Breast CAncer STratification: understanding the determinants of risk and<br>prognosis of molecular subtypes                                                                                                       | 01/09/15 | 31/08/20        |
| Schmidt, M.K.             | ZonMw                               | Fostering the responsible use of residual biospecimens and data in medical                                                                                                                                        | 01/05/17 | 30/04/19        |
| Schmidt, M.K.             | ZonMw                               | Personalized medicine: servicedesk ethiek en recht                                                                                                                                                                | 01/09/17 | 31/08/19        |
| Schumacher, A.N.M.        | →l Sub.gev                          | Cell Therapy NKI                                                                                                                                                                                                  | 01/07/11 | 30/06/19        |
| Schumacher, A.N.M.        | Cancer Research<br>Institute        | Unraveling the biology of CMTM6: A novel regulator of PD-Li identified through genome-wide genetic screening                                                                                                      | 01/01/17 | 31/12/19        |
| Schumacher, A.N.M.        | European<br>Commission              | Advanced T-cell Cancer Gene-Therapy                                                                                                                                                                               | 01/12/13 | 30/11/18        |
|                           |                                     |                                                                                                                                                                                                                   | 1        | 1               |

| Principal<br>investigator | Granting<br>agency | Title | Started | Ended /<br>Ends |
|---------------------------|--------------------|-------|---------|-----------------|
|---------------------------|--------------------|-------|---------|-----------------|

| Schumacher, A.N.M. | European                                 | APERIM: Advanced bioinformatics platform for PERsonalised cancer                                                                                           | 01/05/15 | 30/04/18 |
|--------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|
|                    | Commission                               | IMmunotherapy                                                                                                                                              |          |          |
| Schumacher, A.N.M. | European<br>Commission                   | Sensitivity of human tumors to T cell attack                                                                                                               | 01/12/17 | 30/11/22 |
| Schumacher, A.N.M. | Kristian<br>Gerhard Jebsen<br>foundation | Jebsen grant                                                                                                                                               | 01/06/13 | 31/12/19 |
| Schumacher, A.N.M. | MD Anderson<br>Cancer Center             | Acceleration of the Clinical Testing of CTLA-4 and P1 Blockade for Melanoma                                                                                | 01/03/14 | 28/02/18 |
| Schumacher, A.N.M. | Merck KGaA                               | Single cell analysis of the tumor-immune ecosystem in human cancer:<br>Dissecting the dynamics of immune-tumor cross talk following checkpoint<br>blockade | 01/06/17 | 31/05/20 |
| Schumacher, A.N.M. | NWO                                      | Zwaartekracht Schumacher                                                                                                                                   | 01/10/14 | 30/09/19 |
| Schumacher, A.N.M. | Roche                                    | T cell responses and mapping of neo-antigen-specific T cell repertoires in follicular lymphoma patients after local anti-CD20 therapy                      | 01/04/14 | 30/06/19 |
| Schumacher, A.N.M. | Stichting Oncode<br>Institute            | Oncode Schumacher                                                                                                                                          | 01/09/17 | 31/08/22 |
| Sixma, T.K.        | European<br>Commission                   | Regulated Assembly of Molecular Machines for DNA REPAIR: a Molecular<br>Analysis training Network                                                          | 01/01/17 | 31/12/20 |
| Sixma, T.K.        | NWO                                      | Structure-function analysis of transcription-associated DNA repair                                                                                         | 01/06/18 | 31/05/24 |
| Sixma, T.K.        | NWO                                      | Zwaartekracht programma 2012                                                                                                                               | 01/01/13 | 31/12/21 |
| Sixma, T.K.        | NWO                                      | Investering Therpophoresis HPLC imager                                                                                                                     | 01/04/13 | 31/12/21 |
| Sixma, T.K.        | NWO                                      | The molecular mechanism of USP48, a BRCA1 antagonist during DNA damage response                                                                            | 01/09/18 | 31/08/23 |
| Sixma, T.K.        | NWO                                      | A program to enable discovery of catalytic and/or inhibitors of the USP4/11/15 family of deubiquitinating enzymes                                          | 01/09/18 | 31/08/23 |
| Sixma, T.K.        | NWO Chemische<br>Wetenschappen           | A movie of DNA mismatch repair: how information is transmitted by conformational change                                                                    | 01/01/17 | 31/12/22 |
| Sixma, T.K.        | NWO-ALW                                  | Cellular activation of the allosterically inhibited UCHL5/INO80G complex                                                                                   | 01/12/16 | 30/11/19 |
| Sixma, T.K.        | Stichting Oncode<br>Institute            | Oncode Sixma                                                                                                                                               | 01/09/17 | 31/08/22 |
| Sonke, G.S.        | A Sister's Hope                          | Long-term Survival in Metastatic HER2+ Breast Cancer                                                                                                       | 01/04/17 | 31/03/18 |
| Sonke, G.S.        | AVL Foundation                           | Donatie Team Westland                                                                                                                                      | 07/12/17 | 07/12/20 |
| Sonke, G.S.        | Pink Ribbon                              | Learning from long-term survivors in metastatic breast cancer                                                                                              | 01/11/16 | 31/10/19 |
| Sonke, J.J.        | ⇒l Sub.gev                               | Personalized Radiotherapy Collaboration Agreement                                                                                                          | 01/01/15 | 31/12/19 |
| Sonke, J.J.        | EOS                                      | Framework Research Agreement between Elekta and NKI-AVL                                                                                                    | 10/08/10 | 10/08/20 |
| Sonnenberg, A.     | DEBRA AUSTRIA                            | 'High-content screening for new therapies for Epidermolysis Bullosa Simplex associated with Muscular Dystrophy (EBS-MD)                                    | 01/04/17 | 31/03/19 |
|                    |                                          |                                                                                                                                                            |          |          |
|                    |                                          |                                                                                                                                                            |          |          |
| 182                |                                          |                                                                                                                                                            |          |          |
|                    |                                          |                                                                                                                                                            |          |          |

| Principal<br>investigator | Granting<br>agency | Title | Started | Ended /<br>Ends |
|---------------------------|--------------------|-------|---------|-----------------|
|                           |                    |       |         |                 |

| Sonnenberg, A.    | NWO-ALW                          | Identification and characterization of proteins involved in coordinating<br>the function of focal adhesions and hemidesmosomes in promoting stable<br>keratinocyte adhesion | 01/01/15 | 31/12/18 |
|-------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|
| Steeghs, N.       | →1 Sub.gev                       | REGISTER - REgistratie GIST nEdeRland                                                                                                                                       | 01/01/14 | 31/12/23 |
| Steeghs, N.       | European<br>Commission           | Molecularly guided trials with specific treatment strategies in patients with advanced newly molecular defined subtypes of colorectal cancer                                | 01/10/15 | 30/09/19 |
| Steensel, van B.  | AIRC                             | Twisting the boundaries: Role of Topoisomerase1 at the nuclear lamina                                                                                                       | 01/01/19 | 31/12/21 |
| Steensel, van B.  | AVL Foundation                   | Ontwikkeling Chromatin Genomics                                                                                                                                             | 01/11/14 | 31/10/24 |
| Steensel, van B.  | European<br>Commission           | Genomics of Chromosome Architecture and Dynamics in Single Cells                                                                                                            | 01/03/17 | 28/02/22 |
| Steensel, van B.  | Stichting Oncode<br>Institute    | Oncode van Steensel                                                                                                                                                         | 01/09/17 | 31/08/22 |
| Steensel, van B.  | University of<br>Illinois        | NIH 4DNucleome deel 1 Mapping and Technology Development                                                                                                                    | 28/09/15 | 31/07/20 |
| Steensel, van B.  | ZonMw                            | Impact of chromatin context on DNA double-strand break repair kinetics,<br>fidelity and signaling                                                                           | 28/01/16 | 28/01/20 |
| Stokkel, M.P.M.   | AVL Foundation                   | Tumor specific imaging of prostate cancer using PSMA-PET                                                                                                                    | 01/07/16 | 30/06/19 |
| Stokkel, M.P.M.   | Interne<br>financiering          | Reposit studie DOD                                                                                                                                                          | 01/09/15 | 31/12/19 |
| Stokkel, M.P.M.   | STW                              | A feasibility study on Cerenkov Luminescence Imaging during prostate cancer<br>surgery using Gallium-68 PSMA                                                                | 01/08/17 | 31/10/19 |
| Stuiver, M.M.     | European<br>Commission           | Project on Exercise for Fatigue Eradication in Advanced Breast cancer to<br>improve quality of life                                                                         | 01/01/19 | 31/12/23 |
| Stuiver, M.M.     | Nutricia<br>Nederland B.V.       | Voedingsstatus en het beloop van de behandeling van stadium III longkanker                                                                                                  | 01/11/17 | 31/12/19 |
| Tellingen, van O. | AVL Foundation                   | Improving chemoradiation therapy of GBM by inhibition of glioma invasion: A proof-of-concept study                                                                          | 01/12/17 | 30/11/19 |
| Tellingen, van O. | AVL Foundation                   | Multi-Targeted Combination Therapy for treatment of glioblastoma: in vivo proof-of-concept study                                                                            | 01/06/18 | 31/05/20 |
| Tellingen, van O. | CellProtect<br>Australia PTY Ltd | Efficacy study of S-CP201 and radiotherapy against orthotopic intracranial tumor models                                                                                     | 01/01/17 | 30/06/18 |
| Tellingen, van O. | Reneuron Limited                 | Efficacy study of exosomes against orthotopic intracranial tumor models                                                                                                     | 01/06/16 | 31/05/19 |
| Tesselaar, M.E.T. | Merck BV                         | Database of retrospectively and subsequent prospectively gathered data of<br>all MCC patients treated in the Netherlands as platform for a national MCC<br>database         | 01/09/18 | 31/12/22 |
| Tinteren, van H.  | IKNL                             | Overeenkomst zelfregisterend melanoomcentrum DMTR                                                                                                                           | 01/05/16 | 31/12/18 |
| Tinteren, van H.  | Modra<br>Pharmaceuticals<br>B.V. | Work order 1 Multicenter safety, feasibility and pharmacokinetic phase II trial of ModraDoc006/r in patients with metastatic castration-resistant prostate                  | 01/06/17 | 01/07/19 |
| Tinteren, van H.  | Modra<br>Pharmaceuticals<br>B.V. | Food effect of weekly administration of (bi) daily Oral<br>Docetaxel(ModraDoc006) in combination with ritonavir                                                             | 01/07/17 | 31/03/19 |
|                   |                                  |                                                                                                                                                                             |          |          |

| Principal<br>investigator | Granting<br>agency | Title | Started | Ended /<br>Ends |
|---------------------------|--------------------|-------|---------|-----------------|
|                           |                    |       |         |                 |

| Tinteren, van H.   | Modra<br>Pharmaceuticals<br>B.V. | Safety of extended use of the weekly oral docetaxel formulation<br>ModraDoc006/r in patients with advanced solid tumors                                                                                                  | 01/07/17 | 30/09/20 |
|--------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|
| Tinteren, van H.   | NVALT                            | A phase III prospective double blind placebo controlled randomized study of<br>adjuvant MEDI4736 in completely resected non-small cell lung cancer                                                                       | 08/02/18 | 08/08/22 |
| Trommel, van N.E.  | AVL Foundation                   | Onderzoek ADP Ovariumcarcinoom                                                                                                                                                                                           | 01/09/17 | 31/08/21 |
| Trum, J.W.         | ZonMw                            | GERiatric Screening in the treatment of elderly patients with Ovarian<br>Carcinoma (GERSOC) van C. Smorenburg                                                                                                            | 15/08/17 | 15/08/21 |
| Ven, van de H.W.M. | European<br>Commission           | EurOPDX Distributed Infrastructure for Research on patient-derived cancer<br>Xenografts                                                                                                                                  | 01/02/18 | 31/01/22 |
| Vens, C.           | AstraZeneca BV                   | Olaparib- Radiation combination studies: evaluating the potential of Olaparib<br>to mitigate RT-induced lung toxicity and comparing this combination to<br>conventional chemo-radiation                                  | 01/01/14 | 01/07/19 |
| Verheij, M.        | AbbVie                           | Utility of the combination of APG880 with radiotherapy                                                                                                                                                                   | 12/07/16 | 01/10/18 |
| Verheij, M.        | AVL Foundation                   | Image Guided Therapy                                                                                                                                                                                                     | 01/01/17 | 31/12/20 |
| Verheij, M.        | European<br>Commission           | Clinical proof of concept through a randomized phase II study: a combination of immunotherapy and stereotactic ablative radiotherapy as a curative treatment for limited metastatic lung cancer                          | 01/01/17 | 31/12/22 |
| Visser, de K.E.    | European<br>Commission           | Mechanistic insights into the impact of tumor-associated neutrophils on metastatic breast cancer                                                                                                                         | 01/03/14 | 28/02/20 |
| Visser, de K.E.    | NWO                              | OOA NWO Diamond K.Kos                                                                                                                                                                                                    | 01/10/16 | 30/09/20 |
| Visser, de K.E.    | Roche<br>Diagnostics<br>GMBH     | To study the anti-cancer efficacy of a triple combination treatment consisting<br>of the Roche murinized antibody against CSF-1 receptor, cisplatin, and<br>another modulator in a spontaneous mammary tumor mouse model | 01/05/13 | 31/08/19 |
| Visser, de K.E.    | Stichting Oncode<br>Institute    | Deciphering the Cancer-Immune Landscape; towards personalized immune intervention strategies                                                                                                                             | 01/08/18 | 31/07/21 |
| Visser, de K.E.    | Stichting Oncode<br>Institute    | Oncode de Visser                                                                                                                                                                                                         | 01/09/17 | 31/08/22 |
| Voest, E.E.        | NWO                              | Zwaartekracht programma 2012                                                                                                                                                                                             | 01/03/14 | 31/12/21 |
| Voest, E.E.        | Pink Ribbon                      | Prediction of treatment outcome in patients with metastatic breast cancer by in vitro drug testing using individual patient derived tumor organoids                                                                      | 01/04/14 | 31/08/18 |
| Voest, E.E.        | ZonMw                            | COLOSYS: A systems approach to preventing drug resistance in colon cancer                                                                                                                                                | 01/05/16 | 30/04/19 |
| Wesseling, J.      | Cancer Research<br>UK            | Prevent Ductal Carcinoma in Situ Invasive Overtreatment Now - PRECISION                                                                                                                                                  | 01/06/18 | 30/11/18 |
| Wesseling, J.      | Cancer Research<br>UK            | Precision via Cancer Research UK                                                                                                                                                                                         | 01/05/17 | 30/04/22 |
| Wesseling, J.      | HeritX, Inc                      | Immunoprevention of BRCA1-associated mammary cancer                                                                                                                                                                      | 01/03/18 | 28/02/20 |
| Wesseling, J.      | Pink Ribbon                      | Preventing overtreatment of microcalcification-associated in situ breast<br>lesions by implementing more accurate prognostic biomarkers                                                                                  | 01/04/14 | 31/03/19 |
| Wesseling, J.      | Pink Ribbon                      | Low Risk Ductal carcinoma In Situ - a Randomized, Non-inferiority trial                                                                                                                                                  | 01/04/14 | 31/03/19 |
|                    |                                  |                                                                                                                                                                                                                          |          |          |

| Principal<br>investigator | Granting<br>agency | Title | Started | Ended /<br>Ends |
|---------------------------|--------------------|-------|---------|-----------------|
| in congutor               | agono,             |       |         | Lindo           |
|                           |                    |       | I       |                 |

| Wessels, L.F.A. | Cancer Research<br>UK         | Precision via Cancer Research UK                                                                                                           | 01/05/17 | 30/04/22 |
|-----------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|
| Wessels, L.F.A. | CGC                           | Bioinformatica CGC                                                                                                                         | 01/11/13 | 31/12/21 |
| Wessels, L.F.A. | СРСТ                          | Tumor Organoids: A new preclinical model for drug sensitivity analysis                                                                     | 01/05/14 | 30/04/19 |
| Wessels, L.F.A. | European<br>Commission        | Identification and functional validation of drugable targets/pathways for triple negative breast cancer                                    | 01/04/13 | 31/03/18 |
| Wessels, L.F.A. | European<br>Commission        | Combination Therapies for personalized medicine                                                                                            | 01/05/13 | 30/04/19 |
| Wessels, L.F.A. | Genmab                        | Identification of Biomarkers for HexaBodyR-DR5/DR5 therapy                                                                                 | 01/09/17 | 31/08/19 |
| Wessels, L.F.A. | GlaxoSmith Kline              | Computational analyses to unravel the mechanism of action of BET and EZH2 inhibitors and define biomarkers                                 | 01/02/16 | 31/01/19 |
| Wessels, L.F.A. | NWO                           | Zwaartekracht programma 2012                                                                                                               | 01/01/13 | 31/12/21 |
| Wessels, L.F.A. | Stichting Oncode<br>Institute | Oncode Wessels                                                                                                                             | 01/09/17 | 31/08/22 |
| Wessels, L.F.A. | STW                           | Computer-aided Risk Assessment of Breast Cancer using Gene-Correlated<br>Dynamic Contrast-enhanced MRI                                     | 01/01/13 | 31/03/18 |
| Wessels, L.F.A. | ZonMw                         | COLOSYS: A systems approach to preventing drug resistance in colon cancer                                                                  | 01/02/17 | 31/01/20 |
| Wessels, L.F.A. | ZonMw                         | Targeting theHER2 receptor: finding biomarkers for optimal anti-HER2 treatment                                                             | 01/02/18 | 31/01/19 |
| Wit, de E.      | European<br>Commission        | From haplotype to phenotype: a systems integration of allelic variation, chromatin state and 3D genome data                                | 01/09/15 | 31/08/20 |
| Wit, de E.      | NWO                           | The role of transcription factors in 3D genome organization                                                                                | 01/10/16 | 30/09/21 |
| Wit, de E.      | NWO                           | Impact of sequential driver mutations on epigenetic regulation during intestinal carcinogenesis                                            | 01/09/17 | 31/08/20 |
| Wit, de E.      | SFN                           | Junior PI De Wit                                                                                                                           | 01/09/15 | 31/08/20 |
| Wit, de E.      | Stichting Oncode<br>Institute | Oncode de Wit                                                                                                                              | 01/09/17 | 31/08/22 |
| Zuur, C.L.      | W.M. de<br>Hoopstichting      | Aanschaf en opzetten laboratoriummaterialen voor het onderzoeken van<br>bloedaanmaak bij hoofd-hals kankerpatiënten voor en na behandeling | 01/04/18 | 30/09/21 |
| Zwart, W.T.     | A Sister's Hope               | Ex-vivo intervention of metastatic breast cancers for novel drug testing and development in endocrine therapy-resistance                   | 01/12/17 | 30/06/19 |
| Zwart, W.T.     | AVL Foundation                | Integrative Androgen Receptor genomics as a readout for recurrence risk and treatment resistance of prostate cancer                        | 01/09/17 | 31/01/19 |
| Zwart, W.T.     | European<br>Commission        | Training network in drug discovery targeting TRIM Ubiquitin ligases in disease                                                             | 01/01/19 | 31/12/22 |
| Zwart, W.T.     | SFN                           | Startgeld Zwart                                                                                                                            | 01/10/11 | 30/09/20 |
| Zwart, W.T.     | Stichting LSH-TKI             | Deubiquitinating enzyme inhibitors as novel drugs in Estrogen Receptor-<br>positive breast cancer                                          | 01/03/14 | 28/02/18 |
| Zwart, W.T.     | Stichting Oncode<br>Institute | Oncode - Validation of a novel 9-gene-classifier to guide adjuvant treatment for prostate cancer                                           | 01/09/18 | 31/08/20 |
|                 |                               |                                                                                                                                            |          |          |
|                 |                               |                                                                                                                                            |          |          |

| Principal<br>investigator | Granting<br>agency | Title | Started | Ended /<br>Ends |
|---------------------------|--------------------|-------|---------|-----------------|
| '                         |                    |       | I I     |                 |

| Zwart, W.T. | Stichting Oncode<br>Institute                 | Oncode Zwart                                                                                                | 01/09/17 | 31/08/22 |
|-------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------|----------|
| Zwart, W.T. | The Mark<br>Foundation for<br>Cancer Research | Short-term 3D-printing-based cultures of metastatic breast cancer for tailored therapy selection            | 01/12/18 | 01/12/19 |
| Zwart, W.T. | ZonMw                                         | Proteomic and genomic evaluation of metastatic breast cancer to facilitate personalized treatment selection | 01/12/16 | 30/11/21 |
|             |                                               |                                                                                                             |          |          |
|             |                                               |                                                                                                             |          |          |
|             |                                               |                                                                                                             |          |          |
|             |                                               |                                                                                                             |          |          |
|             |                                               |                                                                                                             |          |          |
|             |                                               |                                                                                                             |          |          |
|             |                                               |                                                                                                             |          |          |
|             |                                               |                                                                                                             |          |          |
|             |                                               |                                                                                                             |          |          |
|             |                                               |                                                                                                             |          |          |
|             |                                               |                                                                                                             |          |          |
|             |                                               |                                                                                                             |          |          |
|             |                                               |                                                                                                             |          |          |
|             |                                               |                                                                                                             |          |          |
|             |                                               |                                                                                                             |          |          |
|             |                                               |                                                                                                             |          |          |





## Personnel index

A

Aalbers, Arend 100 Aalbersberg, Else 76 Aaronson Neil 16 Aarsman, Ivette 53 Aarts Bright 77 Aarts Nikkie 51 Abbenhuis, Merel 88 Aben, Nanne 71 Absalah, Aziza 88 Achahchah, Mohamed 76 Achterbergh, Roos 82 Adamopoulos, Athanassios 46 Adank, Muriel 76 Adriaansz Sandra 83 Aerts, Hugo 77 Agami, Reuven 17 Agasi-Idenburg, Carla 16 Agelink van Rentergem, Joost 49 Ahrends, Tomasz 27 Ait Moha, Daoud 76 Aiouaou, Abderrahim 76, 77 Akdeniz, Delal 51 Akkari Leila 18 AL Lisette 88 ALArif Masudur 94 Al-Mamgani, Abrahim 94 Alaeikhanehshir, Sena 70 Aleman, Berthe 61, 94 Alflen, Astrid 45 Alkan, Ferhat 31 Alkemade, Maartie 114 Almekinders, Mathilde 70, 76 Altelaar, Maarten 111 Altenburg-van der Velden, Stefanie 82 Amant, Frédéric 101 Andronikou, Christina 47 Annunziato, Stefano 38 Anriamashvili Georgi 45 Ariese, Karin 101 Arnamo Hedvig 20,88 Assad Aslam, Muhammad 35 Astill, Rebecca 88 Atanasovska, Biliana 41 Atema, Vera 16 Aukema, Tjeerd 100

B

Baak, Charlotte 122 Baank, Saskia 76 Baars, Danny 88 Baas, Paul 82 Baas, Rov 53 Baas-Vrancken Peeters, Marie-Jeanne 100 Bahała Nikolina 27 Bahan Shan 119 Badhai, Jitendra 23, 64 Badoux, Madelon 38 Badrising, Sushil 21, 82 Baetens, Tarik 77 Bakker, Noor 29 Balm, Fons 100 Baltussen, Lisanne 100 Balwierz, Aleksandra 41 Bani Yassien, Ahmed 94 Barazas Marco 47 **Barbier** Nathalie 88 Bartelink, Harry 94 Bartels-Rutten, Annemarieke 77 Beck, Ann-Jean 60, 100

Beekman, Chris 54, 94 Beerling, Evelyne 65 Beets, Geerard 100 Beets-Tan, Regina 77 Beijersbergen, Roderick 19. 112 Beijnen, Jos 20, 82, 88 **Bekers** Elise 76 Belderbos, José 94 Benedict, Bente 56 Berentzen, Nina 61 Berezowska, Aleksandra 25 Berger, Danique 100 Bergman, André 21, 82 Bernards, René 22 Berns, Anton 23 Berns Katrien 22 Bes. Martine 77 Bes-Gennissen, Annemiek 22 Bessels, Frauwkje 88 Betgen, Ania 95 Beukers, Joke 20, 88 Beusink, Miriam 51 Beverwiik, Iris 77 Bex Axel 101 Bhairosing-Kok, Doreth 53 Bhaskaran, Rajith 23 Bhattachariee, Proteeti 51, 70 Bhin, Jinhyuk 38, 71 Bhowmick, Debaiit 121 Bianchi, Danielle 28 Bierkens, Mariska 44, 77 Bierman, Carolien 77 Biilsma, Rhode 69 Bijron, Jonathan 76 Bin Ali, Rahmen 117 Bing, Danalyn 60 Birkhoff, Joan 100 Bismeijer, Tycho 71 Blank, Christian 24, 82 Blankenstein, Stephanie 100 Bleeker, Fonnet 76 Bleijerveld Onno 111 Bleiker, Eveline 25, 76 Bloemers, Monique 94 Blomberg, Olga 29 Boekel, Naomi 61 Boekhout, Annelies 25, 59 Boelens, Mirjam 76 Boer, Mandy 88 Bol, Mijke 76 Bolijn, Anne 44, 77 Bolman, Marloes 101 Bombardelli, Lorenzo 19 Bongers, Suzanne 88 Boon, Nicolaas 28 Boosman, Rene 20, 88 Boot, Henk 82 Bornes, Laura 65 Borst, Gerben 26, 94 Borst Jannie 27 Bos Paula 77 Bosch, Linda 44, 76 Bosdriesz, Evert 71 Boshuizen Julia 45 Bosma, Astrid 22 Bosma, Sophie 94 Botma, Henk 88 Bounova, Gergana 71 Boutmy-de Lange, Majella 76 Bouwman, Peter 38 Bovens, Astrid 27 Braaf, Linde 114

Braccioli, Luca 30

Brambillasca, Chiara 38

Beckers, Rianne 77

Brandsma, Dieta 82 Bras. Marieke 61 Bresser, Kaspar 52 Brinkman, Eva 66 Brocks, Lenny 113 Broeks, Annegien 76, 114 Broersen, Sanne 114 Brood Monique 101 Brouwer, Christel 76 Brouwer, Ineke 41 Brouwer, Oscar 101 Brouwer de Koning, Susan 100 Brückner, Laura 66 Bruekner, Susanne 53 Bruens, Lotte 65 Bruggeman, Marieke 39 Brugman, Wim 119 Bruin, Maaike 20, 88 Bruin, Natascha 76, 95 Bruining, Annemarie 77 Bruins, Max 101 Bruinsma, Tineke 88 Brummelkamp, Thiin 28 Buffart, Tineke 82 Buijs, Luuk 100 Buikhuisen, Wieneke 82 Buiter Maarten 94 Bullock Simon 76 Buma, Sannine 101 Buoninfante, Alessandra 35 Burgers, Siaak 82 Burylo Artur 67 122 Busselaar, Julia 27 **Bussing Heleen 88** 



Can Sahillioglu, Ali 52 Canisius, Sander 51, 71 Carbaat, Casper 95 Carvalho, Beatriz 44, 76 Cats Annemieke 82 Cattaneo, Chiara 69 Celie, Patrick 115 Cerutti, Aurora 36 Chalabi, Myriam 69, 82 Champagne, Julien 17 Chandrasekaran, Gayathri 64 Chrispijn, Cas 76 Cioni, Bianca 21, 82 Citoes, Marin 101 Citirikkava, Ceren 67 Citterio, Elisabetta 64 Coenraads-Wiersma, Miriam 77 Cohen, Ruth 88 Colakoglu, Hilal 67 Comoglio, Federico 66 Compter, Annette 82 Cornelissen, Lisette 38 Cornelissen, Sten 51, 114 Corradi Marie 71 Craenmehr, Jacques 88 Crijns, Marianne 101



Da Cruz Margarido, Andrea 65 Dackus, Gwen 82 Daletzakis, Antonios 88 Damaskos, George 46 Damen, Eugène 94 Dasht Bozorg, Behdad 100 de Beukelaar, Wilfred 76 de Boer, Esther 88 de Boer, Jan Paul 82 de Boer, Lisanne 100 de Boo, Leonora 42, 82 de Bruijn, Beaunelle 45 de Bruijn Mariolein 52 de Bruijn, Roderick 101 de Bruijn, Roebi 38 de Carvalho Neme Kenski, Juliana 45 de Feijter, Jeantine 82 de Geus, Jessie 25 de Gooiier. Dianne 82 de Gooiier. Mark 67 de Graaf, Cees 77 de Graaf, Rob 94 de Groot, Daniel 35 de Groot Mariolein 82 de Haan, Hugoline 61 de Haan, Rosemarie 68, 94 de Haar-Holleman, Amy 82 de Haas, Marcel 66 de Jong, Gerda 88 de Jona, Jeroen 77 de Jong, Renske 94 de Jong, Vincent 42, 82 de Kanter, Wanda 82 de Kivit, Sander 27 de Kock Marieke 88 de Koekkoek-Doll, Petra 77 de Koning, Marion 77 de Korte-Grimmerink, Renske 122 de Krijger, Inge 36 de Krou, Sven 20, 88 de Langen, Joop 82 de Looij, Michiel 89 de Maaker, Michiel 34 de Meza, Stephanie 108 de Rink, Iris 119 de Rooij, Martin 19 de Ruiter, Julian 38 de Ruiter Julianne 100 de Ruiter, Michiel 49 de Veii Mestdagh, Pieter 94 de Visser, Karin 29 de Vries, Evert 27 de Vries, Hielke-Martijn 101 de Vries, Hilda 23 de Vries, Jeltje 89 de Vries, Menno 44, 77 de Vries, Niels 20, 88 de Vries, Simone 61 de Vries Schultink, Aurelia 20, 88 de Vriie, Lex 120 de Waal, Marioliin 89 de Widt, John 115 de Wijkerslooth, Thomas 82 de Wit. Davenne 89 de Wit, Elzo 30 de Wit, Meike 44, 77 de Wit, Niels 122 de Wit Tom 27 de Wit-van der Veen, Linda 76 de Zwart, Ingrid 77 Debipersad, Rashmie 76 Deiien, Charlotte 94 Dekker, Marien 76 Dekker, Marleen 56 Delfos, Marjolein 83 Delis-van Diemen, Pien 44, 77 Delzenne-Goette, Elly 56 den Hartoo-Lievaart, Peggy 83 Dewit, Luc 94 Dezentjé, Vincent 82 Dharadhar, Shreva 53 Dick. Amalie 65, 113

Dickhoff, Chris 100 Dieduksman, Daphne 76 Dijkgraaf, Feline 52 Dijkhoff, Rebecca 77 Diikstra, Kriin 69 Dilz Roeland 54 94 Dinis Fernandes, Catarina 57, 94 Diosdado, Begona 22 Disselhorst, Maria 82 Dohmen, Amy 100 Dols, Nienke 100 Donker, Mila 94 Donswijk, Maarten 76 Doodeman, Barry 95 Doorenspleet, Dirk 77 Dorlo, Thomas 20, 88 Douma Sirith 88 Drenth, Anne Paulien 38 Drost, Brigitte 101 Duarte, Alexandra 47 Dufournii, Brigitte 88 Duinkerken, Charlotte 72, 100 Duits, Danique 29

E

Ebbens, Aafke 76 Effing, Jeroen 76 Efthymiou, Katina 101 Eijgelaar, Roelant 94 Ekelschot-Piilsma, Danielle 76 el Aissati, Hajar 76 Elbatsh, Ahmed 48 Elbers, Jos 72, 94, 100 Elkarghali, Zuhir 77 Elkhuizen, Paula 94 Ellenbroek, Saskia 65 Elshof Lotte 100 Engbersen, Maurits 77 Engelhardt, Ellen 25 Ennen, Leo 117 Ennenga Roeland 100 Escala Garcia, Maria 51 Essers, Paul 68, 94 Evers, Danny 100



Faller, William 31 Fanchi Lorenzo 52 Farshid Alemdehy, Mir 35 Fase, Sandra 61 Fast, Martin 54, 94 Fauster, Astrid 28 Feenstra, Christel 76 Feenstra, Heleen 49 Feringa, Femke 43 Ferone, Giustina 23 Fiineman, Remond 44, 76 Fish, Alex 53, 115 Flach, Koen 30, 73 Fles, Renske 88, 101 Flint-Crombag, Marie-Rose 20, 88 Floot, Ben 68 Franke, Viola 100 Frantzen-Steneker, Marloes 94 Franx, Ingeborg 77 Franzen, Nora 60 Friilink, Elselien 27, 94 Friskes, Anoek 43 Fu, Li-Ping 70 Fumagalli, Arianna 65 Fusaglia, Matteo 100



Galama, Hylke 108 Gan, Changpei 50 Gandaglia Anna 38 Gangaev, Anastasia 40 García Nieto Alberto 48 Garner Hannah 29 Gebretensae, Abadi 20, 88 Geldorp, Mariska 95 Geluk-Jonker, Martine 76 Gena, Di 95 Gerritsma, Miranda 25 Geurts, Yvonne 61 Ghobadi, Ghazaleh 57, 94 Ghuiis Petra 77 Giardiello, Daniele 51 Gilani, Warda 77 Gisler, Santiago 64 Gogola, Ewa 47 Gomez, Raquel 32 Gomez Solsona, Beatriz 26, 94 Gomez-Muňoz, Fernando 77 Gonzalez, Patrick 94 Gonzalez Manion, Anna 43 Gouw Simone 76 Gouw, Zeno 54, 94 Grijpink, Lindsay 88 Groen, Emilie 70, 76 Groen, Harald 100 Groen, Wim 60 Groenewegen, Jan 94 Groenland, Steffie 20, 88 Groot, Harmke 61 Groot, Yvonne 88 Grootscholten, Cecile 82 Groutars, Viviana 61 Gun Xianhu 53



Haak, Hester 100 Haaksma, Miriam 61 Haanen, John 32, 82 Haarhuis, Judith 48 Haas, Rick 94 Hafkamp, Florianne 88 Hage, Joris 101 Hagen, Patricia 88 Hagenaars, Christiane 88 Hagmeijer, Marijke 76 Hahn, Christoph 101 Hahn, Daniela 76 Hahn, Kerstin 65 Hakim, Herlina 101 Hamming-Vrieze, Olga 94 Han, Ruigi 17 Handgraaf, Shanna 18 Harkes Rolf 37 Harms, Emmy 83 Harmsen, Tim 56 Harren, Saskia 77 Hartemink, Koen 100 Hau, Song-Hieng 88 Hau, Tisee 29 Hauptmann, Michael 33, 116 Havermans, Saskia 77 Heeg, Eric 100 Heeres, Birthe 77 Heerink Wout 100 Heidebrecht, Tatjana 46 Heijker Sanneke 77 Heiimink, Stiin 77

Hellingman, Daan 76 Hendricksen, Kees 101 Hendrikx, Jeroen 20, 76, 88 Henneman, Alex 44, 77 Henneman, Linda 117 Henneman, Roel 100 Herbrink Maikel 20,88 Hernández Pérez, Santiago 36 Hes, Jolanda 88 Hessen, Eline 26, 94 Heukelom, Jolien 54, 94 Hevdari, Paniz 20, 88 Hiemstra, Annelies 88 Hiemstra, Annemieke 44, 77 Hiimans, Brenda 44, 77 Hiimans, Marielle 22 Hilgers, Frans 100 Hilborst, Yvonne 83 Hillebrand, Michel 20, 83, 88 Hilling, Denise 100 Hiruma, Yoshitaka 46 Hoefakker, Kelly 40 Hoefsmit, Esmee 24 Hoek, Rianne 61 Hoekman Liesbeth 111 Hoekstra Miriam 52 Hoencamp, Claire 48 Hoes, Louisa 69 Hofland, Ingrid 114 Hogenboom, Floor 88 Hogervorst Frans 76 77 Holtkamp, Marjo 83 Honnef, Gwen 100 Hoogeboom, Rien 77 Hooghiemstra, Nienke 88 Hoogstraat, Marlous 71 Hooijberg, Erik 77 Hoornweg, Marije 101 Horenblas, Simon 101 Horlings, Hugo 34, 77 Houthuiizen, Julia 38 Houwink Aletta 101 Huang, Xinvao 45 Hubertus, Marin 108 Huiibers, Ivo 117 Huis in 't Veld, Eva 100 Huisman, Brent 94 Huissoon, Sandra 101 Huitema, Alwin 20, 82, 88 Huizing, Daphne 76 Hulshoff, Lenie 101 Hulsman, Danielle 64 Hummel, Lisanne 16 Hummelink, Karlijn 77 Hupkens, Britt 77, 100 Hutten, Stefan 38 Huurdeman, Huib 77

Hekkelman, Maarten 46



Ibáñez Molero, Sofía 45 Iglesias Guimarais, Victoria 27 IJsbrandy, Charlotte 60 Imani, Farshad 77 Ivanov. Eduard 88



Jacobs, Bart 20, 82, 88 Jacobs, Heinz 35 Jacobs, Jacqueline 36 Jacobse, Judy 61 Jalink, Kees 37 Janmaat, Karin 88 Jansen, Edwin 94 Jansen, Julie 20, 88 Jansen, Marissa 88 Janssen, Louise 43 Janssen, Natasja 54, 95, 100 Janssen, Silvie 59 Janssen, Tomas 94 Janssens, Nicky 88 Janssens, Soe 101 Jasperse, Bas 77 Jastrzebski, Kathy 19, 71 Jayakkumaran, Abi 88 Jeanson, Kiki 76 Jenner, Denise 62 lin Hanije 22 Jochems, Fleur 22 John, Katinka 61 Jonker, Marcel 95 Jonkers, Jos 38 Joosten, Krista 46 Joosten, Pieter 100 Joosten, Robbie 46, 118 Joosten, Stacey 73 Jozwiak, Katarzyna 33, 116 Juan de la Cruz, Celia 54,95



Kahn, Josephine 22 Kaing, Sovann 69 Kalisvaart, Robin 95 Kamp, Jessica 76 Kanehira, Takahiro 54, 94 Kant, Josien 88 Kappert, Kilian 100 Kaptijn, Karin 88 Karakullukcu, Baris 100 Karssemakers Luc 100 Karsten, Rebecca 100 Kas Sincs 38 Kasiem, Mobien 76 Keeman, Renske 51 Keep, Hanny 76 Keesman, Rick 57 Keijser, Astrid 88 Keijzer, Niels 53 Keizer, Leonie 77 Kemper, Inge 83 Kerkhoven, Ron 119 Kerst, Martiin 82 Kester, Lennart 65 Ketelaar, Steven 40 Khelil, Nawel 88 Khmelinskii, Artem 54, 94 Kho, Esther 100 Kieffer, Jacobien 16, 25, 49, 59 Kieft Mariëtte 76 Kiers Karen 94 Kievit, Wouter 114 Kim, Robbert 53 Kim, Yongsoo 73 Klarenbeek, Jeffrey 37 Klarenbeek, Sjoerd 120 Klaver, Chris 29, 39, 82 Klaver, Kete 49 Klawer, Edzo 57, 95 Klomp, Houke 100 Klompenhouwer, Lisa 77 Klompmaker, Rob 43 Klop, Martin 100 Kluin, Roel 119 Kneaiens, Joost 94

Kneppers, Jeroen 21, 73 Knikman, Jonathan 20, 88 Koemans, Willem 100 Koersvelt, Danja 88 Koetsveld, Folkert 94 Knevnets Emmie 49 Kok, Esther 100 Kok | janne 52 Kok Marleen 39, 52, 82 Kok, Niels 100 Kolmschate, Lies 88 Komor, Gosia 44, 77 Kong, Xiangjun 45 Kong Mok, Wai 95 Koob, Lisa 43 Kooij, Laura 60 Koole Simone 82 Koopman, Ciska 20, 88 Kooreman, Ernst 57, 95 Kopparam, Jawahar 64 Koraichi, Ismail 118 Korkmaz, Gözde 17 Korse, Tiny 76 Korthout, Tessy 63 Kos, Carolien 77 Kos Kevin 29 Koster Tobias 88 Kozlovski, Itamar 17 Kraan, Sanny 76 Kramer, Iris 51 Krap, Menno 100 Krdzalic, Jasenko 77 Kreft, Maaike 55 Krenning, Lenno 43 Kriesels, Chantal 77 Krijgsman, Oscar 45 Krimpenfort, Paul 23 Kristel, Petra 70 Kroese, Lona 117 Kronenburg-Rooze, Lyandra 76 Kroon Paula 27 Kruger, Dinia 42 Krul Inge 61 Kuenen, Marianne 25, 49 Kuhlmann, Koert 100 Kuijer, Ted 76 Kuijntjes, Gert-Jan 41 Kuijsten, Laura 20, 88 Kuilman, Thomas 45 Kuiper, Maria 83 Kurilova, leva 77 Kusters, Miranda 100 Kuusk, Teele 101 Kvistborg, Pia 40 Kwint, Margriet 95



La Fontaine, Matthew 54, 94 Lacroix Ruben 24 Lahaye, Max 77 Laine, Anni 29 Lalezari, Ferry 77 Lam, Yush 114 Lamboo, Eva 82 Lambooii, Jan Paul 23, 117 Lambrecht, Maria 95 Lambreats, Doenia 77 Lamers, Emmy 95 Lammers, Rianne 101 Landheer Kees 94 Landman, Nick 64 Landskron, Lisa 28 Lange, Charlotte 77

Langhout, Niels 100 Lansaat, Liset 100 Lansu, Jules 94 Lardenoije, Nancy 83 Latenstein, Reinier 77 Latuihamallo Daan 88 Latuihamallo, Merel 89 Latuihamallo, Suzanne 89 Lebbink Merel 82 Lebesaue, Joos 94 Lebre, Cristina 50 Lechner, Anoesika 83 Lee Meeuw Kjoe, Philippe 49 Leemans, Christ 66 Leemans, Maartje 100 Lei, Xin 27 Leite de Oliveira, Rodrigo 22 Lemmens, Margriet 44, 77 Lenstra, Tineke 41 Leuverink, Tom 101 Levy, Sonia 83 Lévy, Pierre 45 Li. Li 17 Li. Wenlong 50 Licup, Albert 94 Liefaard Marte 70.82 Lieftink Cor 19 112 Ligtenberg, Maarten 45 Lijnsvelt, Judith 83 Lim, Gordon 94 Lin, Chun-Pu 45 Lindenberg, Melanie 60 Linder, Simon 21, 73 Linn, Sabine 42, 82 Lips, Esther 70 Liskamp, Carmen 94 Liu, Ningqing 30 Loayza Puch, Fabricio 17 Logtenberg, Meike 52 Lohuis, Jeroen 65 Lobuis Peter 100 Lok, Christianne 100, 101 Lønning Kai 54 95 Loo, Claudette 77 Lopez, Rui 17 Lopez Yurda, Marta 88 Louhanepessy, Rebecca 21, 73, 83 Louwe, Marintha 76 Lübeck, Jovce 77 Lucas, Luc 20, 88 Lutkenhaus, Lotte 94 Lutz, Catrin 38



Maas, Monique 77 Madu, Max 100 Mahn, Marianne 89 Mainardi, Sara 22 Majoor Donné 77 114 Maliepaard, Eliza Mari 63 Malka, Yuval 17 Mallo, Henk 83 Mammatas, Lemonitsa 82 Mandjes, Ingrid 89 Mans, Anton 94 Manuel-Peen, Kirsten 76 Manzo, Stefano 66 Marchetti, Serena 82 Maresca, Michela 30 Marshall, Scott 94 Marsman, Marije 108 Martens, Esther 76 Martens-de Kemp, Sanne 44, 77 Martin Telez, Karla 100 Martinelli, Luca 53 Martínez, Alejandra 50 Martinez Ara, Miguel 66 Martins, Margarida 50 Mayayo Peralta, Isabel 73 Mazouzi, Abdelghani 28 McLean, Chelsea 69 McLelland, Gian-Luca 28 Medema, Rene 43 Meerveld, Aafke 82 Meijer, Else 89 Meijer, Gerrit 44, 76 Menegakis, Apostolos 43 Menko, Fred 76 Mensink, Mark 27 Mergui-Roelvink Maria 83 Mertz, Marioliin 113 Mezzadra, Riccardo 52 Michielsen, Nina 89 Miinheer, Ben 94 Milinovic, Gordana 89 Min. Lisa 77 Minnaard, Lindsev 89 Miron Sardiello, Ezequiel 66 Mohan Vineet 95 Moises Da Silva, Ana 38 Molenaar, I vanne 77 Molenaar, Thom 63 Mombeini, Behzad 17 Monkhorst, Kim 77 Mooii, Thea 61 Moonen, Luc 94 Moore, Kat 71 Morgner, Jessica 65 Moritz, Ruben 76 Morra, Anna 51 Morris, Ben 19, 112 Moser, Sarah 38 Moser, Tim 108 Mourragui, Soufiane 71 Mulder, Lennart 70 Mulero Sanchez Antonio 22 Muller, Mirte 83 Muller, Pietie 89 Muller, Sara 76 Murachelli, Andrea 53 Muusers, Rick 89 Mylvaganan, Chelvi 76



Naaktoeboren, Willeke 60 Nagel, Remco 17 Nahidi, Leila 37 Nan, Lianda 20, 88 Nanninga, Suzanne 76 Navran, Arash 94 Nazarvfard, Marian 77 Nedergaard Kousholt, Arne 38 Nederlof, Iris 34, 39 Nederlof, Petra 76, 77 Neppelenbroek, Suzanne 61 Nerad, Elias 77 Neto, Joao 22 Nouven, Thi Minh Anh 95 Nguyen-Kim, Thi Dan Linh 77 Nieuwenhuis, Joppe 28 Nieuwland, Marja 119 Nijdam, Annelies 61 Nijenhuis, Cynthia 20, 88 Nijkamp, Jasper 94, 100 Niikamp, Wouter 19 Noordhout, Carla 89

Nowee, Marlies 94 Nuijen, Bastiaan 20, 82, 88 Nuijten, Elvira 89



Oiha, Privanka 95 Olaciregui-Ruiz, Igor 94 Oldeheuvel, Judith 76 Oldenburg, Hester 100 Oldenkamp, Roel 48 Onderwater, Suzanne 83 Ooft, Salo 69 Oomens, Marjolijn 100 Oostergo, Tanja 82 Opdam, Frans 82 Opdam, Mark 42 Ortega Marin, Karin 95 Oskam, Inge 100 Ottenhof, Sarah 101 Ouwens, Gabey 61 Overbeek, Kasper 25 Owers, Emilia 76



Paape, Anita 77 Paes Dias, Mariana 38 Pagie, Ludo 66 Palic, Semra 20, 88 Palit, Sander 58 Palmboom, Hans 76 Palomero Gorrindo, Jara 27 Pandey, Gauray 64 Papaconstadopoulos, Pavlos 94 Passchier, Ellen 100 Pataskar Abbijeet 17 Patel, Heta 41 Patiwael, Sanne 40 Pauwels, Caroline 89 Peener Daniel 45 Pellikaan, Karline 61 Pengel, Kenneth 89 Peppelenbosch-Kodach, Liudmilla 77 Peric Hupkes, Daniel 66 Perrakis, Anastassis 46 Peters, Dennis 114 Petersen, Marije 100 Pevenage, Philip 77 Pézier, Thomas 100 Pfauth, Anita 121 Piek-den Hartog, Marianne 100 Pieters, Wietske 56 Piipe, Anouk 61 Pilzecker, Bas 35 Piñeiro Ugalde, Alejandro 17 Pinto Barbera, Eric 31 Pirpinia, Kleopatra 95 Plakké Brenda 77 Plasier, Patricia 89 Ploeger, Lennert 95 Plug, Rob 76 Poelmann, Annemieke 77 Pogacar, Ziva 22 Pomp, Wim 41 Pontvuijst, Astrid 77 Poramba Livanage, Deepani 63 Pos, Floris 94 Post, Anouk 100 Postrach, Daniel 65 Pritchard, Colin 117 Privanka, Anu 53 Prokovic, Stefan 73

Pronk, Loes 89 Proost, Natalie 122 Protik, Angjelina 95 Pruntel, Roelof 76, 77 Pulleman, Saskia 83 Pulver, Emilia 38



Qiao, Xiaohang 72

R

Raaiimakers, Jonne 43 Raeven Lisanne 29 Rahimimoghaddam, Mohsen 95 Rahman, Rubayte 76, 77 Ramirez, Christel 18 Ramovs, Veronika 55 Rao, Disha 24 Rausch, Christian 77 Raven, Anie 108 Rebers, Susanne 51 Reijers, Irene 24 Reiim, Esther 82 Reinders, Anneke 89 Relyveld, Germaine 101 Remeijer, Peter 94 Remmelzwaal, Jolanda 89 Retèl, Valesca 60 Rhemrey, Valerie 89 Rice, Samuel 77 Ridderbos, Jan-Nico 77 Riem, Ellen 120 Riiken, M.J. 101 Riikhorst, Erik-Jan 76 Riiksen, Barbara 94 Rijlaarsdam, Martin 82 Roberti, Sander 33, 116 Rodjan, Firazia 82 Rodriguez-Outeiral, Rogue 57 Rohaan, Maartje 83 Rolfs, Frank 38 Rookus, Matti 61 Roos, Silvana 71 Roosendaal, Jeroen 20, 88 Roseboom, Ignace 20, 88 Rosenberg, Efraim 76. 77 Rosina, Hilde 20, 88 Rossi Maddalena 54 95 Rothengatter-Ophof, Anita 101 Rottenberg, Sven 47 Rousseau, Jacob 89 Rowland, Beniamin 48 Rozeman, Lisette 24, 83 Rozendaal, Roel 94 Ruers, Theo 100 Ruijs, Marielle 76 Ruiter, Lydia 89 Russell, Nicola 94 Rutgers, Emiel 100



Salgado-Polo, Fernando 46 Salomon, Izhar 83 Salvagno, Camilla 29 Salverda, Govert 94 Sampiomon, Denise 82 Sanders, Joyce 77 Sari, Aysegűl 89 Saveur, Lisette 83 Schaake Eva 94 Schaapveld, Michael 61 Schagen, Sanne 49 Scheele, Colinda 65 Scheelings Pernilla 25 Scheerman, Esther 76 Scheij, Saskia 20, 32, 88 Schelfhorst, Tim 65 Schellens, Jan 82 Schep, Ruben 66 Scheper, Wouter 52 Schepers, Arnout 22 Schermers, Bram 100 Schiefer Mart 82 Schieveld, Bart 101 Schieven Sebastiaan 45 Schijns, Marijne 30 Schinkel, Alfred 50 Schipper, Koen 38 Schipper, Luuk 69 Schipper, Robert-Jan 77 Schmidt, Marjanka 51 Schneider, Christoph 94 Schol, Joke 20, 88 Scholten, Astrid 94 Schoots, Ivo 77 Schot, Margaret 83 Schouten, Philip 83 Schouten, Robert 83 Schraa, Harmen 77 Schreuder, Pim 100 Schreurs, Maartie 51 Schrier, Mariëtte 89 Schrijver Helga 89 Schrijver, Lieske 61 Schriiver, Mariolein 100 Schroder, Lukas 54, 95 Schumacher, Ton 52 Schunselaar, Laurel 73 Schurink, Niels 77 Schut-Kregel, Eva 38 Schutte, Peter 101 Schuur, Maaike 82 Schuurman, Karianne 73 Sedeño Cacciatore, Ángela 48 Seinstra, Danielle 65, 69 Semenova, Ekaterina 23 Sernee, José 77 Serrat Judit 36 Severins, Brian 44, 77 Severson Tesa 71 83 Shah, Ronak 35 Sikorska, Karolina 88 Silva, Joana 31 Simoes, Rita 57 Simon, Mischa 101 Sinaasappel, Michiel 76 Singh, Abhishek 73 Siteur, Bjørn 122 Sixma Titia 53 Slagter, Maarten 52, 71 Slangen, Paul 26, 67, 95 Smeele, Ludi 100 Smienk, Ernst 89 Smit, Edgar 77 Smit, Eabert 82 Smit. Jasper 100 Smit, Laura 77 Smolic, Milena 94 Smorenburg, Carolien 82 Snaebiornsson, Petur 77 Soares Vieira, Bruno 95

Sobral-Leite, Marcelo 51

Sombroek, Cherita 95

Sawicki, Emilia 83

Sondermeijer, Carine 89 Sondermeijer, Michiel 89 Song, Ji-Ying 120 Sonke, Gabe 82 Sonke, Jan-Jakob 54, 94 Sonnenberg, Arnoud 55 Sotiropoulos, Georgios 95 Soto Mar 43 Spaan, Mandy 61 Spagnuolo, Lorenzo 29 Spanjaard, Aldo 35 Spil. Bob 77 Spronk, Pauline 100 Šrámek, Michael 101 Stadnik-Spiewak, Magda 115 Stam, Barbara 54, 94 Stanković Uros 54 95 Staring, Jacqueline 28 Starreveld, Danielle 25 Steeghs, Neeltje 82 Steenbeek, Sander 65 Steenhuis, Roos 89 Steins, Dax 89 Stelloo, Suzan 21, 73 Sterenborg, Dick 100 Stickel, Elmer 28 Stiif-Bultsma, Yvette 53 Stilder, Suzan 89 Stoepker, Chantal 56 Stoffels, Saskia 70 Stokkel, Marcel 76 Stouthard, Jacqueline 82 Straathof, Rick 78 Stram, Doug 33 Streefkerk, Esther 76 Suijkerbuijk, Saskia 65 Sun, Chong 52 Sun, Jane 17 Sustic Tonci 22



Taghavirazavizadeh, Marjanneh 77 Tan, Bing 100 Tanis, Erik 100 te Boekhorst, Arjan 77 te Molder, Lisa 55 te Riele, Hein 56 Teixeira Suzana 100 Telkamp, Ouinten 94 ten Cate Julia 101 ten Tusscher, Marieke 16 ter Beek, Leon 76 ter Stege, Jacqueline 25 Terpstra, Irene 78 Terra, Lara 61 Terry, Alexandra 45 Tesselaar, Margot 82 Tessier, Jeremy 18 Teunissen Hans 30 Teuwen, Jonas 54, 94 Thano, Adriana 89 Theelen, Willemijn 82 Theeuwsen, Rebecca 122 Thijsen, Bas 20, 88 Thiissen, Bram 71 Thommen, Daniela 52 Thompson, Loraine 89 Tibben, Matthiis 20, 83, 88 Tielen Ivon 76 Tiissen, Marianne 44, 77 Timmers, Marjolein 51 Tioa, Liang 101 Toebes, Mireille 52

Tomar, Tushar 45 Topff, Laurens 77 Torres Acosta, Alex 89 Torres Valderrama, Aldemar 94 Torres Xirau, Iban 57, 95 Touw, Adriaan 89 Trebeschi, Stefano 77 Trip, Anouk 94 Trum, Hans 101 Tsakou, Foteini 46



Uceda Castro, Rebecca 65 Uckelmann, Michael 53 Ud Din Ahmad, Misbha 46 Urbanus, Jos 52 Uyterlinde, Wilma 83



Vaarting, Chantal 43 Valenti, Mesele 24 Valkenet, Ludy 89 Vallenduuk, Wim 101 Valstar, Matthiis 101 van 't Sant-Jansen, Iris 77 van 't Erve, Iris 44, 77 van Akkooi, Alexander 100 van Alphen, Maarten 101 van Amelsfoort, Romv 94 van Andel Lotte 20,88 van Arensbergen, Joris 66 van As-Brooks, Corina 100 van Baalen, Martiin 121 van Beek, Suzanne 95 van Beelen-Post IIse 76 van Beurden, Marc 100, 101 van Beusekom, Bart 46 van Boven, Hester 76 van Coevorden, Frits 100 van de Ahé, Fina 117 van de Belt, Marieke 88 van de Graaff, Ben 122 van de Haar, Joris 69, 71 van de Kamer, Jeroen 94 van de Linden, Rianne 114 van de Lindt Tessa 54 95 van de Poll-Franse, Lonneke 59 van de Velde Tony 89 van de Ven, Marieke 122 van de Water, Steven 94 van de Wiel, Bart 77 van de Wiel, Hester 60 van den Belt-Dusebout, Sandra 61 van den Berg, Jeroen 43 van den Berg, Joost 20, 32, 88 van den Berg, Jose 76 van den Berk, Paul 35 van den Bogaard, Samira 88 van den Braber, Marlous 52 van den Brand, Teun 30 van den Brekel, Michiel 100 van den Broek, Bram 37, 113 van den Broek. Daan 76 van den Broek, Sandra 51 van den Haak, Marjolein 88 van den Hengel, Lisa 28 van den Noll Ruud 89 van den Wollenberg, Wouter 94 van Denderen, Janneke 44, 76 van der Berg, Marieke 101 van der Bijl, Erik 94

van der Borden, Carolien 70 van der Burg, Eline 38 van der Graaf, Winette 82 van der Groen, Patricia 77 van der Gulden, Hanneke 38 van der Haar Àvila, Irene 27 van der Heide, Uulke 57, 94 van der Heijden, Ingrid 38 van der Heijden, Martijn 68, 101 van der Heijden, Michiel 58, 82 van der Hek-van Essen, Jacoline 83 van der Hiel, Bernies 76 van der Hoogt, Kay 77 van der Kammen, Rob 31 van der Kolk | izet 76 van der Kraaii, Rosa 100 van der Krieke Fenna 77 van der Laaken, Manon 101 van der Laan, Elsbeth 83 van der Leij, Femke 94 van der Leun, Anne 52, 72, 101 van der Lubbe, Megan 77 van der Meer, Femke 82 van der Meer, Jelrik 120 van der Molen, Lisette 101 van der Noordaa, Marieke 100 van der Noort, Vincent 88 van der Ploeg, Iris 100 van der Poel, Henk 100, 101 van der Sande, Marit 100 van der Sar, Jana 83 van der Schoot, Stiin 94 van der Valk, Maxime 100 van der Veen, Gijs 94 van der Veen Jelmer 76 van der Velden, Daphne 69 van der Velden, Lillv-Ann 100 van der Velden, Sophie 76 van der Vliet Jan 23 van der Voort, Anna 83 van der Voort-van Oostwaard. Maaike 78 van der Vos. Kristan 58 van der Wal, Anja 62 van der Wal, Jacqueline 77 van der Weide, Robin 30 van der Weijden, Susanne 78 van der Wiel, Rianne 77, 114 van der Willik, Kimberly 49 van der Woude Lisa 100 van der Woude, Stephanie 82 van der Zwalm Marloes 66 van Deventer, Kelly 77 van Diepen, Frank 121 van Dieren, Jolanda 82 van Diessen, Judi 54, 94 van Dijk, Nick 58, 82 van Dijk, Pim 53 van Dijk, Simone 101 van Doeveren, Tessa 101 van Dongen, Marloes 82 van Dorp, Jeroen 58 van Driel, Willemien 101 van Duijnhoven, Frederieke 100 van Dvk. Ewald 29 van Eden, Hanneke 19 van Eiik, Maarten 20, 88 van Engelen, Marjon 77 van Geldorp, Mariska 26 van Gemert, Frank 56 van Genugten, Jasper 64 van Giin, Roel 82 van Ginkel, Tessa 101 van Gool Matthiis 100 van Griethuysen, Joost 77

van Harten, Michel 101 van Harten Wim 60 van Heeswijk, Miriam 77 van Heiininge-van Diepen, Zilca 77 van Heusden, Annelies 77 van Hooren, Luuk 18 van Hoppe, Stéphanie 50 van Houdt, Petra 94, 100 van Houdt, Winan 100 van Hout, Vanessa 77 van Huizum, Martine 101 van Kalleveen, Irene 77 van Kampen, Eveline 20, 88 van Kranen, Simon 54, 94 van Kruijsbergen, Ila 63 van Lanschot, Meta 44, 77 van Leerdam, Monique 82 van Leeuwen, Flora 61 van Leeuwen, Fred 63 van Leeuwen, Marieke 16, 59 van Leeuwen, Pim 101 van Loevezijn, Ariane 100 van Lohuizen, Maarten 64 van Mourik, Anke 94 van Mulligen, Pauline 44, 77 Van My, Trieu 24 van Netten, Gabry 89 van Nuland, Merel 20, 88 van Oers, René 94 van Ommen-Niihof, Annemiek 82 van Ooij, Joost 120 van Ooii. Theo 77 van Oort, Aaike 51 van Os. Karen 76 van Pelt, Vivian 95 van Ravesteyn, Thomas 56 van Rens, Anja 76 van Rheenen, Jacco 65 van Rhiin, Bas 101 van Rhijn, Vénice 89 van Roekel, Sanne 89 van Rooiien, Charlotte 77, 114 van Rossum, Annelot 42, 83 van Rossum, Huub 76 van Ruiten, Marjon 48 van Sandick, Johanna 100 van Schaffelaar, Emmie 89 van Schaik, Tom 66 van Schaik-Ellenbroek, Joyce 77 van Schie, Marcel 57, 95 van Seijen, Maartje 70 van Sluis, Klaske 101 van Son, Rob 101 van Soolingen, Lianne 59 van Stam, Marie-Anne 16 van Steenbruggen, Tessa 83 van Steenis, Charlaine 119 van Steensel, Bas 66 van Tellingen, Olaf 67, 122 van Thienen, Hans 82 van Tinteren, Harm 88 van Triest, Baukelien 94 van Trommel, Nienke 101 van Urk, Japke 77 van Veen, Robert 101 van Veen, Ruben 100 van Veenendaal, Linde 83 van Vliet, Alex 45 van Welsem, Tibor 63 van Werkhoven, Erik 88 van Weverwijk, Antoinette 29 van Winden, Lennart 76 van Zoelen, Stéphanie 119 van Zon, Maaike 20, 32, 88

Vanhoutvin, Steven 89

Vanrusselt, Jan 77 Vasbinder-Palthé, Yvonne 78 Veenhof, Xander 100 Veenstra, Corine 95 Vegna, Serena 18 Vegt Frik 76 Veldema, Ingrid 78 Veldhuijzen Evalien 16 95 Velds Arno 119 Venekamp, Nikkie 20, 88 Venema, Maarten 89 Vennin, Claire 65 Vens, Conchita 68, 94 Verbeek, Joost 60 Verbeek, Wieke 82 Verbrugge, Inge 27 Vergara, Xabier 43 Vergara Ucin, Xabier 66 Vergouwe, Ingeborg 101 Vergouwen, Michel 89 Vergroesen, Joëlle 89 Verheij, Marcel 68, 94 Verhoef, Koen 108 Vermeeren-Braumuller, Tanva 117 Vermeulen, Marrit 89 Vermunt Marit 21,83 Verrest Luka 20.88 Versleijen Michelle 76 Verwijs, Manon 68 Vessies, Daan 76 Vianen, Carla 89 Vieira, Bruno 60 Villanueva, Mauro 78 Vis. Daniel 58, 71 Visser, Hester 95 Visser, Lindy 70 Visser, Marianne 78 Visser, Nils 45 Vizoso Miquel 65 Vlasveld, Ton 76 Vliek Sonia 42 83 Voabil, Paula 52 Voest Emile 69.82 Vogel, Maartje 76, 77 Vogel, Wouter 76, 94 Volkov, Andryi 27 Vollebergh, Marieke 82 Vollenbrock, Sophie 77 Voncken, Francine 94 Voogd, Rhianne 20, 32, 88 Voorham, Etha 78 Voorwerk, Leonie 39, 83 Vos, Joris 72, 101 Vos. Niels 100 Voskuilen, Charlotte 101 Voskuilen, Luuk 101 Vossen, David 68, 101 Vredevoogd, David 45 Vreeswijk, Sandra 95 Vrijenhoek, Gerbert 95 Vriiland Kim 29 Vroonland, Colinda 76



Walraven, Iris 94 Wals, Anneke 89 Wang, Cun 22 Wang, Jing 50 Wang, Liqin 22 Wang, Wei 55 Wang, Yaogeng 50 Wartena, Rosa 89 Weeber, Fleur 69

Wener Reinier 82 Wesseling, Jelle 70, 77 Wessels, Lodewyk 71 Westphal, Tatiana 89 Wever Lidwina 89 Wientjens, Ellen 38 Wiersma, Terry 94 Wijnands, Rosemarie 62 Wijnands, Yvonne 89 Wilgenhof, Sofie 82 Willems, Laureen 48 Willemse, Els 89 Wind, Anke 60 Winia Vivian 101 Winnubst, Janna 89 Winter-Warnars Gonneke 77 Winterwerp, Herrie 53 Wirokromo, Valerie 120 Wit. Esther 101 Witlox, Lenia 49 Witte, Marnix 94 Witteveen, Thelma 94 Wittkämper, Frits 94 Woensdregt, Karlijn 100 Woerdeman, Leonie 101 Wolf, Anne Lisa 94 Wollersheim, Barbara 59 Wolthuis, Esther 101 Wortel, Geert 94 Wouters, Michel 100 Wouters, Roel 69 Wriedt, Torben 118

Wellenstein, Max 29

## X

Xiao, Yanling 27 Xue, Zhena 22



Yalçin, Zeliha 36 Yaron, Gili 101 Yemelyanenko, Julia 38 Ykema, Berbel 83

## Ζ

Zaalberg Anniek 21 73 Zavrakidis, John 33, 116 Zecha, Judith 101 Zerp, Shuraila 68 Zevenhoven, John 23 Zhu, Yanyun 73 Zijlmans, Henry 101 Zimmerman, Marion 83 Zingg, Daniel 38 Zu, Yanvun 21 Zucker, Regina 89 Zuidema, Alba 55 Zupan-Kajcovski, Biljana 101 Zuur, Lotje 72, 100 Zwart, Wilbert 73 Zweers, Samanta 119

REDACTIE Suzanne Corsetto COPYRIGHT Netherlands Cancer Institute, Amsterdam DTP/LAYOUT Copper Design, Houten I copper-design.nl I FOTOGRAFIE Martin Hogeboom, Epe I www.martinhogeboom.nl I DRUKKER NPN drukkers, Breda I www.npndrukkers.nl I